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Abstract. Text classification is a challenge in document labeling tasks
such as spam filtering and sentiment analysis. Due to the descriptive
richness of generative approaches such as probabilistic Latent Seman-
tic Analysis (pLSA), documents are often modeled using these kind of
strategies. Recently, a supervised extension of pLSA (spLSA [10]) has
been proposed for human action recognition in the context of com-
puter vision. In this paper we propose to extend spLSA to be used in
text classification. We do this by introducing two extensions in spLSA:
(a) Regularized spLSA, and (b) Label uncertainty in spLSA. We eval-
uate the proposal in spam filtering and sentiment analysis classification
tasks. Experimental results show that spLSA outperforms pLSA in both
tasks. In addition, our extensions favor fast convergence suggesting that
the use of spLSA may reduce training time while achieving the same
accuracy as more expensive methods such as sLDA or SVM.

Keywords: Probabilistic Latent Semantic Analysis · Model
Regularization · Label uncertainty · Text classification

1 Introduction

Given the large amount of data held in text format, modeling topics in text
has been of growing interest in the last decade. Generative strategies based
on probabilistic Latent Semantic Analysis (pLSA [6]) provide a solid theoretical
base and a flexible framework for this task that allow for the modeling of various
kind of corpora. The idea driving these models consists in introducing a set of
latent variables that allow one to discover relationships between terms. These
kind of strategies are known as topic models.

Topic models are fundamentally divided into two broad approaches: tech-
niques derived from pLSA, which introduce latent variables without assum-
ing distributional priors, and techniques based on Latent Dirichlet Allocation
(LDA [2]) which assumes Dirichlet priors on topics and vocabularies.

From a machine learning perspective, topic models such as pLSA, correspond
to unsupervised learning systems capable to discover structures in data without
supervision. At the other end we have supervised learning systems, which are
able to exploit annotated examples to predict future annotations. Classification
techniques like the Multinomial Naive Bayes model [7] and the Support Vector
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Machine (SVM [4]) are well-known examples of supervised systems with many
applications in text mining, including e.g. spam filtering [1] and sentiment detec-
tion [8]. Unfortunately, though often very accurate, these models either lack the
descriptive richness or the efficiency of text-oriented methods such as pLSA.

Recently, a supervised version of pLSA (spLSA [10]) has been proposed to
tackle the problem of human action recognition in computer vision. By adding
labels into the generative process, spLSA was endowed with more discriminative
power for classification tasks when annotations are available. Surprisingly, spLSA
has not yet been evaluated in text classification despite the fact that pLSA was
originally designed for text modeling. To the best of our knowledge, in this paper
we present the first evaluation of spLSA in text classification tasks. In addition,
we introduce two extensions to spLSA: (a) Regularized spLSA, a variant that
introduces label co-variance minimization into the Expectation-Maximization
(EM) model fitting algorithm, and (b) Label uncertainty, an extension that allow
us to deal with noisy labels, a common problem in human and machine annotated
corpora [11].

2 Related Work

Due to its simplicity, the Multinomial Naive Bayes classifier (MNB [7]) is one
of the most used methods for text classification. MNB assumes (class) condi-
tional independence among terms, which reduces the complexity of the model in
terms of the number of parameters and makes its estimation from data more effi-
cient and reliable. However, in sparse data sets its performance tends to decrease.
LDA-based methods introduce smoothing over the data set using Dirichlet priors
[2], favoring classification tasks over sparse data sets. The supervised extension of
LDA (sLDA [3]) shows good results in classification tasks but introduces difficul-
ties in parameter tuning. In fact, due to the use of Dirichlet priors, the algorithm
needs to tune distributional hyper-parameters. The lack of clear procedures for
tuning is a drawback of this approach.

Discriminative approaches such as the Support Vector Machine and Logistic
Regression [4] are also used for these tasks. In general, these approaches out-
perform generative approaches in terms of classification accuracy. However, they
are less used due to difficulties associated with vocabulary characterization. In
practice, generative approaches offer advantages regarding corpus descriptive-
ness, favoring tasks such as content analysis and term indexing, which are key
tasks in information extraction and document processing.

