
Chapter 2
QCD: The Theory of Strong Interactions

2.1 Introduction

This chapter is devoted to a concise introduction to quantum chromodynamics
(QCD), the theory of strong interactions [215, 234, 360] (for a number of dedicated
books on QCD, see [173], and also [33]). The main emphasis will be on ideas
without too many technicalities. As an introduction we present here a broad
overview of the strong interactions (for reviews of the subject, see, for example,
[29, 30]). Then some methods of non-perturbative QCD will be briefly described,
including both analytic approaches and simulations of the theory on a discrete
spacetime lattice. Then we shall proceed to the main focus of the chapter, that is, the
principles and applications of perturbative QCD, which will be discussed in detail.

As mentioned in Chap. 1, the QCD theory of strong interactions is an unbroken
gauge theory based on the colour group SU.3/. The eight massless gauge bosons
are the gluons gA� and the matter fields are colour triplets of quarks qai (in different
flavours i). Quarks and gluons are the only fundamental fields of the StandardModel
(SM) with strong interactions (hadrons). The QCD Lagrangian was introduced
in (1.28)–(1.31) of Sect. 1.4. For quantization the classical Lagrangian in (1.28)
must be extended to contain gauge fixing and ghost terms, as described in Chap. 1.
The Feynman rules of QCD are listed in Fig. 2.1. The physical vertices in QCD
include the gluon–quark–antiquark vertex, analogous to the QED photon–fermion–
antifermion coupling, but also the 3-gluon and 4-gluon vertices, of order es and e2s
respectively, which have no analogue in an Abelian theory like QED.

Why SU.NC D 3/colour? The choice of SU.3/ as colour gauge group is unique in
view of a number of constraints:

• The group must admit complex representations because it must be able to
distinguish a quark from an antiquark [214]. In fact, there are meson states made
up of qNq but not analogous qq bound states. Among simple groups, this restricts
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Fig. 2.1 Feynman rules for QCD. Solid lines represent the quarks, curly lines the gluons, and
dotted lines the ghosts (see Chap. 1). The gauge parameter is denoted by �. The 3-gluon vertex is
written as if all gluon lines are outgoing

the choice to SU.N/ with N � 3, SO.4N C 2/ with N � 2
�
taking into account

the fact that SO.6/ has the same algebra as SU.4/
�
, and E.6/.

• The group must admit a completely antisymmetric colour singlet baryon made
up of three quarks, viz., qqq. In fact, from the study of hadron spectroscopy, we
know that the low-lying baryons, completing an octet and a decuplet of (flavour)
SU.3/ (the approximate symmetry that rotates the three light quarks u, d, and s),
are made up of three quarks and are colour singlets. The qqq wave function must
be completely antisymmetric in colour in order to agree with Fermi statistics.
Indeed, if we consider, for example, a N�CC with spin z-component +3/2, this
is made up of .u " u " u "/ in an s-state. Thus its wave function is totally
symmetric in space, spin, and flavour, so that complete antisymmetry in colour is
required by Fermi statistics. In QCD this requirement is very simply satisfied by
�abcqaqbqc, where a, b, c are SU.3/colour indices.

• The choice of SU.NC D 3/colour is confirmed by many processes that directly
measure NC. Some examples are listed here.
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Fig. 2.2 Comparison of the data on R D �.eCe� ! hadrons/=�point.eCe� ! �C��/ with the
QCD prediction (adapted from [306]). NC D 3 is indicated by the data points above �10GeV
(the bNb threshold) and �40GeV, where the rise due to the Z0 resonance becomes appreciable

The total rate for hadronic production in eCe� annihilation is linear in NC. More
precisely, if we consider R D ReCe� D �.eCe� ! hadrons/=�point.eCe� !
�C��/ above the bNb threshold and below mZ , and if we neglect small computable
radiative corrections (which will be discussed in Sect. 2.7), we have a sum of
individual contributions (proportional to Q2, where Q is the electric charge in units
of the proton charge) from qNq final states with q D u; c; d; s; b :

R � NC

�
2 � 4

9
C 3 � 1

9

�
� NC

11

9
: (2.1)

The data neatly indicate NC D 3, as can be seen from Fig. 2.2 [306]. The slight
excess of the data with respect to the value 11/3 is due to QCD radiative corrections
(see Sect. 2.7).

Similarly, we can consider the branching ratio B.W� ! e� N�/, again in the Born
approximation. The possible fermion–antifermion (f Nf ) final states are for f D e�,
��, £�, d, s (there is no f D b because the top quark is too heavy for bNt to
occur). Each channel gives the same contribution, except that for quarks we have
NC colours:

B.W� ! e� N�/ � 1

3C 2NC
: (2.2)

For NC D 3, we obtain B D 11% and the experimental number is B D 10:7%.
Another analogous example is the branching ratio B.£� ! e� N�e�£/. From the

final state channels with f D e�, ��, d, we find

B.£� ! e� N�e�£/ � 1

2C NC
: (2.3)
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For NC D 3, we obtain B D 20% and the experimental number is B D 18% (the
lower accuracy in this case is explained by the larger radiative and phase-space
corrections, because the mass of £� is much smaller than mW ).

An important process that is quadratic in NC is the rate � . 0 ! 2”/. This rate
can be reliably calculated from a theorem in field theory which has to do with the
chiral anomaly:

� . 0 ! 2”/ �
�
NC

3

�2 ˛2m3
 0

32
3f 2 
D .7:73˙ 0:04/

�
NC

3

�2
eV ; (2.4)

where the prediction is obtained for f  D .130:7 ˙ 0:37/MeV. The experimental
result is � D .7:7˙ 0:5/ eV, in remarkable agreement with NC D 3.

There are many more experimental confirmations that NC D 3. For example, the
rate for Drell–Yan processes (see Sect. 2.9) is inversely proportional to NC.

2.2 Non-perturbative QCD

The QCD Lagrangian in (1.28) has a simple structure, but a very rich dynamical
content. It gives rise to a complex spectrum of hadrons, implies the striking
properties of confinement and asymptotic freedom, is endowed with an approximate
chiral symmetry which is spontaneously broken, has a highly nontrivial topological
vacuum structure (instantons,U.1/A symmetry breaking, strong CP violation which
is a problematic item in QCD possibly connected with new physics, like axions, and
so on), and an intriguing phase transition diagram (colour deconfinement, quark–
gluon plasma, chiral symmetry restoration, colour superconductivity, and so on).

How do we get testable predictions from QCD? On the one hand there are non-
perturbative methods. The most important at present is the technique of lattice
simulations (for a recent review, see [272]): it is based on first principles, it has
produced very valuable results on confinement, phase transitions, bound states,
hadronic matrix elements, and so on, and it is by now an established basic tool.
The main limitation is from computing power, so there is continuous progress and
good prospects for the future.

Another class of approaches is based on effective Lagrangians, which provide
simpler approximations than the full theory, valid in some definite domain of
physical conditions. Typically at energies below a given scale L, particles with
mass greater than L cannot be produced, and thus only contribute short distance
effects as virtual states in loops. Under suitable conditions one can write down a
simplified effective Lagrangian, where the heavy fields have been eliminated (one
says “integrated out”). Virtual heavy particle short distance effects are absorbed
into the coefficients of the various operators in the effective Lagrangian. These
coefficients are determined in a matching procedure, by requiring that the effective
theory reproduce the matrix elements of the full theory up to power corrections.
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Chiral Lagrangians are based on soft pion theorems [362] and are valid for
suitable processes at energies below 1GeV (for a recent, concise review, see [212]
and references therein). Heavy quark effective theories [178] are obtained by
expanding in inverse powers of the heavy quark mass and are mainly important
for the study of b and, to lesser accuracy, c decays (for reviews, see, for example,
[301]).

Soft-collinear effective theories (SCET) [84], are valid for processes where
quarks have energies much greater than their mass. Light energetic quarks not only
emit soft gluons, but also collinear gluons (a gluon in the same direction as the
original quark), without changing their virtuality. In SCET, the logs associated with
these soft and collinear gluons are resummed.

The approach using QCD sum rules [298, 325] has led to interesting results
but now appears not to offer much potential for further development. On the other
hand, the perturbative approach, based on asymptotic freedom, still remains the
main quantitative connection to experiment, due to its wide range of applicability to
all sorts of “hard” processes.

2.2.1 Progress in Lattice QCD

One of the main approaches to non-perturbative problems in QCD is by simulations
of the theory on a lattice, a technique initiated by K.Wilson in 1974 [366] which has
shown continuous progress over the last decades. In this approach the QCD theory
is reformulated on a discrete space time, a hypercubic lattice of sites (in the simplest
realizations) with spacing a and 4-volume L4. On each side, there are N sites with
L D Na. Over the years we have learned how to efficiently describe a field theory
on a discrete spacetime and how to implement gauge symmetry, chiral symmetry,
and so on (for a recent review see, for example, [272]).

Gauge and matter fields are specified on the lattice sites and the path integral is
computed numerically as a sum over the field configurations. Much more powerful
computers than in the past now allow for a number of essential improvements.
As one is eventually interested in the continuum limit a ! 0, it is important to
work with as fine a lattice spacing a as possible. Methods have been developed
for “improving” the Lagrangian in such a way that the discretization errors vanish
faster than linearly in a. A larger lattice volume (i.e., large L or N) is also useful
since the dimensions of the lattice should be as large as possible in comparison with
the dimensions of the hadrons to be studied. In many cases the volume corrections
are exponentially damped, but this is not always the case. Lattice simulation
is limited to large enough masses of light quarks: in fact, heavier quarks have
shorter wavelengths and can be accommodated in a smaller volume. In general,
computations are done for quark and pion masses heavier than in reality, and then
extrapolated to the physical values, but at present one can work with smaller quark
masses than in the past. One can also take advantage of the chiral effective theory
in order to control the chiral logs log.mq=4
f / and guide the extrapolation.
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A big step that has been taken recently, made possible by the availability of
more powerful dedicated computers, is the evolution from quenched (i.e., with no
dynamical fermions) to unquenched calculations. In doing this, an evident improve-
ment is obtained in the agreement between predictions and data. For example
[272], modern unquenched simulations reproduce the hadron spectrum quite well.
Calculations with dynamical fermions (which take into account the effects of virtual
quark loops) involve evaluation of the quark determinant, which is a difficult task.
Just how difficult depends on the particular calculation method. There are several
approaches (Wilson, twisted mass, Kogut–Susskind staggered, Ginsparg–Wilson
fermions), each with its own advantages and disadvantages (including the time it
takes to run the simulation on a computer). A compromise between efficiency and
theoretical purity is needed. The most reliable lattice calculations are today for 2C1
light quarks (degenerate up and down quarks and a heavier strange quark s). The first
calculations for 2C 1C 1 including charm quarks are starting to appear.

Lattice QCD is becoming increasingly predictive and plays a crucial role in
different domains. For example, in flavour physics it is essential for computing the
relevant hadronic matrix elements. In high temperature QCD the most illuminating
studies of the phase diagram, the critical temperature, and the nature of the phase
transitions are obtained by lattice QCD: as we now discuss, the best arguments to
prove that QCD implies confinement come from the lattice.

