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Abstract. Noise is unwanted signal that causes a major problem for the
task of image classification and retrieval. However, this paper reports
that adding noise to texture at certain levels can improve classifica-
tion performance without training data. The proposed method was
tested with images of different texture categories degraded with vari-
ous noise types: Gaussian (additive), salt-and-pepper (impulsive), and
speckle (multiplicative). Experimental results suggest that the inclusion
of noise can be useful for extracting texture features for image retrieval.
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1 Introduction

Texture analysis is an active area of research in image processing. The main
reason for the importance of texture analysis is that its applications are pervasive
in many fields of study, such as biometric identification [1], remote sensing [2],
science and technology [3], biology [4], medicine [5], and visual arts [6]. However,
the concept of texture in images is inherently imprecise, making it difficult and
limited for the mathematical formulation of its complex property. Furthermore,
noise is well known as a major factor that hinders the performance of extracting
effective texture features for image classification, motivating many efforts to
develop techniques for removing or robustly working with noise in images [7–
10].

In general, noise in signals is undesirable for image analysis, but there are
circumstances when some certain amount of noise can be useful, for example, to
prevent discretization artifacts in color banding or posterization of an image [11].
The preserve of film grain noise can also help enhance the subjective perception
of sharpness in images, known as acutance in photography, although it degrades
the signal-to-noise ratio [12]. The intentional inclusion of noise in processing
digital audio, image, and video data is called dither [13,14].

Another useful aspect of noise for texture analysis is reported in this paper.
The motivation is mainly based on the concept of geostatistics that employs
random models to characterize spatial attributes of natural phenomena [15]. In
statistics, numerical methods are developed to deal with variables or random
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variables. However, many variables of natural phenomena that vary in space
and/or time may not be all random. Some variables may be totally deterministic,
and some may take place somewhere between randomness and. Thus, the con-
cept of a regionalized variable as a variable distributed in space is introduced to
capture a behavior that is characterized with both of randomness and determin-
ism [15]. In this regard, a regionalized variable is deterministic within a spatial
domain, but beyond that it behaves as a random variable. The semi-variogram
of geostatistics is formulated to quantify the behavior of a regionalized variable
[16]. In this sense, adding noise at some certain levels into a texture space can
give rise to discriminative power in the quantification of the random part of
a regionalized variable of the image intensity by means of the semi-variogram.
Due to the limitation of the semi-variogram for expressing the spatial continuity
of a regionalized variable with experimental data, a spectral distortion mea-
sure is adopted to measure the dissimilarity of regionalized variables for texture
retrieval.

2 Regionalized Variables in an Image

Since the intensities of pixels are variables distributed in space, they can be
modeled as regionalized variables, each of which is considered as a single realiza-
tion of a random function. In one sense, this regionalized variable is not related
to its neighboring variables (pixels). In other sense, this variable has a spatial
structure, depending on the distance separating the pixels. Thus, with the com-
bination of the random and structured properties of a regionalized variable in a
single function, the spatial variability of an image can be described on the basis
of the spatial structure of these variables [17].

Without loss of generality, let Z(x) be a regionalized variable, which is a
realization of a random function Z, x and h be a spatial location and a lag dis-
tance in the sampling space, respectively. The variogram of the random function
is defined as [16]

2γ(h) = V ar[Z(x) − Z(x + h)], (1)

where γ(h) is the semi-variogram of the random function. This definition of
the variogram, 2γ(h), or semi-variogram, γ(h), assumes that the random func-
tion changes within the space, but γ(h) is independent of spatial location and
depends only on the distance of the pair of the considered variates. To simplify
technical jargon, the semi-variogram is now referred to as the variogram, unless
mathematical expression requires a precise definition.