3 Supervised pLSA and Our Extensions

3.1 Variables and Assumptions

An observation in a labeled corpus D is the realization of three observed random
variables: A document (d), a bag-of-words (w) which describes the content of d,
and a label (y) which indicates the membership of d to a given set of categories
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Λ. The probability of observing a given realization of these variables 〈d = d,w =
w,y = y〉 is denoted by P (d,w, y).

A document d is defined as a sequence of words selected from a vocabulary
V . As documents share words, several semantic relationships among documents
arise. By modeling hidden relationships between document and terms through
latent variables, a latent semantic representation of the corpus is built.

While labels are typically noisy, words and documents convey information.
By introducing latent factors, labels can be stressed by words and documents,
allowing to model label uncertainty, discarding rare, unexpected labels and bear-
ing out only data supported labels.

3.2 Supervised pLSA (spLSA)

The idea of a topic model is that documents are represented by mixtures of
memberships over a latent space. Basically, spLSA considers a label as another
random variable. Then, a generative approach where every observed variable
depends on latent factors is used:

Pz(d,w, y) =
∑

z

P (w|z, y, d) · P (z, y, d) =
∑

z

P (w|z) · P (y, d|z) · P (z)

=
∑

z

P (w|z) · P (y|z) · P (d|z) · P (z).

The last expression corresponds to a generative process of D from the model.

3.3 Model Fitting

Model parameters (θ) can be determined by maximizing the log-likelihood func-
tion of the generative process:

Lθ =
∑

y∈Λ

∑

d∈D

∑

w∈V
n(d,w, y) log P (d,w, y),

where n(d,w, y) denotes the number of occurrences of (d,w, y) in D. The Expec-
tation Maximization algorithm (EM) is the standard procedure for parameter
estimation in latent variable models. The E-step of the algorithm estimates
P̂ (z|d,w, y) from the generative model. Then, the M-step estimates the gen-
erative model components (P̂ (w|z), P̂ (y|z), P̂ (d|z), and P̂ (z)) by likelihood
marginalization.

3.4 Label Inference on New Documents

Document labeling using spLSA is straightforward. Starting from a uni-gram
language model for a new document d with nd terms, we have

P (d|z) ∝
nd∏

i=1

P (wi|z),

and then, by applying P (y, d) =
∑

z P (y, d, z) =
∑

z P (y|z) · P (d|z) · P (z),
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Pz(y = l, d) ∝
∑

z∈Z

[
nd∏

i=1

P (wi|z) · P (y = l|z) · P (z)

]
.

Finally, d is labeled with y = l if P (y = l|d) ∝ P (y = l, d) is greater than
any other P (y = Λ\l|d).

3.5 A First Extension: SpLSA Regularization

Since the objective function in spLSA is not convex, the EM-based iterative
method will tend to converge to local optima. As observed from the introduction
of pLSA [6], many of these local optima are plagued by over-fitting. Therefore,
it is advisable to endow the algorithm with a regularization technique. In this
paper, we propose the incorporate additive Tikhonov-based regularizers [9] in
the M-step of the model fitting phase. Concretely, we introduce regularization
for latent factor co-variance minimization.

Our idea is to penalize solutions where the confusion matrix (P̂ (y | z)) is far
from the identity I. We do this by minimizing the co-variance between P (y = l|z)
and P (y = l|Z\z), forcing a match between each latent factor with only one
label. Note that this procedure is equivalent to the diagonalization of the confu-
sion matrix. The latent factor co-variance minimization modifies the likelihood
function as follows:

L = Lθ −
∑

l∈Λ

Cov
(
P̂ (y = l|z), P̂ (y = l|z′ ∈ Z\z)

)
.

The regularized maximum likelihood function can be maximized by mod-
ifying the M-step, where label probabilities conditioned on latent factors are
estimated as in Sect. 3.3 with an additional step:

P̂ (y = l|z) = P̂ (y = l|z) ·
⎡

⎣1 −
∑

z′ ∈Z\z

P̂ (y = l|z′
)

⎤

⎦ .

