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Abstract. An unsupervised method is introduced for retinal blood vessels
segmentation. The direction map is built by assigning to each pixel a discrete
direction out of twelve possible ones. Under- and over-segmented images are
obtained by applying two different threshold values to the direction map. Almost
all foreground pixels in the under-segmented image can be taken as vessel
pixels. Missing vessel pixels in the under-segmented image are recovered by
using the over-segmented image. The method has been tested on the DRIVE
dataset [1] producing satisfactory results, and its performance has been com-
pared to that of other unsupervised methods.
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1 Introduction

Automatic procedures to analyze retinal blood vessels are useful in ophthalmology to
allow an early diagnosis of a number of diseases, such as diabetic retinopathy, arte-
riosclerosis, hypertension, cardiovascular diseases and stroke [2, 3]. The automatic
analysis of the structure of retinal vessels is also useful in biometrics [4], since the
structure is different for each individual and even for the left and the right eye of the
same person. In the literature, segmentation techniques based on matched filters, e.g.,
[5], wavelet transform, e.g., [6, 7], line detectors, e.g., [8–12], and morphological image
processing [8, 9, 13–16] are available. In this paper we present an unsupervised retinal
blood vessels segmentation method based on directional information. Each pixel of the
green channel G of a RGB retinal image is assigned a direction out of twelve possible
discrete directions. Two different threshold values are then employed to roughly seg-
ment the so obtained direction mapDMG. The foreground in the under-segmented image
Gu, obtained in correspondence with the higher threshold value, includes pixels that can
be most possibly interpreted as vessel pixels. The foreground in the over-segmented
image Go, obtained in correspondence with the lower threshold value, includes several
more pixels than Gu. Some pixels of Go are detected as missing vessel pixels of Gu, and
are added to Gu to improve the quality of the segmentation. The method has been tested
on the DRIVE database [1] producing satisfactory results, and its performance has been
compared to that of other unsupervised methods.
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2 Building the Direction Map DMG

We work with the green channel G of RGB color retinal images, as done by the
majority of authors in the field, since G is the channel characterized by the highest
contrast. Gray-levels in G are in the range [0,255], where lighter pixels are those with
larger gray-level values. Vessel pixels are thin structures whose pixels are generally
darker than their neighboring non-vessel pixels and are aligned along different
directions.

The direction of any pixel p of G can be computed by taking into account the
gray-levels of the pixels in an n � n window W centered on p, so as to build the
Direction Map DMG. Selecting the proper value for n is crucial to obtain a correct
segmentation: W should be large enough to include both vessel and non-vessel pixels,
even when centered on the most internal pixels of the thickest vessels, so as to have
appreciable variations of gray-levels within the window; on the other hand, W should
not be too large so as to avoid the inclusion of vessel pixels belonging to close vessels.
By taking into account the average width and distance of vessels in the DRIVE
database, we set n = 7. Since in an n � n window, 2 � (n−1) discrete straight lines can
be built, 12 directions with an angle of 15° between any two successive directions are
obtained. See Fig. 1 top, where the twelve directions are shown in different colors.

To build DMG we use the twelve 7 � 7 directional templates T_di, i = 1,2,…,12,
shown in Fig. 1 bottom. In the i-th template, the pixels aligned along any direction out
of di-1, di, and di+1 are set to 1, and all the remaining pixels are set to 0. Of course, for
i = 1 (i = 12) di-1, di, di+1 are respectively d12, d1, d2 (d11, d12, d1).

Given two arrays DIFF and DMG with the same size as G and initially empty, for
each pixel p of G and for any directional template T_di, i = 1,2,…,12, we compute:

• the arithmetic mean, Adi(p), of gray-levels of pixels of G matching 1’s in T_di,
• the arithmetic mean, NAdi(p), of gray-levels of pixels of G matching 0’s in T_di,
• the difference Di(p) = NAdi(p) – Adi(p).