2.2.2 Confinement

Confinement is the property that no isolated coloured charge can exist. One only
sees colour singlet particles. Our understanding of the confinement mechanism has
much improved thanks to lattice simulations of QCD at finite temperatures and
densities (for reviews see, e.g., [85, 162, 199]). For example, the potential between
a quark and an antiquark has been studied on the lattice [256]. It has a Coulomb
part at short range and a linearly increasing term at long range:

VqNq � CF

�
˛s.r/

r
C � � � C �r

�
; (2.5)

where

CF D 1

NC

X

A

t At A D N2C � 1
2NC

(2.6)

with NC the number of colours (NC D 3 in QCD). The scale dependence of ˛s (the
distance r is Fourier-conjugate to the momentum transfer) will be explained in detail
later. The slope decreases with increasing temperature until it vanishes at a critical
temperature TC. Then above TC the slope remains zero, as shown in Fig. 2.3. The
value of the critical temperature is estimated to be around TC � 175MeV.
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Fig. 2.3 The potential between a quark and an antiquark computed on the lattice in the quenched
approximation [256]. The upper panel shows that the slope of the linearly rising term decreases
with temperature and vanishes at the critical temperature TC. At T � TC the slope remains at zero
(lower panel)

The linearly increasing term in the potential makes it energetically impossible
to separate a qNq pair. If the pair is created at one spacetime point, for example in
eCe� annihilation, and then the quark and the antiquark start moving away from
each other in the center-of-mass frame, it soon becomes energetically favourable
to create additional pairs, smoothly distributed in rapidity between the two leading
charges, which neutralize colour and allow the final state to be reorganized into two
jets of colourless hadrons that communicate in the central region by a number of
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“wee” hadrons with small energy. It is just like the familiar example of the broken
magnet: if you try to isolate a magnetic pole by stretching a dipole, the magnet
breaks down and two new poles appear at the breaking point.

Confinement is essential to explain why nuclear forces have very short range
while massless gluon exchange would be long range. Nucleons are colour singlets
and they cannot exchange colour octet gluons but only colourless states. The lightest
colour singlet hadronic particles are pions. So the range of nuclear forces is fixed by
the pion mass r ' m�1

  � 10�13 cm, since V � exp.�m r/=r.
The phase transitions of colour deconfinement and of chiral restoration appear to

happen together on the lattice [85, 162, 199, 272] (see Fig. 2.4). A rapid transition
is observed in lattice simulations where the energy density �.T/ is seen to increase
sharply near the critical temperature for deconfinement and chiral restoration
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Fig. 2.4 Order parameters for deconfinement (bottom) and chiral symmetry restoration (top), as
a function of temperature [85, 272]. On a finite lattice the singularities associated with phase
transitions are not present, but their development is indicated by a rapid rate of change. With
increasing temperature, the vacuum expectation value of the quark–antiquark condensate goes from
the finite value that breaks chiral symmetry down to zero, where chiral symmetry is restored. In a
comparable temperature range, the Wilson plaquette, the order parameter for deconfinement, goes
from zero to a finite value. Figure reproduced with permission. Copyright (c) 2012 by Annual
Reviews
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Fig. 2.5 The energy density divided by the fourth power of the temperature, computed on the
lattice with different numbers of sea flavours, shows a marked rise near the critical temperature
(adapted from [85] and [272]). The arrows on top show the limit for a perfect Bose gas (while the
hot dense hadronic fluid is not expected to be a perfect gas)
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Fig. 2.6 Left: a schematic view of the QCD phase diagram. Right: on the lattice the nature of the
phase transition depends on the number of quark flavours and their masses as indicated [272].
Figure reproduced with permission. Copyright (c) 2012 by Annual Reviews

(see Fig. 2.5). The critical parameters and the nature of the phase transition depend
on the number of quark flavours nf and on their masses (see Fig. 2.6). For example,
for nf D 2 or 2C1 (i.e., 2 light u and d quarks and 1 heavier s quark), TC � 175MeV
and �.TC/ � 0:5–1.0GeV/fm3. For realistic values of the masses ms and mu;d, the
two phases are connected by a smooth crossover, while the phase transition becomes
first order for very small or very large mu;d;s. Accordingly, the hadronic phase and
the deconfined phase are separated by a crossover region at small densities and by
a critical line at high densities that ends with a critical point. Determining the exact
location of the critical point in T and �B is an important challenge for theory and
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is also important for the interpretation of heavy ion collision experiments. At high
densities, the colour superconducting phase is also present, with bosonic diquarks
acting as Cooper pairs.

A large investment is being made in heavy ion collision experiments with the aim
of finding some evidence of the quark–gluon plasma phase. Many exciting results
have been found at the CERN SPS in the past few years, more recently at RHIC
and now at the LHC, in dedicated heavy ion runs [296] (the ALICE detector is
especially designed for the study of heavy ion collisions).

2.2.3 Chiral Symmetry in QCD and the Strong CP Problem

In the QCD Lagrangian (1.28), the quark mass terms are of the general form
[m N L RCh:c:] (recall the definition of  L;R in Sect. 1.5 and the related discussion).
These terms are the only ones that show a chirality flip. In the absence of these
terms, i.e., for m D 0, the QCD Lagrangian would be invariant under independent
unitary transformations acting separately on  L and  R. Thus, if the masses of the
Nf lightest quarks are neglected, the QCD Lagrangian is invariant under a global
U.Nf/L

N
U.Nf/R chiral group.

Consider Nf D 2. Then SU.2/V corresponds to the observed approximate
isospin symmetry and U.1/V to the portion of baryon number associated with u
and d quarks. Since no approximate parity doubling of light quark bound states
is observed, the U.2/A symmetry must be spontaneously broken (for example,
no opposite parity analogues of protons and neutrons exist with a few tens of
MeV separation in mass from the ordinary nucleons). The breaking of chiral
symmetry is induced by the VEV of a quark condensate. For Nf D 2 this is
[NuLuRC NdLdRCh:c:]. A recent lattice calculation [208] has given for this condensate
the value Œ234˙ 18MeV]3 (in MS, Nf D 2C 1, with the physical ms value, at the
scale of 2GeV). This scalar operator is an isospin singlet, so it preservesU.2/V, but
breaks U.2/A. In fact, it transforms like (1/2,1/2) under U.2/L

N
U.2/R, but is a

singlet under the diagonal group U.2/V.
The pseudoscalar mesons are obvious candidates for the would-be Goldstone

bosons associated with the breakdown of the axial group, in that they have the
quantum number of the broken generators: the three pions are the approximately
massless Goldstone bosons (exactly massless in the limit of vanishing u and d
quark masses) associated with the breaking of three generators of U.2/L

N
U.2/R

down to SU.2/V
N

U.1/V
N

U.1/A. The couplings of Goldstone bosons are very
special: in particular only derivative couplings are allowed. The pions as pseudo-
Goldstone bosons have couplings that satisfy strong constraints. An effective chiral
Lagrangian formalism [362] allows one to systematically reproduce the low energy
theorems implied by the approximate status of Goldstone particles for the pion, and
successfully describes QCD for energies at scales below �1GeV.
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The breaking mechanism for the remaining U.1/A arises from an even subtler
mechanism. A state in the �–�0 space cannot be the associated Goldstone particle
because the masses are too large [361] and the �0 mass does not vanish in the chiral
limit [367]. Rather, the conservation of the singlet axial current j�5 D P Nqi���5qi
is broken by the Adler–Bell–Jackiw anomaly [19]:

@�j
�
5 � I.x/ D Nf

˛s

4


X

A

FA
�


QFA�
 D Nf
˛s

2

Tr.F��

QF��/ ; (2.7)

recalling that F�� D P
FA
�
t

A and the normalization is Tr.t AtB/ D 1=2ıAB, with
FA
�
 given in (1.31) and j�5 the u C d singlet axial current (the factor of Nf, in this

case Nf D 2, in front of the right-hand side takes into account the fact that Nf

flavours are involved), and

QFA
�
 D 1

2
��
��F

A�� : (2.8)

An important point is that the pseudoscalar quantity I.x/ is a four-divergence.More
precisely, one can check that

Tr.F��
QF��/ D @�k� ; (2.9)

with

k� D ��
��Tr

�
A


�
F�� � 2

3
iesA�A�

��
: (2.10)

As a consequence the modified current Qj�5 and its associated charge QQ5 still appear
to be conserved, viz.,

@�Qj�5 D @�

�
j�5 � Nf

˛s

2

k�

	
D 0 ; (2.11)

and could act as a modified chiral current and charge with an additional gluonic
component. But actually this charge is not conserved due to the topological structure
of the QCD vacuum (instantons) as discussed in the following (for an introduction,
see [308]).

The configuration where all gauge fields are zero AA
� D 0 can be called

“the vacuum”. However, all configurations connected to AA
� D 0 by a gauge

transformation must also correspond to the same physical vacuum. For example, in
an Abelian theory all gauge fields that can be written as the gradient of a scalar,
i.e., AA

� D @��.x/, are equivalent to AA
� D 0. In non-Abelian gauge theories,

there are some “large” gauge transformations that are topologically nontrivial and
correspond to non-vanishing integer values of a topological charge, the “winding
number”. Taking SU.2/ for simplicity, although in QCD it could be any such
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subgroup of colour SU.3/, we can consider the following time-independent gauge
transformation:

˝1.x/ D x2 � d2 C 2id��x
x2 C d2

; (2.12)

where d is a positive constant. Note that˝�1
1 D ˝�

1 . Starting fromA� D .A0;Ai/ D
.0; 0/ (i D 1; 2; 3), with A� D P

Aa
��

a=2 and recalling the general expression of a
gauge transformation in (1.15), the gauge transform of the potential by˝1 is

A.1/j D � i

es

�rj˝1.x/
�
˝�1
1 .x/ : (2.13)

For the vector potentialA.1/, which is a pure gauge and hence part of the “vacuum”,
the winding number n, defined in general by

n D ie3s
24
2

Z
d3xTr

�
Ai.x/Aj.x/Ak.x/

�
�ijk ; (2.14)

is equal to 1, i.e., n D 1. Similarly, for A.m/ obtained from ˝m = [˝1�
m, one has

n D m. Given (2.9), we might expect the integrated four-divergence to vanish, but
instead one finds

˛s

4


Z
d4xTr.F��

QF��/ D ˛s

4


Z
d4x @�k

� D ˛s

4


�Z
d3x k0

�C1

�1
D nC � n� ;

(2.15)

for a configuration of gauge fields that vanish fast enough on the space sphere at
infinity, and the winding numbers are n� at time t D 	1 (“instantons”).