As a consequence, the EM-algorithm will penalize P̂ (y = l|z) estimates for
labels highly correlated to other latent variables. Note that P̂ (y = l|z) is max-
imized when (1 − ∑

z′ ∈Z\z P̂ (y = l|z′
)) = 1, which it is precisely what we are

looking for.
Finally, we note that the co-variance regularizer may be applied to term

probabilities or document probabilities, in a similar fashion. All these variants
will be evaluated in our experiments.

3.6 A Second Extension: Modeling Label Uncertainty

Label uncertainty is common in text mining applications where annotations
are obtained via crowd-sourcing or distant supervision [11]. To handle label
uncertainty in spLSA, we modify the label estimation procedure by introducing
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the possibility to flip the label available in the data set. Formally, let b ∈ [0, 1] the
flipping probability parameter. To consider both possible labels (binary case),
we introduce a convex combination conditioned on b in the M-step for P̂b(y|z)
as follows:

P̂b(y|z) =
1

Qz
· [(1 − b) ·

∑

d∈D

∑

w∈V
n(d,w, y) · P̂ (z|d,w, y = l)

+ b ·
∑

d∈D

∑

w∈V
n(d,w, y) · P̂ (z|d,w, y = Λ\l)],

where l is the label provided by the data set. Note that b controls the level of
uncertainty by blending P̂ (y = l|z) and P̂ (y = Λ\l|z) into a unified model. When
b = 0 the equation is equivalent to P̂ (y = l|z) and when b = 1 is equivalent to
P̂ (y = Λ\l|z). Thus, values between 0 and 1 will increase/decrease the confidence
on the label provided by the data set. When b = 0.5 we give to the label a
maximum degree of uncertainty, being both options (l or Λ\l) equally probable.

Our method can be extended to the multi-class scenario, by applying a
one-versus-the-rest strategy for P̂b(y|z) estimation. In this case, it is enough
to assume that all the labels that belong to Λ\l are equally probable.

4 Experiments

To evaluate our proposal, we performed experiments on two text labeled data
sets. The first was designed for email spam filtering tasks [1]. We use this data set
to illustrate the impact of regularization on text classification. The second data
set contains tweets labeled as positive or negative regarding emotion polarity. It
comprises a number of tweets labeled using distant supervision (it uses emoticons
to automatically label each tweet) and thus it can be regarded as a data set
with noisy labels. We use this data set to assess our strategy for handling label
uncertainty.

4.1 Data Sets

Below, we provide a brief description of the data sets used in our experiments.

– Email spam data set [1]: This data set comprises a 700-email subset for
training and a 260-email subset for testing. Both the training and testing
subsets contain 50% spam messages and 50% non-spam messages. The data
set comprises a vocabulary of 2.500 words. The data set is available in:
http://csmining.org/index.php/ling-spam-datasets.html

– Twitter distant supervision data set [5]: It includes 1.600.000 tweets
written in English, labeled as positive or negative regarding emotion polar-
ity, inferring labels from emoticons. A set of 359 manually labeled tweets is
provided for validation purposes (177 as negative and 182 as positive). The
vocabulary is compounded by 267.013 terms. The data set is available in:
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip

http://csmining.org/index.php/ling-spam-datasets.html
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
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4.2 Results

We start by exploring the performance of spLSA and co-variance regulariza-
tion in text classification. We compare our proposals with pLSA [6], sLDA [3],
Multinomial Naive Bayes (MNB [7]) and Support Vector Machines (SVMs [4]).
For SVM, we used a C-SVM formulation provided by Liblinear [4], with a tun-
ing over C based on five-fold cross validation (C = 0.1 in both data sets). For
sLDA, we used default values for hyper-parameters1. We tested three variants
of regularized spLSA, obtained by applying co-variance regularization on terms
(P̂ (w|z)), documents (P̂ (d|z)), and labels (P̂ (y|z)). As both data sets rely on
binary classes, we used two latent factors for the experiments (i.e. T = 2 for
sLDA and pLSA).

