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Abstract. Anomaly detection on attributed graphs can be used to
detect telecommunication fraud, money laundering, intrusions in com-
puter networks, atypical gene associations, or people with strange behav-
ior in social networks. In many of these application domains, the num-
ber of attributes of each instance is high and the curse of dimensionality
negatively affects the accuracy of anomaly detection algorithms. Many
of these networks have a community structure, where the elements in
each community are more related among them than with the elements
outside. In this paper, an adaptive method to detect anomalies using the
most relevant attributes for each community is proposed. Furthermore,
a comparison among our proposal and other state-of-the-art algorithms
is provided.
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1 Introduction

Many phenomena, from our world, like neural networks, bank transactions, social
networks, or genes in our DNA can be modeled as networks of interconnected
elements. In these networks, each element has a set of features, and it also has
relationships with other elements. Anomaly detection refers to the problem of
finding patterns in data that do not conform to expected behavior [1]. Anomaly
detection on the previously mentioned networks can be used to detect intrusions
in computer networks, money laundering, identity thief in telecommunications,
or strange gene associations, among other applications.

Traditional anomaly detection techniques only analyze the information about
the elements [1], or the information regarding their relationship [2]. However, in
many application domains like social networks, online shopping or bank trans-
actions, both types of information can be found. Techniques for detecting anom-
alies in attributed graphs can deal with this heterogeneous data. Most of these
techniques take advantage of the community structure present in the graphs, to
analyze each element in a context relevant to it detecting subtle anomalies like
products with a higher price than its co-purchased products.
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In many application domains the number of features describing an element
can be very high, thus identify relevant patterns in the data become very diffi-
cult, this is known as the curse of dimensionality [3]. To overcome this fact, it is
important that anomaly detection algorithms identify the most meaningful fea-
tures to be used in the detection process. In this paper, a method for improving
anomaly detection in attributed graphs, using an unsupervised feature selection
algorithm to select the most relevant features for each community of elements, is
proposed. The advantages of this method are shown on the Amazon co-purchase
network of Disney products1 [4].

In the next sections, the existing approaches to anomaly detection are ana-
lyzed (Sect. 2), some basic concepts are introduced (Sect. 3), our method is pre-
sented (Sect. 4) and experimental results on a real data set are analyzed (Sect. 5).
Conclusions are presented in Sect. 6.

2 Related Work

The three major approaches for anomaly detection discussed in this section are
the vector based approach, graph based one, and hybrid one. Furthermore, the
advantages and disadvantages of each approach, and how it tackles with the
curse of dimensionality, are discussed.

The commonly reported anomaly detection techniques are designed to deal
with vector valued data [1]. Some of these are distance-based algorithms [5],
density-based algorithms [6,7] and algorithms to find clustered anomalies [8–
10], but none of them avoid the curse of dimensionality. Some recent techniques
rank objects based on the selection of a relevant subset of its attributes to
tackle the curse of dimensionality [11,12]. Nonetheless, none of them takes into
consideration relationships among the elements, ignoring part of the information
in the data set, thus these algorithms cannot identify the most significant features
for each community of elements.

Relationships among elements give valuable information about the struc-
ture of a network, due to this, many algorithms to detect anomalous nodes in
graphs, using their relationships, has been proposed [2]. Commonly used tech-
niques include the analysis of the structural characteristics of network elements
finding deviations from normal behavior [13], and searching for infrequent struc-
tures in the network [14,15]. None of these algorithms uses the attributes of the
elements, thus they are not affected by the curse of dimensionality, but they
present low accuracy in heterogeneous data sets because they ignore part of the
existing information.

Anomaly detection in attributed graphs where both graph and vector data
are analyzed has not received much attention. The algorithm described in [16]
combines community detection and anomaly detection in a single process, finding
elements deviated from its community behavior. This algorithm uses the full
attribute space; thus, its results are affected by the curse of dimensionality.

1 http://www.ipd.kit.edu/∼muellere/GOutRank/.

http://www.ipd.kit.edu/~muellere/GOutRank/
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The technique described in [4] proposes an outlier ranking function capable of
use only a subset from the node attributes. In a first step, this technique uses
a state-of-the-art graph clustering algorithm considering subsets of the node
attributes [17–19] and in a second step detects elements whose behavior deviates
from the one of its group. This technique does not take into consideration that,
in some application domains, the relationships among elements give a context
to analyze them, instead of directly indicate than an element is anomalous.
Thus, the performance of this algorithm and the quality of its detection, in this
application domains, is affected.