Based on Eq. (1), the variogram is equivalent to

γ(h) =
1
2
E

[{Z(x) − Z(x + h)}2] (2)

Let Z(xi), i = 1, 2, . . . , n, be a sampling of size n, the unbiased estimator
for the variogram, which is called the experimental variogram, of the random
function is expressed as
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γ(h) =
1

2N(h)

N(h)∑

i=1

[Z(xi) − Z(xi + h)]2 , (3)

where N(h) is the number of pairs of variables separated by distance h.
The formulation of Eq. (3) is based on the assumption that the spatial auto-

correlation structure is isotropic. This means that the semi-variogram depends
only on the magnitude of the lag (h). When the spatial autocorrelation pat-
tern is not the same in different directions in the sampling space, an anisotropic
semi-variogram should be used to accommodate these differences. There are
two types of anisotropy of the semi-variogram: geometric and zonal [18]. The
geometric anisotropy occurs when the range of the semi-variogram varies with
different directions. The zonal anisotropy takes place when both the range and
sill of the semi-variogram change with different directions. The sill, which is the
upper bound of the semi-variogram, represents the variance of the random field,
whereas the range, at which the semi-variogram reaches the sill, indicates the
distance at which data are no longer autocorrelated. These two parameters of
the semi-variogram expressed by the spherical (theoretical) function [16], γT (h),
are shown in Fig. 1.
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Fig. 1. Theoretical semi-variogram using spherical model with s = 1 (sill) and g = 20
(range)

With two coordinates for a 2D case, where h = (h1, h2), then a model for
the geometric anisotropic semi-variogram can be defined as [18]

γ(r) = γ
(√

hT Bh
)

, (4)

where B = QT ΛQ, and Q is the transformation matrix:

Q =
[

cos θ sin θ
− sin θ cos θ

]
, (5)
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where θ is the rotation angle, and Λ is the diagonal matrix of eigenvalues:

Λ =
[

λ1 0
0 λ2

]
. (6)

A model for the zonal anisotropic semi-variogram is defined as [18]

γ(h) = γ1(h) + γ2(h), (7)

where γ1(h) is the isotropic semi-variogram in one direction whose sill is much
larger than the sill produced in the other direction, and γ2(h) is the geometric
anisotropic semi-variogram.

3 Measuring Dissimilarity of Regionalized Variables

Given an experimental variance at lag h, γ(h) has recently been proposed to be
approximated as a linear combination of the past p variances [19]

γ̃(h) = −
p∑

i=1

aiγ(h − i) (8)

where ai, i = 1, . . . , p are the linear predictive coding (LPC) coefficients [20],
and to be optimally determined as follows.

The error between γ̃(h) and γ(h) is given by

e(h) = γ(h) +
p∑

i=1

aiγ(h − i) (9)

By minimizing the sum of squared errors, the pole parameters {ai} of the
LPC model can be determined as follows.

a = −R−1 r (10)

where a is a p × 1 vector of the LPC coefficients, R is a p × p autocorrelation
matrix, and r is a p × 1 autocorrelation vector whose elements are defined as

ri =
N∑

h=0

γ(h)γ(h + i), i = 1, . . . , p. (11)

Let S(ω) and S′(ω) be the spectral density functions of the semi-variograms
γ(h) and γ′(h), respectively, where ω is a normalized frequency ranging from -π
to π. The spectral density S(ω) is defined as [20]

S(ω) =
σ2

|A|2 , (12)

where σ2 = aT Ra, and A = 1 + a1e
−iω + · · · + ape

−ipω.
The log-likelihood-ratio (LLR) distortion measure between S(ω) and S′(ω),

denoted as DLLR(S, S′), is defined as [21]

DLLR(S, S′) = log
a′T Ra′

aT Ra
, (13)

where a′ is the vector of the LPC coefficients of S′.



Noise-Added Texture Analysis 97

4 Experiments

The proposed method was tested using four subsets of the Brodatz database
[22] to represent four manually-labeled types of texture [23]: (1) fine-periodic, (2)
fine-aperiodic, (3) coarse-periodic, and (4) coarse-aperiodic. Each subset consists
of 90 images of 215 × 215 pixels, which are produced by dividing each of the 9
corresponding original Brodatz images into 9 non-overlapping smaller samples.
The Brodatz indices of the fine-periodic texture are: D3, D6, D14, D17, D21,
D34, D36, D38, D49, and D52. The image indices of the fine-aperiodic texture
are: D4, D9, D16, D19, D24, D26, D28, D29, D32, and D39. For the coarse-
periodic texture, the ten images are: D1, D8, D10, D11, D18, D20, D22, D25,
D35, and D47. For the coarse-aperiodic texture, the ten images are: D2, D5, D7,
D12, D13, D15, D23, D27, D30, and D31.