We assess all the methods in terms of test accuracy and running time. In the
first data set, experiments were conducted using a tolerance value of 1E−08 for
early stopping to guarantee local convergence (likelihood at single precision is
enough for this experiment due to the small size of the data set). Training and
testing performance are summarized in Table 1.

As Table 1 shows, the four variants of spLSA get good results in text classifi-
cation. A slight difference in favor of SVM is observed regarding testing accuracy.
As expected, training accuracies are better than testing accuracies. Note that the
training times of spLSA are less than those incurred by pLSA, suggesting that
spLSA helps to obtain fast convergence. In fact, the fastest solution is achieved
using label regularization. Note also that spLSA and sLDA find the same solu-
tion, but spLSA is faster by one order of magnitude. In addition, this solution
is better in terms of accuracy than the one achieved using MNB. In summary,
results on this data set indicate that the use of regularization on spLSA reduces
the number of iterations required for convergence without compromising classi-
fication accuracy.

Table 1. Classification accuracy performance on the email spam data set.

Method Variant Training acc. Testing acc. Time[s]

MNB - 0.975 0.946 0.24

SVM - 0.975 0.973 0.47

sLDA - 0.975 0.965 3.12

pLSA - 0.958 0.946 0.97

spLSA - 0.975 0.965 0.24

spLSA Reg. P̂ (w|z) 0.975 0.965 0.24

spLSA Reg. P̂ (d|z) 0.975 0.965 0.24

spLSA Reg. P̂ (y|z) 0.975 0.965 0.19

1 α = 50
T

, and β = 200
W

, T is the number of topics and W the vocabulary size.
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Table 2. Classification accuracy performance on the Twitter distant supervision data
set. Bold fonts indicate the best performance result.

Method Variant Training acc. Testing acc. Time[s]

MNB - 0.797 0.777 312

SVM - 0.817 0.816 624

sLDA - 0.797 0.739 1245

pLSA - 0.561 0.565 799

spLSA - 0.817 0.777 326

spLSA Reg. P̂ (w|z) 0.817 0.777 323

spLSA Reg. P̂ (d|z) 0.817 0.777 331

spLSA Reg. P̂ (y|z) 0.817 0.793 81

In the second data set, we used a tolerance value of 1E−16 for early stopping
(likelihood at double precision due to the size of the data set). Training and
testing performance results are summarized in Table 2. These results show that
spLSA outperforms pLSA by more than 20% accuracy points in its four variants,
which, in turn, achieve a similar level of accuracy. As expected, the SVM is
slightly more accurate at the expense of a greater computational cost (∼ 2×
or more). Label regularization favors a significantly faster convergence, reducing
training time to 81 secs with a testing accuracy better than the ones achieved
by sLDA and MNB.

Finally, we analyze the impact of label uncertainty in the Twitter distant
supervision data set, varying the value of the flipping probability parameter b
in the range 0 to 0.6, with increments of 0.01. We use the label regularization
variant for fast convergence. These results are shown in Fig. 1. The figure shows,
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Fig. 1. Training and testing accuracy for different levels of label uncertainty.
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the accuracy achieves values around 80% in both data partitions, with a small
difference in favor of the training part of the data. This difference is reduced
when b increases, until accuracy achieves its maximum for b in the range 0.3–
0.4. As expected, the performance dramatically decreases when b tends to 0.5.
In addition, we can observe high computational costs for high values of b. The
best performance is achieved around b = 0.35, where our proposal reaches the
same performance achieved by SVM.

5 Conclusions

Two extensions of spLSA for text classification has been proposed. Experimental
results show that the both methods are feasible, achieving very competitive
results in terms of accuracy. Two main findings arise. First, label regularization
in spLSA allows to obtain faster convergence and thus lower training times.
Second, handling label uncertainty in spLSA allows improvements in terms of
test accuracy but increases computational costs.
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