3 Basic Concepts

It is important to introduce some fundamental concepts before presenting our
proposal.

Definition 1 (Attributed Graph). An attributed graph G =< V,E, a > is a
tuple where:

(i) The set V = {v1, v2, . . . , vn} contains the vertices of the graph.
(ii) The set E = {(v, u)|v, u ∈ V } contains the edges of the graph.
(iii) The function a : V → R

d assigns an attribute vector of size d to each vertex
from G.

The vertices of the graph are the elements of the network, and the edges the
relationships among them.

Definition 2 (Disjoint Clustering). A disjoint clustering C = {C1, C2, . . . ,
Ck} of elements from G is a set where:

(i) ∀Ci ∈ C, Ci ⊂ V
(ii) For each Ci, Cj ∈ C, i �= j, Ci ∩ Cj = ∅
(iii) ∪k

i=1Ci = V.

In this work, the disjoint clusterings are referred just as clusterings.

Definition 3 (Outlier Ranking). An outlier ranking from a graph G is a set
R = {(v, r)|v ∈ V, r ∈ [0, 1]} of tuples, each one containing a vertex from G and
its outlierness score.

4 Improving Anomaly Detection Using Community
Features

Many real networks are structured in communities. A community is a group of
elements more connected among them, than with external elements. Usually, the
elements of a same community share similar features. We propose to perform
feature selection per community, selecting those features that better represent
an element in its context. The elements outside the community of an element
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Fig. 1. Components interaction in the base algorithm (left) and in the improved algo-
rithm (right)

are not relevant for it, and could affect the quality of the feature selection, for
this reason they are ignored.

This idea was applied to our Glance algorithm, designed for anomaly detec-
tion in attributed graphs where the edges behave as contextual attributes.
The algorithm originally received as parameters the attributed graph and the
attributes to be considered by the anomaly score. In a first stage, the algorithm
uses Louvain community detection method [20] to find communities of elements
in the graph using connections among elements. In a second stage, it iterates
over each community and uses an outlierness score function to determine the
outlierness degree of each element. This function receives, as a parameter, the
features to be used for the score.

The changes made to the original algorithm include removing the need of
external parameters set by the user. Also, in the second stage, the algorithm
selects the most relevant features for each community using a Laplacian Score
[21] and then applies an outlierness score to each element of the community.
The Laplacian Score ranks as more representatives those features, with large
variance, that are similar in near elements. Using this feature selection technique,
the anomaly detection algorithm becomes completely unsupervised. In Fig. 1, a
comparison among the components interaction in the base algorithm and in the
improved one can be observed.

The Glance algorithm with community feature selection can be observed in
more detail in Algorithm1. The algorithm receives an attributed graph G and
returns an outlierness score of the vertices from G. In the second line, The Lou-
vain community detection algorithm is used to find relevant groups of elements
in G. In lines 3 to 10 the algorithm iterates over each community of G. In line
4 the more descriptive features for the community are selected. In lines 6 to
9, the outlierness score for each element in Ci is calculated using Glance score
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function. This function defines the outlierness score of an element as the percent
of elements in its same community that have a difference with it greater than
the mean difference among the community members. Finally a ranking R of the
vertices from G is returned in line 11.

Algorithm 1. Glance Algorithm with Community Feature Selection
Input: G // Attributed Graph
Output: R // An anomaly ranking of the vertices from G

R ← ∅1

C ← Clustering(G)2

foreach Ci ∈ C do3

A ← FeatureSelection(Ci)4

PCi
← mean values of attributes from A in Ci5

foreach vj ∈ Ci do6

Rvj
← a dictionary containing for each attribute al from vj the7

number of elements u satisfying |al(vj) − al(u)| > al(PCi
)

R ← R ∪ {(vj ,max(al ∈ Rvj
)}8

end9

end10

return R11

It is important to notice that community feature selection splits the number
of elements to analyze in groups. This fact is useful with algorithms O(V 2)
or higher because it reduces the number of operations required to process the
data. Thus the performance of the algorithm is increased in real networks where
the number of communities is usually high. Also, this property can be useful to
process the data in parallel. In the next section, the performance of the algorithm
on a real network is analyzed.