From the above discussion it follows that in QCD all gauge fields can be
classified in sectors with different n: there is a vacuum for each n, jni, and˝1jni D
jn C 1i (not gauge invariant!). The true vacuum must be gauge invariant (up to a
phase) and is obtained as a superposition of all jni:

j�i D
C1X

�1
e�in� jni : (2.16)

In fact,

˝1j�i D
X

e�in� jn C 1i D ei� j�i : (2.17)

If we compute the expectation value of any operator O in the � vacuum, we find

h� jOj�i D
X

m;n

ei.m�n/� hmjOjni : (2.18)



2.2 Non-perturbative QCD 39

The path integral describing the O vacuum matrix element at � D 0 must be
modified to reproduce the extra phase, taking (2.15) into account:

h� jOj�i D
Z

dAd N d O exp

�
iSQCD C i�

˛s

4


Z
d4xTr.F��

QF��/

�
: (2.19)

This is equivalent to adding a � term to the QCD Lagrangian:

LQCD D �
˛s

4


Z
d4xTr.F��

QF��/ : (2.20)

The � term is parity (P) odd and charge conjugation (C) even, so it introduces
CP violation in the theory (and also time reversal (T) violation). A priori one
would expect Q� to be O.1/. But it would contribute to the neutron electric dipole
moment, according to dn.e�cm/ � 3 � 10�16 Q� . The strong experimental bounds
on dn, viz., dn.e�cm/ 
 3 � 10�26 [307], imply that Q� must be very small, viz.,
Q� 
 10�10. The so-called “strong CP problem” or “�-problem” consists in finding
an explanation for such a small value [263, 308]. An important point that is relevant
for a possible solution is that a chiral transformation translates � by a fixed amount.
By recalling (2.11), we have

ei• QQ5 j�i D j� � 2Nfıi : (2.21)

To prove this relation we first observe that QQ5 is not gauge invariant under ˝1,
because it involves k0 :

˝1
QQ5˝�1

1 D Q5 �˝12Nf
˛s

4


�Z
d3x k0

�
˝�1
1 D QQ5 � 2Nf : (2.22)

It then follows that

˝1ei•
QQ5 j�i D ˝1ei•

QQ5˝�1
1 ˝1j�i D ei.��2Nfı/ei• QQ5 j�i ; (2.23)

which implies (2.21). Thus in a chiral invariant theory, one could dispose of � .
For this it would be sufficient for a single quark mass to be zero, and the obvious
candidate would bemu D 0. But apparently this possibility has been excluded [263].
For non-vanishing quark masses, the transformation m ! U�

LmUR needed to make
the mass matrix Hermitian (which implies �5-free) and diagonal involves a chiral
transformation that affects � . Considering that U.N/ D U.1/

N
SU.N/ and that

for Hermitian m the argument of the determinant vanishes, i.e., arg det m D 0, the
transformation from a generic m0 to a real and diagonal m gives

arg det m D 0 D arg det U�
L C arg det m0 C arg det UR

D �2Nf.ıL � ıR/C arg det m0 : (2.24)
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From this equation one derives the phase ıR � ıL of the chiral transformation and
then, by (2.21), the important result for the effective � value:

�eff D � C arg det m0 : (2.25)

As we have seen the small empirical value of �eff poses a serious naturalness
problem for the SM. Among the possible solutions, perhaps the most interesting
option is a mechanism proposed by Peccei and Quinn [309]. One assumes that the
SM or an enlarged theory is invariant under an additional chiral symmetry U.1/PQ
acting on the fields of the theory. This symmetry is spontaneously broken by the
vacuum expectation value vPQ of a scalar field. The associated Goldstone boson, the
axion, is actually not massless, because of the chiral anomaly. The parameter � is
canceled by the vacuum expectation value of the axion field due to the properties of
the associated potential, also determined by the anomaly. Axions could contribute
to the dark matter in the Universe, if their mass falls in a suitable narrow range (for
a recent review, see, for example, [262]).

Alternative solutions to the �-problem have also been suggested. Some of them
can probably be discarded (for example, the idea that the up quark is exactly
massless), while others are still possible: for example, in supersymmetric theories,
if the smallness of � could be guaranteed at the Planck scale by some feature of
the more fundamental theory valid there, then the non-renormalization theorems of
supersymmetry would preserve its small value throughout the transition down to
low energy.

2.3 Massless QCD and Scale Invariance

As discussed in Chap. 2, the QCD Lagrangian in (1.28) only specifies the theory at
the classical level. The procedure for quantizing gauge theories involves a number
of complications that arise from the fact that not all degrees of freedom of gauge
fields are physical because of the constraints from gauge invariance which can be
used to eliminate the dependent variables. This is already true for Abelian theories
and one is familiar with the QED case. One introduces a gauge fixing term (an
additional term in the Lagrangian density that acts as a Lagrange multiplier in the
action extremization). One can choose to preserve manifest Lorentz invariance. In
this case, one adopts a covariant gauge, like the Lorentz gauge, and in QED one
proceeds according to the formalism of Gupta and Bleuler [102]. Or one can give
up explicit formal covariance and work in a non-covariant gauge, like the Coulomb
or the axial gauges, and only quantize the physical degrees of freedom (in QED the
transverse components of the photon field).

While this is all for an Abelian gauge theory, in the non-Abelian case some
additional complications arise, in particular the need to introduce ghosts for the
formulation of Feynman rules. As we have seen, there are in general as many ghost
fields as gauge bosons, and they appear in the form of a transformation Jacobian
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in the Feynman functional integral. Ghosts only propagate in closed loops and
their vertices with gluons can be included as additional terms in the Lagrangian
density, these being fixed once the gauge fixing terms and their infinitesimal gauge
transformations are specified. Finally, the complete Feynman rules can be obtained
in either the covariant or the axial gauges, and they appear in Fig. 2.1.

Once the Feynman rules are derived, we have a formal perturbative expansion,
but loop diagrams generate infinities. First a regularization must be introduced,
compatible with gauge symmetry and Lorentz invariance. This is possible in
QCD. In principle, one can introduce a cutoff K (with dimensions of energy), for
example, as done by Pauli and Villars [102]. But at present, the universally adopted
regularization procedure is dimensional regularization, which we will describe
briefly later on.

After regularization, the next step is renormalization. In a renormalizable theory
(which is the case for all gauge theories in four spacetime dimensions and for QCD
in particular), the dependence on the cutoff can be completely reabsorbed in a redef-
inition of particle masses, gauge coupling(s), and wave function normalizations.
Once renormalization is achieved, the perturbative definition of the quantum theory
that corresponds to a classical Lagrangian like (1.28) is completed.

In the QCD Lagrangian of (1.28), quark masses are the only parameters with
physical dimensions (we work in the natural system of units „ D c D 1). Naively,
we would expect massless QCD to be scale invariant. This is actually true at the
classical level. Scale invariance implies that dimensionless observables should not
depend on the absolute scale of energy, but only on ratios of energy-dimensional
variables. The massless limit should be relevant for the large asymptotic energy
limit of processes which are non-singular for m ! 0.

The naive expectation that massless QCD should be scale invariant is false in
the quantum theory. The scale symmetry of the classical theory is unavoidably
destroyed by the regularization and renormalization procedure, which introduce a
dimensional parameter into the quantum version of the theory. When a symmetry
of the classical theory is necessarily destroyed by quantization, regularization, and
renormalization one talks of an “anomaly”. So in this sense, scale invariance in
massless QCD is anomalous.

While massless QCD is not in the end scale invariant, the departures from scaling
are asymptotically small, logarithmic, and computable. In massive QCD, there are
additional mass corrections suppressed by powers of m=E, where E is the energy
scale (for processes that are non-singular in the limit m ! 0). At the parton level
(q and g), we can consider applying the asymptotic predictions of massless QCD to
processes and observables (we use the word “processes” for both) with the following
properties (“hard processes”):

• All relevant energy variables must be large:

Ei D ziQ ; Q � mj ; zi scaling variables O.1/ : (2.26)
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• There should be no infrared singularities (one talks of “infrared safe” processes).
• The processes concerned must be finite for m ! 0 (no mass singularities).

To have any chance of satisfying these criteria, processes must be as “inclusive” as
possible: one should include all final states with massless gluon emission and add
all mass degenerate final states (given that quarks are massless, qNq pairs can also be
massless if “collinear”, that is moving together in the same direction at a common
speed, the speed of light).

In perturbative QCD one computes inclusive rates for partons (the fields in the
Lagrangian, that is, in QCD, quarks and gluons) and takes them as equal to rates
for hadrons. Partons and hadrons are considered as two equivalent sets of complete
states. This is called “global duality”, and it is rather safe in the rare instance of
a totally inclusive final state. It is less so for distributions, like distributions in the
invariant mass M (“local duality”), where it can be reliable only if smeared over a
sufficiently wide bin inM.

Let us discuss infrared and collinear safety in more detail. Consider, for example,
a quark virtual line that ends up in a real quark plus a real gluon (Fig. 2.7). For the
propagator we have

propagator D 1

. p C k/2 � m2
D 1

2. p � k/ D 1

2EkEp
� 1

1 � ˇp cos � : (2.27)

Since the gluon is massless, Ek can vanish and this corresponds to an infrared
singularity. Remember that we have to take the square of the amplitude and integrate
it over the final state phase space, resulting in this case with dEk=Ek. Indeed, we
get 1=E2k from the squared amplitude and d3k=Ek � EkdEk from the phase space.

Further, form ! 0, ˇp D
q
1 � m2=E2p ! 1 and 1�ˇp cos � vanishes at cos � D 1,

leading to a collinear mass singularity.
There are two very important theorems on infrared and mass singularities.

The first one is the Bloch–Nordsieck theorem [103]: infrared singularities
cancel between real and virtual diagrams (see Fig. 2.8) when all resolution-
indistinguishable final states are added up. For example, for each real detector there
is a minimum energy of gluon radiation that can be detected. For the cancellation of
infrared divergences, one should add all possible gluon emission with a total energy
below the detectable minimum.

Fig. 2.7 The splitting of a
virtual quark into a quark and
a gluon
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Fig. 2.8 Diagrams contributing to the total cross-section eCe� ! hadrons at order ˛s. For
simplicity, only the final state quarks and (virtual or real) gluons are drawn

e+

e

γ, Z

Fig. 2.9 Total cross-section eCe� ! hadrons

The second one is the Kinoshita–Lee–Nauenberg theorem [265]: mass singu-
larities connected with an external particle of mass m are canceled if all degenerate
states (that is, with the samemass) are summed up. Hence, for a final state particle of
mass m, we should add all final states that have the same mass in the limit m ! 0,
including also gluons and massless pairs. If a completely inclusive final state is
taken, only the mass singularities from the initial state particles remain (we shall
see that they will be absorbed inside the non-perturbative parton densities, which
are probability densities for finding the given parton in the initial hadron).

Hard processes to which the massless QCD asymptotics may possibly apply
must be infrared and collinear safe, that is they must satisfy the requirements of
the Bloch–Nordsieck and the Kinoshita–Lee–Nauenberg theorems. We now give
some examples of important hard processes. One of the simplest hard processes is
the totally inclusive cross-section for hadron production in eCe� annihilation (see
Fig. 2.9), parameterized in terms of the alreadymentioned dimensionless observable
R D �.eCe� ! hadrons/=�point.eCe� ! �C��/. The pointlike cross-section in
the denominator is given by �point D 4
˛2=3s, where s D Q2 D 4E2 is the squared
total center of mass energy and Q is the mass of the exchanged virtual gauge boson.

At parton level, the final state is qNq C ng C n0q0 Nq0, and n and n0 are limited at
each order of perturbation theory. It is assumed that the conversion of partons into
hadrons does not affect the rate (it happens with probability 1). We have already
mentioned that, in order for this to be true within a given accuracy, averaging over
a sufficiently large bin of Q must be understood. The binning width is larger in the
vicinity of thresholds: for example, when one goes across the charm cNc threshold,
the physical cross-section shows resonance bumps that are absent in the smooth
partonic counterpart, which, however, gives an average of the cross-section.
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Fig. 2.10 Deep inelastic
lepto-production

N

θ

A very important class of hard processes is deep inelastic scattering (DIS):

l C N ! l0 C X ; l D e˙; �˙; �; N� : (2.28)

This has played, and still plays, a very important role in our understanding of QCD
and nucleon structure. For the processes in (2.28) (see Fig. 2.10), in the lab system
where the nucleon of mass m is at rest, we have

Q2 D �q2 D �.k � k0/2 D 4EE0 sin2
�

2
; m
 D . p:q/ ; x D Q2

2m

: (2.29)

In this case the virtual momentum q of the gauge boson is spacelike. x is the
familiar Bjorken variable. The DIS processes in QCD will be discussed extensively
in Sect. 2.8.

2.4 The Renormalization Group and Asymptotic Freedom

In this section we aim to provide a reasonably detailed introduction to the renor-
malization group formalism and the concept of running coupling, which leads to the
result that QCD has the property of asymptotic freedom. We start with a summary
of how renormalization works.