The direction di for which Di(p) has the maximum value M(p) is taken as direction
of p; the score M(p) and the index i are respectively stored in the homologous position
of p in DIFF and DMG. For the green channel G of the image 05_test of the DRIVE
database, shown in Fig. 2 left, the obtained DMG is shown in Fig. 2 middle, where
colors correspond to the directions as in Fig. 1 top.

Fig. 1. The twelve directions di, top, and the twelve directional templates T_di, bottom. (Color
figure online)
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Actually, some pixels in DMG have been assigned a direction different from the one
along which they appear to be aligned. Thus, an updating of DMG is done for each of
the twelve directions and by using an auxiliary array AUX with the same size as G and
whose pixels are initially set to 255. For the i-th direction di, the pixels of DMG with
assigned direction di are set to 0 in AUX. Thus, AUX becomes a gray-level image with
only two values, where the foreground consists of the pixels with direction di, and the
background includes all the remaining pixels. The idea is to build the direction map of
AUX, DMAUX, by following the procedure described to compute DMG and to compare
the direction assigned to any pixel p in the two maps. Only pixels for which the same
direction is obtained in DMG and DMAUX are confirmed as foreground pixels in DMG.
All other pixels of DMG are assigned to the background. Actually, when transferring in
AUX pixels with direction di, also the pixels that in DMG where characterized by the
directions di-1 and di+1 are set to 0 in AUX, while updating is done only for the pixels
with direction di. The purpose is to avoid that only a few sparse pixels of AUX are
foreground pixels, for which almost all directions would be equally possible, so biasing
the correct updating of the directions. The updated DMG is shown in Fig. 2 right, where
white pixels are those assigned to the background.

3 The Segmentation Method

Segmentation can be achieved by assigning to the background any pixel p whose score
M(p) in DIFF is smaller than a threshold h, which is set based on the directional
features of the processed image. To this aim, we compute the arithmetic mean m of the
scores M(p) of all pixels that are currently foreground pixels, i.e., pixels that in DMG

are different from zero, and set h equal to a given percentage of m.
Actually, we use two different percentages of m, so as to achieve two different

values for h, h_u = u � m and h_o = o � m with u > o, leading to two different
segmented images, Gu and Go. When the higher threshold value is adopted, only the
pixels with higher probability to be true vessel pixels are assigned to the foreground in
Gu. The resulting image is generally under-segmented, since pixels belonging to
slightly lighter vessels or to capillaries may not survive thresholding. With the lower
threshold value, also pixels with lower probability to be vessel pixels are selected, so
achieving an over-segmented image Go. The number of pixels that are not true vessel
pixels is much smaller in Gu than in Go. For the running example, the under-segmented

Fig. 2. The image G, left; the direction map DMG before, middle, and after, right, direction
updating. (Color figure online)
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image Gu and the over-segmented image Go, obtained for u = 1.8 and o = 0.9, are
respectively shown in Fig. 3 left and middle. The image difference Go-u includes the
pixels in the foreground of Go but not in the foreground of Gu. See Fig. 3 right.

Linking and Cleaning
The image difference Go-u is rather noisy. In fact, the low threshold value h_o = o �
m adopted to obtain Go guarantees the detection of almost all the true vessel pixels, but
also causes the wrong assignment to the foreground of a number of false vessel pixels.
Thus, we consider as necessary some cleaning of Go-u, based on removal of small size
components. Before doing the size-based cleaning, we link with each other small close
components that we interpret as parts of vessels resulting in distinct connected fore-
ground components of Go-u since some of their pixels were selected as foreground
pixels when adopting both the lower and the higher threshold value.