The isotropic model of the semi-variogram was used to compute the semi-
variances for 30 lags of all the images, because the ranges of the images are
almost the same, the use of the isotropic model has been found suitable for
extracting image features, and the computation of the anisotropic variogram is
very time-consuming, thus, it is not possible for large images.

The images were degraded with white Gaussian noise (additive noise), speckle
noise (multiplicative noise), and salt & pepper noise (impulsive noise). Figure 2
shows a sub-image of D30 representing a coarse-aperiodic texture degraded with
white Gaussian noise of zero mean and 0.1 variance, speckle noise with zero
mean and 0.1 variance, and salt & pepper noise with 0.1 noise density.

Fig. 2. Brodatz coarse-aperiodic D30 (a), and corresponding degraded images with
white Gaussian noise with zero mean and 0.1 variance (b), speckle noise with zero
mean and 0.1 variance (c), and salt & pepper noise with 0.1 noise density (d).

For the matching of pattern similarity between two images, DLLR was used
with p = 20, to compute the spectral distortion of the semi-variograms of the
two corresponding images. The retrieval was carried out for each of the 360
(10 × 9 × 4) degraded images by searching for 8 images of the same texture
among the most k similar images, where k = 21 in this case. Figure 3 shows the
plots of the retrieval rates of the four Brodatz image subsets degraded with three
noise models and a variety of noise levels.
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Fig. 3. Retrieval rates of four Brodatz image subsets degraded with various noise mod-
els for four texture categories: fine-periodic (a), fine-aperiodic (b), coarse-periodic (c),
and coarse-aperiodic (d); where the zero noise level indicates the corresponding retrieval
rate of undegraded images.

For the fine-periodic texture (Fig. 3(a)), the retrieval rates of images degraded
with salt & pepper noise maintain the same rate in comparison with the unde-
graded images up to the noise level of 0.06, whereas 0.2 and 0.3 for Gaussian noise
and speckle noise, respectively. For the fine-aperiodic texture, Fig. 3(b) shows the
consistently high performance of the images added with speckle noise, whereas
the retrieval rate of the images degraded with Gaussian noise with 0.01 variance
is higher than that of the undegraded images, and the rate using the inclusion
of salt & pepper noise at 0.01 density level is slightly lower than the retrieving
performance without noise. For the coarse-periodic texture shown in Fig. 3(c),
the retrieval rates are higher for images degraded at the noise level of 0.01 using
all the three noise models than the retrieval rate for undegraded images, where
speckle noise gives the highest result. The same results also apply to the coarse-
aperiodic (Fig. 3(d)), where Gaussian noise has the best performance. Keeping
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Fig. 4. Retrieval rates of four Brodatz subsets degraded with Gaussian noise with
0.01 variance and variable means, where the zero Gaussian noise mean indicates the
corresponding retrieval rate of undegraded images.

the Gaussian noise variance constant at 0.01, while varying the Gaussian noise
mean from 0.01 to 0.1, with the exception of the fine-aperiodic texture, Fig. 4
shows the high performance of the retrieval task by adding Gaussian noise to
the images of the other three types of texture.

5 Conclusion

Texture analysis using the spectral distortion measure of semi-variograms can be
enhanced by adding noise at certain levels to the images. The set of 40 Brodatz
images were selected in this study because they fairly represent the 4 types of
texture. The addition of different types of noise to other types of texture is
worth pursuing further investigation. Furthermore, in this paper, only empirical
evidence was provided to support the argument of the useful application of
noise to texture, theoretical verification of the power of geostatistics in finding
structures in random-biased texture is therefore important to follow.
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