In the simplest conceptual situation imagine that we implement regularization of
divergent integrals by introducing a dimensional cutoff K that respects gauge and
Lorentz invariance. The dependence of renormalized quantities on K is eliminated
by absorbing it into a redefinition of m, the quark mass (for simplicity we assume a
single flavour here), the gauge coupling e (which can be e in QED or es in QCD),
and the wave function renormalization factors Z1=2q;g for q and g, using suitable
renormalization conditions (that is, precise definitions of m, g, and Z that can be
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implemented order by order in perturbation theory). For example, we can define
the renormalized mass m as the position of the pole in the quark propagator, and
similarly, the normalization Zq as the residue at the pole:

propagator D Zq
p2 � m2

C no-pole terms : (2.30)

The renormalized coupling e can be defined in terms of a renormalized 3-point
vertex at some specified values of the external momenta. More precisely, we
consider a one-particle irreducible vertex (1PI). We recall that a connected Green
function is the sum of all connected diagrams, while 1PI Green functions are the
sum of all diagrams that cannot be separated into two disconnected parts by cutting
only one line.

We now become more specific, by concentrating on the case of massless QCD.
If we start from a vanishing mass at the classical (or “bare”) level m0 D 0, the
mass is not renormalized because it is protected by a symmetry, namely, chiral
symmetry. The conserved currents of chiral symmetry are axial currents: Nq���5q.
Using the Dirac equation, divergence of the axial current gives @�.Nq���5q/ D
2mNq�5q. So the axial current and the corresponding axial charge are conserved in
the massless limit. Actually, the singlet axial current is not conserved due to the
anomaly, but since QCD is a vector theory, we do not have to worry about chiral
anomalies in the present context. As there are no �5 factors around, the chosen
regularization preserves chiral symmetry as well as gauge and Lorentz symmetry,
and the renormalized mass remains zero. The renormalized propagator has the
form (2.30) with m D 0.

The renormalized coupling es can be defined from the renormalized 1PI 3-gluon
vertex at a scale ��2 (Fig. 2.11):

Vbare. p
2; q2; r2/DZVren. p

2; q2; r2/ ; Z D Z�3=2
g ; Vren.��2;��2;��2/ ! es :

(2.31)

Fig. 2.11 Diagrams contributing to the 1PI 3-gluon vertex at the one-loop approximation level
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We could just as well use the quark–gluon vertex or any other vertex which
coincides with es0 in lowest order (even the ghost–gluon vertex, if we want). With a
regularization and renormalization that preserves gauge invariance, we can be sure
that all these different definitions are equivalent.

Here Vbare is what is obtained from computing the Feynman diagrams including,
for example, the 1-loop corrections at the lowest non-trivial order. Vbare is defined
as the scalar function multiplying the 3-gluon vertex tensor (given in Fig. 2.1),
normalized in such a way that it coincides with es0 in lowest order. Vbare contains
the cutoff K, but does not know about �. Z is a factor that depends both on the
cutoff and on �, but not on momenta. Because of infrared singularities, the defining
scale � cannot vanish. The negative value ��2 < 0 is chosen to stay away from
physical cuts (a gluon with negative virtual mass cannot decay). Similarly, in the
massless theory, we can define Z�1

g as the inverse gluon propagator (the 1PI 2-point
function) at the same scale ��2 (the vanishing mass of the gluon is guaranteed by
gauge invariance).

After computing all 1-loop diagrams indicated in Fig. 2.11, we have

Vbare. p
2; p2; p2/ D es0

�
1C c˛s0 log

K2

p2
C � � �

�

D
�
1C c˛s log

K2

��2 C : : :

�
es0

�
1C c˛s0 log

��2
p2

�

D Z�1
V es0

�
1C c˛s log

��2
p2

�

D
�
1C d˛s log

K2

��2 C � � �
�
es

�
1C c˛s log

��2
p2

�

D Z�3=2
g Vren : (2.32)

Note the replacement of ˛s0 with ˛s in the second step, as we work at 1-
loop accuracy. Then we change es0 into es, given by e0 D Z�3=2

g ZVe, and this
implies changing c into d in the first bracket. The definition of es requires precise
specification of what is included in Z. For this, in a given renormalization scheme, a
prescription is fixed to specify the finite terms that go into Z, i.e., the terms of order
˛s that accompany logK2. Then Vren is specified and the renormalized coupling
is defined from it according to (2.31). For example, in the momentum subtraction
scheme we define Vren. p2; p2; p2/ D es CVbare. p2; p2; p2/�Vbare.��2;��2;��2/,
which is equivalent to saying that, at 1-loop, all finite terms that do not vanish at
p2 D ��2 are included in Z.

A crucial observation is that Vbare depends on K, but not on �, which is only
introduced when Z, Vren, and hence ˛s are defined. (From here on, for simplicity, we
write ˛ to indicate either the QED coupling or the QCD coupling ˛s.) Similarly, for
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a generic Green function G, we have more generally

Gbare.K
2; ˛0; p

2
i / D ZGGren.�

2; ˛; p2i / ; (2.33)

whence

dGbare

d log�2
D d

d log�2
.ZGGren/ D 0 ; (2.34)

or

ZG

�
@

@ log�2
C @˛

@ log�2
@

@˛
C 1

ZG

@ZG
@ log�2

�
Gren D 0 : (2.35)

Finally, the renormalization group equation (RGE) can be written as

�
@

@ log�2
C ˇ.˛/

@

@˛
C �G.˛/

�
Gren D 0 ; (2.36)

where

ˇ.˛/ D @˛

@ log�2
(2.37)

and

�G.˛/ D @ logZG
@ log�2

: (2.38)

Note that ˇ.˛/ does not depend on which Green function G we are considering.
Actually, it is a property of the theory and of the renormalization scheme adopted,
while �G.˛/ also depends on G. Strictly speaking the RGE as written above is only
valid in the Landau gauge (� D 0). In other gauges, an additional term that takes
the variation of the gauge fixing parameter � into account should also be included.
We omit this term, for simplicity, as it is not relevant at the 1-loop level.

Suppose we want to apply the RGE to some hard process at a large scale Q,
related to a Green function G that we can always take to be dimensionless (by
multiplying by a suitable power of Q). Since the interesting dependence on Q will
be logarithmic, we introduce the variable t as

t D log
Q2

�2
: (2.39)

Then we can write Gren � F.t; ˛; xi/, where xi are scaling variables (we shall often
omit them in the following). In the naive scaling limit, F should be independent of
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t, according to the classical intuition that massless QCD is scale invariant. To find
the actual dependence on t, we must solve the RGE

�
� @

@t
C ˇ.˛/

@

@˛
C �G.˛/

�
Gren D 0 ; (2.40)

with a given boundary condition at t D 0 (or Q2 D �2), viz., F.0; ˛/.
We first solve the RGE in the simplest case, i.e., when �G.˛/ D 0. This is not an

unphysical case. For example, it applies to

R D ReCe� D �.eCe� ! hadrons/

�point.eCe� ! �C��/
;

where the vanishing of � is related to the non-renormalization of the electric charge
in QCD (otherwise the proton and the electron charge would not exactly balance,
something we explain in Sect. 2.7). So we consider the equation

�
� @

@t
C ˇ.˛/

@

@˛

�
Gren D 0 : (2.41)

The solution is simply

F.t; ˛/ D FŒ0; ˛.t/� ; (2.42)

where the “running coupling” ˛.t/ is defined by

t D
Z ˛.t/

˛

1

ˇ.˛0/
d˛0 : (2.43)

Note that from this definition it follows that ˛.0/ D ˛, so that the boundary
condition is also satisfied. To prove that FŒ0; ˛.t/� is indeed the solution, we first
take derivatives with respect of t and ˛ (the two independent variables) of both sides
of (2.43). By taking d=dt we obtain

1 D 1

ˇ.˛.t//

@˛.t/

@t
: (2.44)

We then take d=d˛ and obtain

0 D � 1

ˇ.˛/
C 1

ˇ.˛.t//

@˛.t/

@˛
: (2.45)
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These two relations make explicit the dependence of the running coupling on t
and ˛:

@˛.t/

@t
D ˇ.˛.t// ; (2.46)

@˛.t/

@˛
D ˇ.˛.t//

ˇ.˛/
:

Using these two equations, one immediately checks that FŒ0; ˛.t/� is indeed the
solution.

Similarly, one finds that the solution of the more general equation (2.40) with
� 6D 0 is given by

F.t; ˛/ D FŒ0; ˛.t/� exp
Z ˛.t/

˛

�.˛0/
ˇ.˛0/

d˛0 : (2.47)

In fact the sum of the two derivatives acting on the factor FŒ0; ˛.t/� vanishes (as we
have just seen), and the exponential is by itself a solution of the complete equation.
Note that the boundary condition is also satisfied.

The important point is the appearance of the running coupling that determines
the asymptotic departures from scaling. The next step is to study the functional
form of the running coupling. From (2.46) we see that the rate of change of the
running coupling with respect to t is determined by the function ˇ. In turn, ˇ.˛/
is determined by the � dependence of the renormalized coupling through (2.37).
Clearly, there is no dependence of the basic 3-gluon vertex on � to lowest order
(order e). The dependence starts at 1-loop, that is at order e3 (one extra gluon has to
be emitted and reabsorbed). Thus we find that, in perturbation theory,

@e

@ log�2
/ e3 : (2.48)

Recalling that ˛ D e2=4
 , we have

@˛

@ log�2
/ 2e

@e

@ log�2
/ e4 / ˛2 : (2.49)

Thus the behaviour of ˇ.˛/ in perturbation theory is

ˇ.˛/ D ˙b˛2.1C b0˛ C � � � / : (2.50)

Since the sign of the leading term is crucial in the following discussion, we stipulate
that b > 0 and we make the sign explicit in front.
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Let us make the procedure more precise for computing the 1-loop beta function
in QCD (or, similarly, in QED). The result of the 1-loop 1PI diagrams for Vren can
be written as

Vren D e

�
1C ˛B3g log

�2

�p2

�
: (2.51)

Vren satisfies the RGE

�
@

@ log�2
C ˇ.˛/

@e

@˛

@

@e
� 3

2
�g.˛/

�
Vren D 0 : (2.52)

With respect to (2.36), the beta function term has been rewritten taking into account
the fact that Vren starts with e, and the anomalous dimension term arises from
a factor Z�1=2

g for each gluon leg. In general, for an n-leg 1PI Green function
Vn;bare D Z�n=2

g Vn;ren, if all external legs are gluons. Note that, in the particular case
of V D V3 that is used to define e, other Z factors are absorbed in the replacement
Z�1
V Z3=2g e0 D e. At 1-loop accuracy, we replace ˇ.˛/ D �b˛2 and �g.˛/ D �

.1/
g ˛.

One thus obtains

b D 2

�
B3g � 3

2
�.1/g

�
: (2.53)

Similarly, we can write the diagrammatic expression and the RGE for the 1PI
2-gluon Green function, which is the inverse gluon propagator˘ (a scalar function
after removing the gauge invariant tensor):

˘ren D
�
1C ˛B2g log

�2

�p2
C � � �

�
(2.54)

and
�

@

@ log�2
C ˇ.˛/

@

@˛
� �g.˛/

�
˘ren D 0 : (2.55)

Notice that the normalization and the phase of ˘ are specified by the lowest order
term being 1. In this case the ˇ function term is negligible, being of order ˛2

(because˘ is a function of e only through ˛) and we obtain

�.1/g D B2g : (2.56)

Thus, finally,

b D 2

�
B3g � 3

2
B2g

�
: (2.57)
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By direct calculation at 1-loop level, one finds

QED ˇ.˛/ � Cb˛2 C � � � ; b D
X

i

NCQ2i
3


; (2.58)

whereNC D 3 for quarks andNC D 1 for leptons, and the sum runs over all fermions
of charge Qie that are coupled. One also finds

QCD ˇ.˛/ � �b˛2 C � � � ; b D 11NC � 2nf
12


; (2.59)

where, as usual, nf is the number of coupled (see below) flavours of quarks (we
assume here that nf 
 16, so that b > 0 in QCD).