For the linking process we consider components of Go-u with size smaller than a
given maximum value max, since only small size components risk to be removed
during the successive cleaning task. On the other hand, we do not consider components
with very little size, say with size smaller than a given minimum value min, since these
components most possibly consist of false vessel pixels. Thus, we consider for the
linking process every component of Go-u whose size s is such that min � s � max.
We have experimentally found that the better performance of the method is achieved in
the average by setting min = 16 and max = 150. We use an iterated expansion process.
At each iteration, the background neighbors of any pixel p in the components of Go-u

selected for the linking process are assigned to the components provided that they are
foreground pixels in Go, and share with p the same direction. The first requirement
guarantees that linking pixels were at least tentatively selected as vessel pixels in the
over-segmented image; the second requirement guarantees that linking regards exclu-
sively components that actually are part of vessels aligned along given directions. The
number of iterations depends on the maximal distance between two components to be
connected. Since Go includes many false vessel pixels, we limit the number of itera-
tions to two, which means that we can link to each other only components with a
maximal distance of at most four pixels. The expansion process is followed by an
iterated topological removal process, aimed at assigning again to the background all
pixels added by the expansion process except those that favored linking of components.
When no more pixels are removed, the surviving added pixels are assigned to the
foreground in Go-u.

Size-based cleaning is performed, by removing from Go-u all components with area
smaller than a threshold r. We have found that the best performance is obtained in the

Fig. 3. The image Gu, left, the image Go, middle, and the image difference Go-u, right.
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average for r = 64. The result obtained after linking and cleaning can be seen in Fig. 4
left. Different colors denote the identity labels of the components of Go-u.

Selection of Foreground Components Consisting of True Vessel Pixels
We use the main feature characterizing vessels, i.e., the fact that vessels have linear
structure, to distinguish in Go-u the components to be maintained in the foreground
from those to be assigned to the background. We perform a small number of iterations
of an expansion process, set to three in this work, during which thin holes and con-
cavities possibly present in any component of Go-u are filled in, without creating an
unwanted merging of foreground components. See Fig. 4 middle showing the resulting
Go-u after the three iterations. Then, we perform an equal number of iterations of
topological shrinking, during which pixels added to any component by the expansion
process are removed provided that they have at least a neighbor in any other compo-
nent, including the background. The resulting image Go-u is shown in Fig. 4 right. It
can be observed that while components originally characterized by linear structure are
not remarkably modified by the expansion/shrinking process as regards their size,
components with a more complex structure, erroneously assigned to the foreground,
have at the end of the process a significantly larger size. Actually, besides the changes
in size, we also take into account the changes in maximal width of the components of
Go-u. This last feature is easily measured as the maximal value in the distance transform
of each component before and after the expansion/shrinking process. Let Win and Wexp

be the initial maximal width and the maximal width after the expansion/shrinking
process, respectively. Moreover, let Ain and Aexp be the initial area and the area after the
expansion/shrinking process. We assign to the background any component for which it
results Aexp/Ain � 0.40, or it is 0.30 � Aexp/Ain < 0.40 and Wexp/Win � 2. All other
components remain in the foreground.

All components of Go-u surviving the expansion/shrinking process are recognized
as consisting of vessel pixels. The pixels that belonged to these components before the
expansion/shrinking process are transferred into Gu. The currently obtained Gu can be
seen in Fig. 5 left.

Improving Segmentation
To recover missed vessel pixels, we apply to the components of Gu a slightly modified
version of the process adopted to link close components of Go-u. As done when
processing Go-u, background neighbors of pixels in components of Gu are added to the
components only if they also exist in Go. Differently from the process applied to Go-u,
the number of iterations is not fixed a priori; moreover, we have some tolerance on the
direction of the pixels to be added. In detail, the expansion process terminates when no

Fig. 4. The image Go-u after linking and cleaning, left, expansion, middle, and shrinking, right.
(Color figure online)
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more pixels can be added; at each iteration, if di is the direction of a pixel p in a given
component of Gu, any neighbor of p is parallelwise added to Gu, provided that its
assigned direction is any out of di-1, di, di+1. Finally, differently from the process done
on Go-u, the expansion process is not followed by any iterated topological removal and
we accept as vessel pixels all the recovered pixels. Finally, components of Go-u that
notwithstanding the recovery process are still characterized by small size are removed.
We use the same threshold r = 64 already adopted for size-based cleaning of Go-u. The
resulting image is shown in Fig. 5 middle left.