5 Experimental Results

In this section, a comparison between Glance with community feature selection
and the base algorithm is performed. Furthermore, our proposal is compared
with other state-of-the-art algorithms.

The comparison was performed on the amazon co-purchase network of Disney
products (124 nodes with 334 edges). This database was used as benchmark in
[4], and the authors provided a labeled outlier ground truth. The ground truth
was built from a user experiment where outliers were labeled by high school
students. In the experiment, the products where clustered using a modularity
technique, and then the students were asked to find outliers in each cluster.
The experiment used the edges only to give context to the elements, and the
attributes of the vertices were used to identify anomalies in each cluster. Thus,
this database and its labeled anomaly ground truth represents a problem of
anomaly detection in attributed graph where the edges are contextual attributes.
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Fig. 2. ROC of the base Glance algorithm (left) and the one using community feature
selection (right)

In Fig. 2, a comparison between the base Glance algorithm and the one
improved with community feature selection is displayed. The former has an AUC
(Area Under the ROC Curve) value of 77.4% and a runtime of 150 ms, assuming
that the user selected all features as relevant. Thus the results were affected
by the curse of dimensionality. The later has an AUC value of 87.43% with a
runtime of 93 ms, and can be observed that the ROC curve rises faster than in
the base algorithm. Using community feature selection, an improve of more than
10% was achieved and also the performance of the algorithm was improved due
to a reduction in the dimensions of the data to be processed.

Table 1. AUC results for all algorithms on the Amazon database (Disney DVD selec-
tion).

Used data Paradigm Algorithm AUC[%] Runtime[ms]

Attribute data only Full space outlier
analysis

LOF [6] 56.85 41

Subspace outlier
analysis

SOF [11] 65.88 825

RPLOF [12] 62.50 7

Graph structure only Graph clustering SCAN [22] 52.68 4

Attributes and graph
data

Full space outlier
analysis

CODA [16] 50.56 2596

Subspace outlier
analysis

GOutRank [4] 86.86 26648

Contextual edges Glance 77.40 150

Glance + CFS 87.43 93

In Table 1, it is displayed the AUC measure and the runtime for differ-
ent approaches to anomaly detection. In the approaches considering just the
attribute vectors, only those performing subspace analysis can overcome the
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curse of dimensionality. Thus, these techniques have better accuracy compared
with the ones performing full subspace analysis. Nonetheless, none of them can
detect the complex outliers present in the data, because they ignore the rela-
tionship among elements. The approach considering only the graph structure has
poor results in this database. This is mainly because, in this problem, edges are
contextual attributes and they do not directly determine the outlierness of an
element. The only approach able to detect the complex outliers in this database
is the one that considers both attribute data and graph structure. Although the
CODA algorithm belongs to this approach, it is greatly affected by the curse
of dimensionality. The GOutRank algorithm obtains good results in this data-
base, but ignores the contextual nature of the edges, affecting the quality of its
results. Also, it is the most time consuming algorithm used in this comparison.
The Glance algorithm using all the features achieves better detection than other
algorithms but is affected by the curse of dimensionality. The Glance algorithm
with community feature selection has the best AUC value and also has better
runtimes than the other algorithms for anomaly detection in attributed graph.
This results are an example of the potential of community feature selection to
improve anomaly detection in attributed graphs.

6 Conclusions

In this paper, an adaptive method to improve anomaly detection in attributed
graphs using community feature selection was proposed. The method was used to
improve an algorithm to detect anomalies in attributed graphs where the edges
behave as contextual attributes, and an improve in the result of more than a
10% was achieved. Also, the improved algorithm was compared with others from
the state of the art and it achieved better results.

There are many open challenges in the field of anomaly detection in
attributed graphs, we will focus on some of them in future work. The first one
is to integrate feature selection and anomaly detection in a single process for
avoiding redundant calculations and improve the performance of the algorithms.
Finally, the algorithm could be parallelized to improve its performance, because
it selects features and detects anomalies in disjoint communities.
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