If ˛.t/ is small, we can compute ˇ.˛.t// in perturbation theory. The sign in front
of b then decides the slope of the coupling: ˛.t/ increases with t (or Q2) if ˇ is
positive at small ˛ (QED), or ˛.t/ decreases with t (or Q2) if ˇ is negative at small
˛ (QCD). A theory like QCD in which the running coupling vanishes asymptotically
at large Q2 is said to be (ultraviolet) “asymptotically free”. An important result that
has been proven [145] is that, in four spacetime dimensions, all and only non-
Abelian gauge theories are asymptotically free.

Going back to (2.43), we replace ˇ.˛/ � ˙b˛2, do the integral, and perform
some simple algebra to find

QED ˛.t/ � ˛

1 � b˛t
(2.60)

and

QCD ˛.t/ � ˛

1C b˛t
: (2.61)

A slightly different form is often used in QCD. Defining 1=˛ D b log�2=�2
QCD, we

can write

˛.t/ � 1

1

˛
C bt

D 1

b log
�2

�2
QCD

C b log
Q2

�2

D 1

b log
Q2

�2
QCD

: (2.62)

The parameter� has been traded for the parameter�QCD. We see that ˛.t/ decreases
logarithmically with Q2 and that one can introduce a dimensional parameter �QCD

that replaces �. In the following we will often simply write � for �QCD. Note that
it is clear that � depends on the particular definition of ˛, not only on the defining
scale �, but also on the renormalization scheme (see, for example, the discussion in
the next section). Through the parameter b, and in general through the function ˇ,
it also depends on the number nf of coupled flavours.
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It is very important to note that QED and QCD are theories with “decoupling”,
i.e., up to the scale Q, only quarks with masses m � Q contribute to the running of
˛. This is clearly very important, given that all applications of perturbative QCD so
far apply to energies below the top quark massmt. For the validity of the decoupling
theorem [60], the theory in which all the heavy particle internal lines are eliminated
must still be renormalizable and the coupling constants must not vary with the mass.
These requirements are satisfied for the masses of heavy quarks in QED and QCD,
but they are not satisfied in the electroweak theory where the elimination of the
top would violate SU.2/ symmetry (because the t and b left-handed quarks are in a
doublet) and the quark couplings to the Higgs multiplet (hence to the longitudinal
gauge bosons) are proportional to the mass.

In conclusion, in QED and QCD, quarks with m � Q do not contribute to
nf in the coefficients of the relevant ˇ function. The effects of heavy quarks are
power suppressed and can be taken into account separately. For example, in eCe�
annihilation for 2mc < Q < 2mb, the relevant asymptotics is for nf D 4, while for
2mb < Q < 2mt, it is for nf D 5. Going across the b threshold, the ˇ function
coefficients change, so the slope of ˛.t/ changes. But ˛.t/ is continuous, whence�
changes so as to keep ˛.t/ constant at the matching point atQ � O.2mb/. The effect
on � is large: approximately�5 � 0:65�4, where �4;5 are for nf D 4; 5.

Note the presence of a pole at ˙b˛t D 1 in (2.60) and (2.61). This is called
the Landau pole, since Landau had already realised its existence in QED in the
1950s. For � � me (in QED), the pole occurs beyond the Planck mass. In QCD,
the Landau pole is located for negative t or at Q < � in the region of light hadron
masses. Clearly the issue of the definition and the behaviour of the physical coupling
(which is always finite, when defined in terms of some physical process) in the
region around the perturbative Landau pole is a problem that lies outside the scope
of perturbative QCD.

The non-leading terms in the asymptotic behaviour of the running coupling can
in principle be evaluated by going back to (2.50) and computing b0 at 2-loops and so
on. But in general the perturbative coefficients of ˇ.˛/ depend on the definition of
the renormalized coupling ˛ (the renormalization scheme), so one wonders whether
it is worthwhile to do a complicated calculation to get b0, if it must then be repeated
for a different definition or scheme. In this respect it is interesting to note that both b
and b0 are actually independent of the definition of ˛, while higher order coefficients
do depend on that. Here is the simple proof. Two different perturbative definitions
of ˛ are related by ˛0 � ˛.1C c1˛ C � � � /. Then we have

ˇ.˛0/ D d˛0

d log�2
D d˛

d log�2
.1C 2c1˛ C � � � /

D ˇ.˛/.1C 2c1˛ C : : :/

D ˙b˛2.1C b0˛ C � � � /.1C 2c1˛ C � � � /
D ˙b˛02.1C b0˛0 C � � � / ; (2.63)

which shows that, up to the first subleading order, ˇ.˛0/ has the same form as ˇ.˛/.
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In QCD (NC D 3), it has been shown that [131]

b0 D 153� 19nf
2
.33� 2nf/

: (2.64)

By taking b0 into account, one can write the expression for the running coupling at
next to the leading order (NLO):

˛.Q2/ D ˛LO.Q
2/

�
1 � b0˛LO.Q2/ log log

Q2

�2
C � � �

�
; (2.65)

where ˛�1
LO D b logQ2=�2 is the LO result (actually at NLO, the definition of � is

modified according to b log�2=�2 D 1=˛ C b0 log b˛).
Summarizing, we started from massless classical QCD which is scale invariant.

But we have seen that the procedure of quantization, regularization, and renor-
malization necessarily breaks scale invariance. In the quantum QCD theory, there
is a scale of energy �. From experiment, this is of the order of a few hundred
MeV, its precise value depending on the definition, as we shall see in detail.
Dimensionless quantities depend on the energy scale through the running coupling,
which is a logarithmic function of Q2=�2. In QCD the running coupling decreases
logarithmically at large Q2 (asymptotic freedom), while in QED the coupling has
the opposite behaviour.

2.5 More on the Running Coupling

In the last section we introduced the renormalized coupling ˛ in terms of the
3-gluon vertex at p2 D ��2 (momentum subtraction). The Ward identities of
QCD then ensure that the coupling defined from other vertices like the Nqqg vertex
are renormalized in the same way and the finite radiative corrections are related.
But at present the universally adopted definition of ˛s is in terms of dimensional
regularization [333], because of computational simplicity, which is essential given
the great complexity of present day calculations. So we now briefly review the
principles of dimensional regularization and the definition of minimal subtraction
(MS) [335] and modified minimal subtraction (MS) [82]. The MS definition of
˛s is the one most commonly adopted in the literature, and values quoted for it
normally refer to this definition.

Dimensional regularization (DR) is a gauge and Lorentz invariant regularization
that consists in formulating the theory in D < 4 spacetime dimensions in order to
make loop integrals ultraviolet finite. In DR one rewrites the theory inD dimensions
(D is integer at the beginning, but then one realizes that the expression calculated
from diagrams makes sense for all D, except for isolated singularities). The metric
tensor is extended to a D � D matrix g�
 D diag.1;�1;�1; : : : ;�1/ and 4-vectors
are given by k� D .k0; k1; : : : ; kD�1/. The Dirac �� are f .D/ � f .D/ matrices and
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the precise form of the function f .D/ is not important. It is sufficient to extend
the usual algebra in a straightforward way like f��; �
g D 2g�;
I, where I is the
D-dimensional identity matrix, ���
�� D �.D � 2/�
 , or Tr.���
/ D f .D/g�
 .

The physical dimensions of fields change in D dimensions, and as a consequence
the gauge couplings become dimensional eD D ��e, where e is dimensionless,D D
4� 2�, and � is a mass scale (this is how a scale of mass is introduced in the DR of
massless QCD). In fact, the dimension of the fields is determined by requiring the
action S D R

dDxL to be dimensionless. By inserting terms like m N�� or m2���
or e N����A� forL , the dimensions of the fields and couplings m, � , �, A�, and e
are determined as 1, .D� 1/=2, .D� 2/=2, .D� 2/=2, and .4�D/=2, respectively.
The formal expression of loop integrals can be written for any D. For example,

Z
dDk

.2
/D
1

.k2 � m2/2
D � .2 � D=2/.�m2/D=2�2

.4
/D=2
: (2.66)

For D D 4 � 2�, one can expand using

� .�/ D 1

�
� �E C O.�/ ; �E D 0:5772 : : : : (2.67)

For some Green function G, normalized to 1 in lowest order (like V=e, with V the
3-gluon vertex function at the symmetric point p2 D q2 D r2, considered in the
previous section), we typically find, at the 1-loop level,

Gbare D 1C ˛0

���2
p2

�� �
B

�
1

�
C log 4
 � �E

�
C A C O.�/

�
: (2.68)

In MS, one rewrites this as (diagram by diagram, a virtue of the method)

Gbare D ZGren;

Z D 1C ˛

�
B

�
1

�
C log 4
 � �E

��
;

Gren D 1C ˛

�
B log

��2
p2

C A

�
: (2.69)

Here Z stands for the relevant product of renormalization factors. In the original MS
prescription, only 1=� was subtracted (and this clearly plays the role of a cutoff),
while log 4
 and �E were not. Later, since these constants always appear in the
expansion of � functions, it was decided to modify MS into MS. Note that the MS
definition of ˛ is different than that in the momentum subtraction scheme, because
the finite terms (those beyond logs) are different. In particular, the order ˛ correction
to Gren does not vanish at p2 D ��2.
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The third [337] and fourth [357] coefficients of the QCD ˇ function are also
known in the MS prescription (recall that only the first two coefficients are scheme-
independent). The calculation of the last term involved the evaluation of some
50,000 four-loop diagrams. Translated in numbers, for nf D 5, one obtains

ˇ.˛/ D �0:610˛2
�
1C 1:261 : : :

˛



C 1:475 : : :

�˛



	2 C 9:836 : : :
� ˛



	3 C � � �
�
:

(2.70)

It is interesting to remark that the expansion coefficients are of order 1 or 10 (only
for the last one), so that the MS expansion looks reasonably well behaved.

2.6 On the Non-convergence of Perturbative Expansions

It is important to keep in mind that, after renormalization, all the coefficients in the
QED and QCD perturbative series are finite, but the expansion does not converge.
Actually, the perturbative series is not even Borel summable (for reviews see, for
example, [31]). After the Borel resummation, for a given process, one is left with
a result that is ambiguous up to terms typically going as exp.�n=b˛/, where n is
an integer and b the absolute value of the first ˇ function coefficient. In QED, these
corrective terms are extremely small and not very important in practice. However,
in QCD, ˛ D ˛s.Q2/ � 1=b log.Q2=�2/ and the ambiguous terms are of order
.1=Q2/n, that is, they are power suppressed. It is interesting that, through this
mechanism, the perturbative version of the theory is somehow able to take into
account the power-suppressed corrections. A sequence of diagrams with factorial
growth at large order n is constructed by dressing gluon propagators by any number
of quark bubbles together with their gauge completions (renormalons). The problem
of the precise relation between the ambiguities of the perturbative expansion and the
power-suppressed corrections has been discussed in recent years, also for processes
without light cone operator expansion [31, 324].