By taking into account the average width and distance of the vessels in the DRIVE
database, we found adequate to fill foreground concavities up to 2-pixel wide. Since the
concavities filling process is the same used in [12], for space limitation we do not
describe again it here. Very small size holes (consisting of at most 16 pixels in this
work) are also filled in. The resulting image Gu is shown in Fig. 5 middle right.

The last process is devoted to cleaning of the circular boundaries of retina and of
optical disc. The masks available in the DRIVE database are used to extract only the
circular part of Gu corresponding to the retina. However, some pixels in proximity of
the boundary of the circular mask may have been erroneously interpreted as vessel
pixels. Thus, we dilate the circular boundary of the mask by means of a structuring
element of radius 20. Foreground pixels reached by the dilation process are marked as
removable. Then, an iterated un-marking process is accomplished that removes the
marker from any neighbor q of an un-marked vessel pixel p with direction di if the
direction of q is compatible with the direction of p, i.e., the direction of q is any out of
di-1, di, di+1. The number of iterations of the un-marking process is equal to 20, i.e., to
the radius of the structuring element. Pixels that at the end of the un-marking process
are still marked are assigned to the background.

To remove pixels erroneously detected as vessel pixels within the optical disc, we
first identify in G a region of interest, ROI, that includes the optical disc. It can be noted
that the optical disc includes pixels with remarkably lighter gray-levels, and its max-
imal diameter and position are predictable in the DRIVE database. Thus, we use a
sliding window of size 121 � 121 which swipes the image in the rectangular area
where the optical disc is expected to be located. The pixels in the sliding window with
gray-level larger than 80% of the maximal gray-level in G are counted while the
window swipes the image. The position of the window in correspondence of which the
number of counted pixels has the highest value defines the ROI. We observe that some

Fig. 5. The image Gu after adding the contribution of Go-u, left; Gu after recovery of missed
vessel pixels and removal of small components, middle left, Gu after foreground concavities and
holes filling, middle right, and Gu after cleaning of the circular boundaries of retina and optical
disc, right.
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vessels exist in the optical disc and these are characterized by rather dark gray-level and
almost horizontal direction. Thus, out of all pixels of the ROI that have been assigned
to the foreground of Gu, we assign to the background those with gray-level larger than
a suitable percentage, perc, of the arithmetic mean of the gray-levels within the ROI
and with direction i which is not compatible with the horizontal direction. We have
obtained the best performance by setting perc = 90% and by considering compatible
with the horizontal direction di, characterized by i = 7, any direction out of d5, d6, d7,
d8, and d9. The final segmentation result is shown in Fig. 5 right.

4 Experimental Results and Concluding Remarks

The suggested segmentation method has been checked on the 40 images of the DRIVE
database, by using as ground truth the manually segmented images included in the
database. Actually, two manually segmented images are available for each of the
20 retinal images forming the test set, and one manual segmentation for the remaining
20 images forming the training set. Since our segmentation method is unsupervised, we
have not done any difference between the test set and the training set.

For a qualitative evaluation of the method, see Fig. 6, where the results for the four
images 09_test, 19_test, 27_training, and 32_training are shown.

To quantitatively evaluate the method, let TP and TN count the pixels correctly
classified as vessel pixels and as non-vessel pixels, and FP and FN the pixels incor-
rectly classified as vessel pixels and as non-vessel pixels, and compute:

Accuracy = (TP + TN)/(TP + FN + TN + FP)
Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)

The average values of Accuracy, Sensitivity and Specificity have been computed
for the 20 test images with respect to the first ground truth to compare the performance
of our method with that of other 6 unsupervised segmentation methods in the literature,

Fig. 6. Some examples, top, and the segmentation results, bottom.
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[8, 11, 12, 17–19]. See Table 1. Our method is slightly better as regards Accuracy and
Specificity, and inferior for Sensitivity, but generally produces results qualitatively
more satisfactory.

References

1. Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based
vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23, 501–509
(2004)

2. Teng, T., Lefley, M., Claremont, D.: Progress towards automated diabetic ocular screening: a
review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng.
Comput. 40, 2–13 (2002)

3. Haddouche, A., Adel, M., Rasigni, M., Conrath, J., Bourennane, S.: Detection of the foveal
avascular zone on retinal angiograms using Markov random fields. Digit. Sig. Process. 20,
149–154 (2010)

4. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans.
Circ. Syst. Video Technol. 14–1, 4–20 (2004)

5. Li, Q., You, J., Zhang, D.: Vessel segmentation and width estimation in retinal images using
multiscale production of matched filter responses. Expert Syst. Appl. 39(9), 7600–7610
(2012)

6. Rangayyan, R., Zhu, X., Ayres, F., Ells, A.: Detection of the optic nerve head in fundus
images of the retina with Gabor filters and phase portrait analysis. J. Digit. Imaging 23, 438–
453 (2010)

7. Wang, Y., Ji, G., Lin, P., Trucco, E.: Retinal vessel segmentation using multiwavelet kernels
and multiscale hierarchical decomposition. Pattern Recogn. 46–8, 2117–2133 (2013)

8. Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the
detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9),
1200–1213 (2006)

9. Fraz, M.M., Barman, S.A., Remagnino, P., Hoppe, A., Basit, A., Uyyanonvara, B.,
Rudnicka, A.R., Owen, C.G.: An approach to localize the retinal blood vessels using bit
planes and centerline detection. Comput. Methods Programs Biomed. 108(2), 600–616
(2012)

10. Ricci, E., Perfetti, P.: Retinal blood vessel segmentation using line operators and support
vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

Table 1. Performance comparisons.

Accuracy Specificity Sensitivity

Mendonca and Campilho [8] 0.946 0.976 0.734
Al-Rawi et al. [17] 0.953
Zhang et al. [18] 0.938 0.972 0.712
Zhao et al. [19] 0.954 0.982 0.742
Azzopardi et al. [11] 0.944 0.970 0.765
Frucci et al. [12] 0.955 0.985 0.640
Our method 0.956 0.985 0.660

8 M. Frucci et al.



11. Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel
delineation with application to retinal images. Med. Image Anal. 19(1), 46–57 (2015)

12. Frucci, M., Riccio, D., Sanniti di Baja, G., Serino, L.: Severe, segmenting vessels in retina
images. Pattern Recogn. Lett. 82, 162–169 (2016)

13. Sun, K., Chen, Z., Jiang, S., Wang, Y.: Morphological multiscale enhancement, fuzzy filter
and watershed for vascular tree extraction in angiogram. J. Med. Syst. 35(5), 811–824 (2010)

14. Imani, E., Javidi, M., Pourreza, H.R.: Improvement of retinal blood vessel detection using
morphological component analysis. Comput. Methods Programs Biomed. 118(3), 263–279
(2015)

15. Frucci, M., Riccio, D., di Baja, G.S., Serino, L.: Using contrast and directional information
for retina vessels segmentation. In: Proceedings of the SITIS 2014, pp. 592–597. IEEE CS
(2014)

16. Zhao, Y.Q., Wang, X.H., Wang, X.F., Shih, F.Y.: Retinal vessels segmentation based on
level set and region growing. Pattern Recogn. 47(7), 2437–2446 (2014)

17. Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel
detection of digital retinal images. Comput. Biol. Med. 37, 262–267 (2007)

18. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with
first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)

19. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation
using infinite perimeter active contour model with hybrid region information with
application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)

Direction-Based Segmentation of Retinal Blood Vessels 9


	Direction-Based Segmentation of Retinal Blood Vessels
	Abstract
	1 Introduction
	2 Building the Direction Map DMG
	3 The Segmentation Method
	4 Experimental Results and Concluding Remarks
	References