2.7 eCe� Annihilation and Related Processes

2.7.1 ReCe�

The simplest hard process is

R D ReCe� D �.eCe� ! hadrons/

�point.eCe� ! �C��/
;
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Fig. 2.12 Diagrams for charge renormalization in QED at 1-loop (the blob in each diagram
represents the loop)

which we have already introduced. R is dimensionless and is given in perturbation
theory by1 R D NC

P
i Q

2
i F.t; ˛s/, where F D 1 C O.˛s/. We have already

mentioned that for this process the “anomalous dimension” function vanishes, i.e.,
�.˛s/ D 0, because of electric charge non-renormalization by strong interactions.
Let us recall how this happens in detail.

The diagrams that are relevant for charge renormalization in QED at 1-loop are
shown in Fig. 2.12. The Ward identity that follows from gauge invariance in QED
requires the vertex (ZV) and the self-energy (Zf ) renormalization factors to cancel,
and the only divergence remains in Z� , the vacuum polarization of the photon.
Hence, the charge is only renormalized by the photon vacuum polarization blob, and
it is thus universal (the same factor for all fermions, independent of their charge) and
not affected by QCD at 1-loop. It is true that at higher orders the photon vacuum
polarization diagram is affected by QCD (for example, at 2-loops we can exchange
a gluon between the quarks in the loop), but the renormalization induced by the
divergent logs from the vacuum polarization diagram remain independent of the
nature of the fermion to which the photon line is attached. The gluon contributions
to the vertex (ZV) and to the self-energy (Zf ) cancel, because they have exactly the
same structure as in QED, and there is no gluon contribution to the photon blob at
1-loop, so that �.˛s/ D 0.

At the 1-loop level, the diagrams relevant for the computation of R are shown
in Fig. 2.13. There are virtual diagrams and also real diagrams with one additional
gluon in the final state. Infrared divergences cancel between the interference term of
the virtual diagrams and the absolute square of the real diagrams, according to the

1Actually, starting from order ˛2s , there are some “singlet” terms proportional to .
P

i Qi/
2. These

small terms are included in F by dividing and multiplying by
P

i Q
2
i .
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Fig. 2.13 Real and virtual diagrams relevant for the computation of R at 1-loop accuracy (the
initial eCe� has been omitted to make the drawing simpler)

Bloch–Nordsieck theorem. Similarly, there are no mass singularities, in agreement
with the Kinoshita–Lee–Nauenberg theorem, because the initial state is purely
leptonic and all degenerate states that can appear at the given order are included
in the final state. Given that �.˛s/ D 0, the RGE prediction is simply given, as we
have already seen, by F.t; ˛s/ D FŒ0; ˛s.t/�. This means that, if we do, for example,
a 2-loop calculation, we must obtain a result of the form

F.t; ˛s/ D 1C c1˛s.1 � b˛st/C c2˛
2
s C O.˛3s / : (2.71)

In fact, taking into account the expression for the running coupling in (2.61), viz.,

˛s.t/ � ˛s

1C b˛st
� ˛s.1 � b˛st C � � � / ; (2.72)

Eq. (2.71) can be rewritten as

F.t; ˛s/ D 1C c1˛s.t/C c2˛
2
s .t/ C O.˛3s .t// D FŒ0; ˛s.t/� : (2.73)

The content of the RGE prediction is, at this order, that there are no ˛st and .˛st/2

terms (the leading log sequence must be absent), and the term of order ˛2s t has the
appropriate coefficient to be reabsorbed in the transformation of ˛s into ˛s.t/.

At present the first four coefficients c1; : : : ; c4 have been computed in the MS
scheme. The references are as follows: for c2 [138], for c3 [230], and for c4 [74].
Clearly, c1 D 1=
 does not depend on the definition of ˛s, but the cn with n � 2 do.
The subleading coefficients also depend on the scale choice: if instead of expanding
in ˛s.Q/, we decide to choose ˛s.Q=2/, the coefficients cn n � 2 will change. In
the MS scheme, for � exchange and nf D 5, which are good approximations for
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2mb � Q � mZ , one has

FŒ0; ˛s.t/� D 1C ˛s.t/



C 1:409 : : :

�
˛s.t/




�2
� 12:8 : : :

�
˛s.t/




�3

�80:0 : : :
�
˛s.t/




�4
C � � � : (2.74)

Similar perturbative results at 3-loop accuracy also exist for

RZ D � .Z ! hadrons/

� .Z ! leptons/
; R£ D � .£ ! 
£ C hadrons/

� .£ ! 
£ C leptons/
;

and so on. We will discuss these results in Sect. 2.10, where we deal with
measurements of ˛s.

The perturbative expansion in powers of ˛s.t/ takes into account all contributions
that are suppressed by powers of logarithms of the large scale Q2 (“leading twist”
terms). In addition, there are corrections suppressed by powers of the large scale Q2

(“higher twist” terms). The pattern of power corrections is controlled by the light-
cone operator product expansion (OPE) [112, 365], which leads (schematically) to

F D pert. C r2
m2

Q2
C r4

h0jTrŒF��F���j0i
Q4

C � � � C r6
h0jO6j0i

Q6
C � � � : (2.75)

Here m2 generically indicates mass corrections, for example from b quarks, beyond
the b threshold, while top quark mass corrections only arise from loops, vanish in
the limit mt ! 1, and are included in the coefficients like those in (2.74) and
the analogous ones for higher twist terms; F�� D P

A FA
�
 t

A, O6 is typically a 4-
fermion operator, etc. For each possible gauge invariant operator, the corresponding
negative power of Q2 is fixed by dimensions.

We now consider the light-cone OPE in more detail. ReCe� � ˘.Q2/, where
˘.Q2/ is the scalar spectral function related to the hadronic contribution to the
imaginary part of the photon vacuum polarization T�
 :

T�
 D .�g�
Q
2 C q�q
/˘.Q

2/ D
Z

d4x exp i.q � x/h0jJ��.x/J
.0/j0i

D
X

n

h0jJ��.0/jnihnjJ
.0/j0i.2
/4ı4.q � pn/ : (2.76)

For Q2 ! 1, the x2 ! 0 region is dominant. The light cone OPE is valid to
all orders in perturbation theory. Schematically and dropping Lorentz indices for
simplicity, near x2 � 0, we have

J�.x/J.0/ D I.x2/C E.x2/
1X

nD0
cn.x

2/x�1 : : : x�n On
�1:::�n

.0/C less sing. terms :

(2.77)
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Here I.x2/, E.x2/, : : :, cn.x2/ are c-number singular functions and On is a string of
local operators. E.x2/ is the singularity of free field theory, while I.x2/ and cn.x2/
in the interacting theory contain powers of log .�2x2/. Some On are already present
in free field theory, while others appear when interactions are switched on. Given
that ˘.Q2/ is related to the Fourier transform of the vacuum expectation value of
the product of currents, less singular terms in x2 lead to power-suppressed terms in
1=Q2. The perturbative terms, like those in (2.73), come from I.x2/, which is the
leading twist term, and the dominant logarithmic scaling violations induced by the
running coupling are the logs in I.x2/.

2.7.2 The Final State in eCe� Annihilation

Experiments on eCe� annihilation at high energy provide a remarkable opportunity
for systematically testing the distinct signatures predicted by QCD for the structure
of the final state averaged over a large number of events. Typical of asymptotic
freedom is the hierarchy of configurations emerging as a consequence of the
smallness of ˛s.Q2/. When all corrections of order ˛s.Q2/ are neglected, one
recovers the naive parton model prediction for the final state: almost collinear
events with two back-to-back jets with limited transverse momentum and an angular
distribution 1 C cos2 � with respect to the beam axis (typical of spin 1/2 parton
quarks, while scalar quarks would lead to a sin2 � distribution). To order ˛s.Q2/,
a tail of events is predicted to appear with large transverse momentum pT � Q=2
with respect to a suitably defined jet axis (for example, the thrust axis, see below).
This small fraction of events with large pT consists mainly of three-jet events with
almost planar topology. The skeleton of a three-jet event, to leading order in ˛s.Q2/,
is formed by three hard partons qNqg, the third being a gluon emitted by a quark or
antiquark line. To order ˛2s .Q

2/, a hard perturbative non-planar component starts to
build up, and a small fraction of four-jet events qNqgg or qNqqNq appear, and so on.

Event shape variables defined from the set of 4-momenta of final state particles
are introduced to describe the topological structure of the final state energy flow in a
quantitative manner [154]. The best known event shape variable is thrust (T) [192],
defined as

T D max

P
i jpi � nTj
P

i jpij
; (2.78)

where the maximization is in terms of the axis defined by the unit vector nT : the
thrust axis is the axis that maximizes the sum of the absolute values of the longi-
tudinal momenta of the final state particles. The thrust T varies between 1/2, for a
spherical event, to 1 for a collinear (2-jet) event. Event shape variables are important
for QCD tests and measurements of ˛s, and also for more practical purposes, like
a laboratory for assessing the reliability of event simulation programmes and a tool
for the separation of signals and background.
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A quantitatively specified definition of jets and of the number of jets in one event
(jet counting) must be introduced for precise QCD tests and measurement of ˛s,
which must be infrared safe (i.e., not altered by soft particle emission or collinear
splittings of massless particles) in order to be computable at the parton level and
as insensitive as possible to the transformation of partons into hadrons (see, for
example, [294]). For eCe� physics, one can use a jet algorithm based on a resolution
parameter ycut and a suitable pair variable. For example [172],

yij D 2min.E2i ;E
2
j /.1 � cos �ij/

s
: (2.79)

Note that 1�cos �ij � �2ij=2, so that the relative transverse momentum k2T is involved
(hence, the name kT algorithm). The particles i; j belong to different jets for yij >
ycut. Clearly, the number of jets becomes a function of ycut, and in fact there are more
jets for smaller ycut.

Recently, motivated by the LHC experiments, there has been a flurry of improved
jet algorithm studies: it is essential that correct jet finding should be implemented
by LHC experiments for optimal matching of theory and experiment [185, 317].
In particular, existing sequential recombination algorithms like kT [132, 172] and
Cambridge/Aachen [174] have been generalized. In these recursive definitions, one
introduces distances dij between particles or clusters of particles i and j, and diB
between i and the beam (B). The inclusive clustering proceeds by identifying the
smallest of the distances and, if it is a dij, by recombining particles i and j, while if
it is diB, calling i a jet and removing it from the list. The distances are recalculated
and the procedure repeated until no i and j are left.

The extension relative to the kT [132] and Cambridge/Aachen [174] algorithms
lies in the definition of the distance measures:

dij D min.k2pTi ; k
2p
Tj /
�2

ij

R2
; (2.80)

where�2
ij D .yi � yj/2 C .�i ��j/2 and kTi, yi, and �i are the transverse momentum,

rapidity, and azimuth of particle i, respectively. R is the radius of the jet, i.e., the
radius of a cone which, by definition, contains the jet. The exponent p fixes the
relative power of the energy versus geometrical (�ij) scales.

For p D 1, one has the inclusive kT algorithm. It can be shown in general that
for p � 0 the behaviour of the jet algorithm with respect to soft radiation is rather
similar to that observed for the kT algorithm. The case p D 0 is special, and it
corresponds to the inclusive Cambridge/Aachen algorithm [174]. Surprisingly (at
first sight), taking p to be negative also yields an algorithm that is infrared and
collinear safe and has sensible phenomenological behaviour. For p D �1, one
obtains the recently introduced “anti-kT” jet-clustering algorithm [126], which has
particularly stable jet boundaries with respect to soft radiation and is suitable for
practical use in experiments.
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2.8 Deep Inelastic Scattering

Deep inelastic scattering (DIS) processes have played, and still play, a very
important role in our understanding of QCD and of nucleon structure. This set of
processes actually provides us with a rich laboratory for theory and experiment.
There are several structure functions Fi.x;Q2/ that can be studied, each a function
of two variables. This is true separately for different beams and targets and different
polarizations. Depending on the charges of ` and `0 [see (2.28)], we can have neutral
currents (�;Z) or charged currents in the `–`0 channel (Fig. 2.10). In the past, DIS
processes were crucial for establishing QCD as the theory of strong interactions and
quarks and gluons as the QCD partons.

At present DIS remains very important for quantitative studies and tests of
QCD. The theory of scaling violations for totally inclusive DIS structure functions,
based on operator expansion or diagrammatic techniques and renormalization group
methods, is crystal clear and the predicted Q2 dependence can be tested at each
value of x. The measurement of quark and gluon densities in the nucleon, as
functions of x at some reference value of Q2, which is an essential starting point
for the calculation of all relevant hadronic hard processes, is performed in DIS
processes. At the same time one measures ˛s.Q2/, and the DIS values of the running
coupling can be compared with those obtained from other processes. At all times
new theoretical challenges arise from the study of DIS processes. Recent examples
(see the following) are the so-called “spin crisis” in polarized DIS and the behaviour
of singlet structure functions at small x, as revealed by HERA data. In the following
we review the past successes and the present open problems in the physics of DIS.

The cross-section � � L�
W�
 is given in terms of the product of a leptonic
(L�
) and a hadronic (W�
) tensor. While L�
 is simple and easily obtained
from the lowest order electroweak (EW) vertex plus QED radiative corrections,
the complicated strong interaction dynamics is contained in W�
 . The latter is
proportional to the Fourier transform of the forward matrix element between the
nucleon target states of the product of two EW currents:

W�
 D
Z

d4y exp i.q � y/h pjJ��.y/J
.0/jpi : (2.81)

Structure functions are defined starting from the general form of W�
 , given
Lorentz invariance and current conservation. For example, for EW currents between
unpolarized nucleons, we have

W�
 D
�

�g�
 C q�q

q2

�
W1.
;Q

2/C
�
p� � m


q2
q�

� �
p
 � m


q2
q


�
W2.
;Q2/

m2

� i

2m2
��
��p

�q�W3.
;Q
2/ :
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where variables are defined as in (2.28) and (2.29), and W3 arises from VA
interference and is absent for pure vector currents. In the limit Q2 � m2, with the
Bjorken variable x fixed, the structure functions obey approximate Bjorken scaling,
which is in fact broken by logarithmic corrections that can be computed in QCD:

mW1.
;Q
2/ ! F1.x/ ; 
W2;3.
;Q

2/ ! F2;3.x/ : (2.82)

The �–N cross-section is given by

d��

dQ2d

D 4
˛2E0

Q4E

�
2 sin2

�

2
W1 C cos2

�

2
W2

�
; (2.83)

withWi D Wi.Q2; 
/, while for the 
–N or N
–N cross-section one has

d�
;N


dQ2d

D G2FE

0

2
E

�
m2W

Q2 C m2W

�2 �
2 sin2

�

2
W1 C cos2

�

2
W2 ˙ E C E0

m
sin2

�

2
W3

�
;

(2.84)

withWi for photons, and 
 and N
 are all different, as we shall see in a moment.
In the scaling limit the longitudinal and transverse cross-sections are given by

�L � 1

s

�
F2.x/

2x
� F1.x/

�
; �RH;LH � 1

s

�
F1.x/˙ F3.x/

�
; �T D �RH C �LH ;

(2.85)

where L, RH, LH refer to the helicity 0, 1, �1, respectively, of the exchanged gauge
vector boson. For the photon case, F3 D 0 and �RH D �LH.

In the 1960s the demise of hadrons from the status of fundamental particles
to that of bound states of constituent quarks was the breakthrough that made
possible the construction of a renormalizable field theory for strong interactions.
The presence of an unlimited number of hadrons species, many of them with high
spin values, presented an obvious dead-end for a manageable field theory. The
evidence for constituent quarks emerged clearly from the systematics of hadron
spectroscopy. The complications of the hadron spectrum could be explained in terms
of the quantum numbers of spin 1/2, fractionally charged u, d, and s quarks. The
notion of colour was introduced to reconcile the observed spectrum with Fermi
statistics.

However, confinement, which forbids the observation of free quarks, was a
clear obstacle towards the acceptance of quarks as real constituents and not just
as fictitious entities describing some mathematical pattern (a doubt expressed even
by Gell-Mann at the time). The early measurements of DIS at SLAC dissipated
all doubts: the observation of Bjorken scaling and the success of Feynman’s “naive”
(not so much after all) partonmodel imposed quarks as the basic fields for describing
the nucleon structure (parton quarks).
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Fig. 2.14 Schematic diagram
for the interaction of the
virtual photon with a parton
quark in the Breit frame

–Q/2

+Q/2

Q

spin

In the language of Bjorken and Feynman, the virtual � (or, in general, any gauge
boson) sees the quark partons inside the nucleon target as quasi-free, because their
(Lorentz dilated) QCD interaction time is much longer than �� � 1=Q, the duration
of the virtual photon interaction. Since the virtual photon 4-momentum is spacelike,
we can go to a Lorentz frame where E� D 0 (Breit frame). In this frame q D
.E� D 0; 0; 0;Q/ and the nucleon momentum, neglecting the mass m � Q, is
p D .Q=2x; 0; 0;�Q=2x/. We note that this gives q2 D �Q2 and x D Q2=2. p � q/,
as it should.

Consider the interaction of the photon with a quark (see Fig. 2.14) carrying a
fraction y of the nucleon 4-momentum: pq D yp (we are neglecting the transverse
components of pq which are of orderm). The incoming parton with pq D yp absorbs
the photon and the final parton has 4-momentum p0

q. Since in the Breit frame the
photon carries no energy, but only a longitudinal momentum Q, the photon can
only be absorbed by those partons with y D x. Then the longitudinal component
of pq D yp is �yQ=2x D �Q=2, and can be flipped into CQ=2 by the photon.
As a result, the photon longitudinal momentum CQ disappears, the parton quark
momentum changes sign from �Q=2 to CQ=2 and the energy is not changed. So
the structure functions are proportional to the density of partons with fraction x of
the nucleon momentum, weighted by the squared charge.

Furthermore, recall that the helicity of a massless quark is conserved in a vector
(or axial vector) interaction (see Sect. 1.5). So when the momentum is reversed, the
spin must also flip. Since the process is collinear there is no orbital contribution, and
only a photon with helicity ˙1 (transverse photon) can be absorbed. Alternatively,
if partons were spin zero, only longitudinal photons would then contribute.

Using these results, which are maintained in QCD at leading order, the quantum
numbers of the quarks were confirmed by early experiments. The observation that
R D �L=�T ! 0 implies that the charged partons have spin 1/2. The quark charges
were derived from the data on the electron and neutrino structure functions:

Fep D 4

9
u.x/C 1

9
d.x/C � � � ; Fen D 4

9
d.x/C 1

9
u.x/C � � � ;

F�p D FN�n D 2d.x/C � � � ; F�n D FN�p D 2u.x/C � � � ;
(2.86)
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where F � 2F1 � F2=x and u.x/, d.x/ are the parton number densities in the proton
(with fraction x of the proton longitudinal momentum), which, in the scaling limit,
do not depend on Q2. The normalization of the structure functions and the parton
densities are such that the charge relations hold:

Z 1

0

�
u.x/ � Nu.x/�dx D 2 ;

Z 1

0

�
d.x/ � Nd.x/�dx D 1 ;

Z 1

0

�
s.x/ � Ns.x/�dx D 0 :

(2.87)

Furthermore, it was proven by experiment that, at values of Q2 of a few GeV2, in
the scaling region, about half of the nucleon momentum, given by the momentum
sum rule

Z 1

0

h X

i

�
qi.x/C Nqi.x/

� C g.x/
i
xdx D 1 ; (2.88)

is carried by neutral partons (gluons).
In QCD there are calculable log scaling violations induced by ˛s.t/. The parton

rules in (2.86) can be summarized in the schematic formula

F.x; t/ D
Z 1

x
dy

q0.y/

y
�point



x=y; ˛s.t/

� C O.1=Q2/ : (2.89)

Before QCD corrections �point D e2ı.x=y � 1/ and F D e2q0.x/ (here e denotes
the charge of the quark in units of the positron charge, i.e., e D 2=3 for the u
quark). QCD modifies �point at order ˛s via the diagrams of Fig. 2.15. From a direct
computation of the diagrams, one obtains a result of the following form:

�point


z; ˛s.t/

� ' e2
h
ı.z � 1/C ˛s

2


�
tP.z/C f .z/

�i
: (2.90)

Note that the y integral in (2.89) is from x to 1, because the energy can only
be lost by radiation before interacting with the photon (which eventually wants
to find a fraction x, as we have explained). For y > x the correction arises from
diagrams with real gluon emission. Only the sum of the two real-gluon diagrams in
Fig. 2.15 is gauge invariant, so the contribution of one given diagram will be gauge
dependent. But in an axial gauge, which for this reason is sometimes also called the

Fig. 2.15 First order QCD corrections to the virtual photon–quark cross-section. (a) Tree level,
(b) vertex correction, (c) final-state radiation of one leg, (d) final-state radiation off the other leg



2.8 Deep Inelastic Scattering 65

“physical gauge”, the diagram of Fig. 2.15c, among real diagrams, gives the whole
t-proportional term at 0 < x < 1. It is obviously not essential to go to this gauge, but
this diagram has a direct physical interpretation: a quark in the proton has a fraction
y > x of the parent 4-momentum; it then radiates a gluon and loses energy down to
a fraction x, before interacting with the photon. The log arises from the virtual quark
propagator, according to the discussion of collinear mass singularities in (2.27). In
fact, in the massless limit, one has (k and h are the 4-momenta of the initial quark
and the emitted gluon, respectively):

propagator D 1

r2
D 1

.k � h/2
D �1
2EkEh

1

1 � cos �

D �1
4EkEh

1

sin2 �=2
/ �1

p2T
; (2.91)

where pT is the transverse momentum of the virtual quark. So the square of the
propagator goes like 1=p4T. But there is a p

2
T factor in the numerator, because in the

collinear limit, when � D 0 and the initial and final quarks and the emitted gluon
are all aligned, the quark helicity cannot flip (vector interaction), so that the gluon
should carry zero helicity, while a real gluon can only have ˙1 helicity. Thus the
numerator vanishes as p2T in the forward direction and the cross-section behaves as

� �
Z Q2 1

p2T
dp2T � logQ2 : (2.92)

Actually, the log should be read as logQ2=m2, because in the massless limit a
genuine mass singularity appears. In fact, the mass singularity connected with
the initial quark line is not cancelled, because we do not have the sum of all
degenerate initial states [265], but only a single quark. But in correspondence
with the initial quark, we have the (bare) quark density q0.y/ which appears in the
convolution integral. This is a non-perturbative quantity determined by the nucleon
wave function. So we can factorize the mass singularity in a redefinition of the quark
density: we replace q0.y/ ! q.y; t/ D q0.y/C�q.y; t/ with

�q.x; t/ D ˛s

2

t
Z 1

x
dy

q0.y/

y
P.x=y/ : (2.93)

Here the factor of t is a bit symbolic: it stands for logQ2=m2, but what exactly we
put under Q2 depends on the definition of the renormalized quark density, which
also fixes the exact form of the finite term f .z/ in (2.90).

The effective parton density q.y; t/ that we have defined is now scale dependent.
In terms of this scale dependent density, we have the following relations, where we
have also replaced the fixed coupling with the running coupling according to the
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prescription derived from the RGE:

F.x; t/ D
Z 1

x
dy

q.y; t/

y
e2

�
ı

�
x

y
� 1

�
C ˛s.t/

2

f

�
x

y

��
D e2q.x; t/C O



˛s.t/

�
;

d

dt
q.x; t/ D ˛s.t/

2


Z 1

x
dy

q.y; t/

y
P

�
x

y

�
C O



˛s.t/

2
�
: (2.94)

We see that at lowest order we reproduce the naive parton model formulae for the
structure functions in terms of effective parton densities that are scale dependent.
The evolution equations for the parton densities are written down in terms of kernels
(the “splitting functions” [40]), which can be expanded in powers of the running
coupling. At leading order, we can interpret the evolution equation by saying that the
variation of the quark density at x is given by the convolution of the quark density at
y and the probability of emitting a gluon with fraction x=y of the quark momentum.

It is interesting that the integro-differential QCD evolution equation for densities
can be transformed into an infinite set of ordinary differential equations for Mellin
moments [234]. The Mellin moment fn of a density f .x/ is defined by

fn D
Z 1

0

dx xn�1f .x/ : (2.95)

By taking moments of both sides of the second equation in (2.94), and changing the
order of integration, one finds the simpler equation for the n th moment:

d

dt
qn.t/ D ˛s.t/

2

Pnqn.t/ : (2.96)

To solve this equation we observe that it is equivalent to

log
qn.t/

qn.0/
D Pn

2


Z t

0

˛s.t/dt D Pn

2


Z ˛s.t/

˛s

d˛0

�b˛0 : (2.97)

To see the equivalence just take the t derivative of both sides. Here we used (2.46)
to change the integration variable from dt to d˛.t/ (denoted d˛0) and

ˇ.˛/ ' �b˛2 C � � � :

Finally, the solution is

qn.t/ D
�
˛s

˛s.t/

�Pn=2
b

qn.0/ : (2.98)
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The connection between these results and the RGE general formalism occurs via
the light cone OPE [recall (2.81) for W�
 and (2.77) for the OPE of two currents].
In the case of DIS, the c-number term I.x2/ does not contribute, because we are
interested in the connected part of the matrix element h pj : : : jpi � h0j : : : j0i. The
relevant terms are

J�.x/J.0/ D E.x2/
1X

nD0
cn.x

2/x�1 : : : x�nOn
�1:::�n

.0/C less singular terms : (2.99)

A formally intricate but conceptually simple argument based on the analyticity
properties of the forward virtual Compton amplitude shows that theMellin moments
Mn of structure functions are related to the individual terms in the OPE, in fact,
precisely to the Fourier transform cn.Q2/, which we will write as cn.t; ˛/, of
the coefficient cn.x2/ times a reduced matrix element hn from the operators On:
h pjOn

�1:::�n
.0/jpi D hnp�1 : : : p�n :

cnh pjOnjpi �! Mn D
Z 1

0

dx xn�1F.x/ : (2.100)

Since the matrix element of the products of currents satisfy the RGE, so do the
moments Mn. Hence, the general form of the Q2 dependence is given by the RGE
solution [see (2.47)]:

Mn.t; ˛/ D cnŒ0; ˛.t/� exp
Z ˛.t/

˛

�n.˛
0/

ˇ.˛0/
d˛0hn.˛/ : (2.101)

At lowest order, in the simplest case, identifyingMn with qn, we have

�n.˛/ D Pn

2

˛ C � � � ; ˇ.˛/ D �b˛2 C � � � ; (2.102)

and

qn.t/ D qn.0/ exp
Z ˛.t/

˛

�n.˛
0/

ˇ.˛0/
d˛0 D

�
˛s

˛s.t/

�Pn=2
b

qn.0/ ; (2.103)

which exactly coincides with (2.98).
Up to this point we have implicitly restricted our attention to non-singlet (under

the flavour group) structure functions. The Q2 evolution equations become non-
diagonal as soon as we take into account the presence of gluons in the target. In
fact, the quark which is seen by the photon can be generated by a gluon in the target
(Fig. 2.16). The quark evolution equation becomes:

d

dt
qi.x; t/ D ˛s.t/

2

Œqi ˝ Pqq�C ˛s.t/

2

Œg ˝ Pqg� ; (2.104)
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Fig. 2.16 Lowest order
diagram for the interaction of
the virtual photon with a
parton gluon

q

q

g

γ ∗

N

where we have introduced the shorthand notation

Œq ˝ P� D ŒP ˝ q� D
Z 1

x
dy

q.y; t/

y
P.x=y/ : (2.105)

It is easy to check that the convolution defined in this way is commutative, like an
ordinary product. At leading order, the interpretation of (2.104) is simply that the
variation of the quark density is due to the convolution of the quark density at a
higher energy times the probability of finding a quark in a quark (with the right
energy fraction) plus the gluon density at a higher energy times the probability of
finding a quark (of the given flavour i) in a gluon. The evolution equation for the
gluon density, needed to close the system,2 can be obtained by suitably extending the
same line of reasoning to a gedanken probe sensitive to colour charges, for example,

2The evolution equations are now often called the DGLAP equations (after Dokshitzer, Gribov,
Lipatov, Altarelli, and Parisi). The first article by Gribov and Lipatov was published in 1972 [233]
(even before the works by Gross and Wilczek and by Politzer!), and was followed in 1974 by a
paper by Lipatov [283] (these dates correspond to the publication in Russian). All these articles
refer to an Abelian vector theory (treated in parallel with a pseudoscalar theory). Seen from the
point of view of the evolution equations, these papers, in the context of the Abelian theory, ask
the right question and extract the relevant logarithmic terms from the dominant class of diagrams.
But from their formal presentation, the relation to real physics is somewhat hidden (in this respect
the 1974 paper by Lipatov makes some progress and explicitly refers to the parton model). The
article by Dokshitser [171] was exactly contemporary to that by Altarelli and Parisi [40]. It now
refers to the non-Abelian theory (with running coupling), and the discussion is more complete and
explicit than in the Gribov–Lipatov articles. But, for example, the connection to the parton model,
the notion of the evolution as a branching process, and the independence of the kernels from the
process are not emphasized.
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a virtual gluon. The resulting equation is of the form

d

dt
g.x; t/ D ˛s.t/

2


"
X

i

.qi C Nqi/˝ Pgq

#

C ˛s.t/

2

Œg ˝ Pgg� : (2.106)

The explicit form of the splitting functions in lowest order [40, 171, 233] can
be directly derived from the QCD vertices [40]. They are a property of the theory
and do not depend on the particular process the parton density is taking part in. The
results are as follows:

Pqq D 4

3

�
1C x2

.1 � x/C
C 3

2
ı.1� x/

�
C O.˛s/;

Pgq D 4

3

1C .1 � x/2

x
C O.˛s/;

Pqg D 1

2

�
x2 C .1 � x/2

� C O.˛s/;

Pgg D 6

�
x

.1� x/C
C 1 � x

x
C x.1 � x/

�
C 33 � 2nf

6
ı.1� x/C O.˛s/:

(2.107)

For a generic non-singular weight function f .x/, the “+” distribution is defined as

Z 1

0

f .x/

.1 � x/C
dx D

Z 1

0

f .x/� f .1/

1 � x
dx : (2.108)

The ı.1 � x/ terms arise from the virtual corrections to the lowest order tree
diagrams. Their coefficient can be simply obtained by imposing the validity of
charge and momentum sum rules. In fact, from the request that the charge sum
rules in (2.87) are not affected by the Q2 dependence, one derives

Z 1

0

Pqq.x/dx D 0 ; (2.109)

which can be used to fix the coefficient of the ı.1 � x/ terms of Pqq. Similarly, by
taking the t derivative of the momentum sum rule in (2.88) and requiring it to vanish
for generic qi and g, one obtains

Z 1

0

�
Pqq.x/C Pgq.x/

�
xdx D 0 ;

Z 1

0

�
2nfPqg.x/C Pgg.x/

�
xdx D 0 : (2.110)
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At higher orders, the evolution equations are easily generalized, but the calculation
of the splitting functions rapidly becomes very complicated. For many years the
splitting functions were only completely known at NLO accuracy [198], that is,
˛sP � ˛sP1 C ˛2sP2 C � � � . But in recent years, the NNLO results P3 were first
derived in analytic form for the first few moments, and then the full NNLO analytic
calculation, a really monumentalwork, was completed in 2004 byMoch et al. [292].

Beyond leading order, a precise definition of parton densities should be specified.
One can take a physical definition: for example, quark densities can be defined so
as to keep the LO expression for the structure function F2 valid at all orders, the
so-called DIS definition [42], and the gluon density can be defined starting from
FL, the longitudinal structure function. Alternatively, one can adopt a more abstract
specification, for example, in terms of the MS prescription. Once the definition of
parton densities is fixed, the coefficients that relate the different structure functions
to the parton densities at each fixed order can be computed. Similarly, the higher
order splitting functions also depend, to some extent, on the definition of parton
densities, and a consistent set of coefficients and splitting functions must be used at
each order.

The scaling violations are clearly observed by experiment (Fig. 2.17), and their
pattern is well reproduced by QCD fits at NLO (Figs. 2.18 and 2.19) [349].
These fits provide an impressive confirmation of a quantitative QCD prediction,
a measurement of qi.x;Q20/ and g.x;Q20/, at some reference value Q20 of Q

2, and a
precise measurement of ˛s.Q2/.

2.8.1 The Longitudinal Structure Function

After SLAC established the dominance of the transverse cross-section it took
about 40 years to get meaningful data on the longitudinal structure function FL

[see (2.85)]! These data are an experimental highlight of recent years. They were
obtained by H1 at HERA [237]. The data are shown in Fig. 2.20. For spin 1/2
charged partons, FL vanishes asymptotically. In QCD FL starts at order ˛s.Q2/. At
LO the simple 30-year-old formula is valid (for Nf D 4) [39]:

FL.x;Q
2/ D ˛s.Q2/

2

x2

Z 1

x

dy

y3

�
8

3
F2.y;Q

2/C 40

9
yg.y;Q2/

�
1 � x

y

��
:

(2.111)

The O.˛2s / [372] and O.˛3s / [293] corrections are now also known. One would not
have expected it to take such a long time to have a meaningful test of this simple
prediction! And in fact better data would be highly desirable. But how and when
they will be obtained is at present not clear at all.
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Fig. 2.17 A representative selection of data on the proton electromagnetic structure function Fp
2 ,

from collider (HERA) and fixed target experiments [307], clearly showing the pattern of scaling
violations. Figure reproduced with permission. Copyright (c) 2012 by American Physical Society

2.8.2 Large and Small x Resummations for Structure
Functions

At values of x either near 0 or near 1 (with Q2 large), those terms of higher order in
˛s, in both the coefficients or the splitting functions, which are multiplied by powers
of log 1=x or log .1 � x/ eventually become important and should be taken into
account. Fortunately, the sequences of leading and subleading logs can be evaluated
at all orders by special techniques, and resummed to all orders.

For x � 1 resummation [329], I refer to the recent papers [202, 211] (the latter
also involving higher twist corrections, which are important at large x), where a
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Fig. 2.18 NLO QCD fit to the combined HERA data with Q2 � 3:5GeV2: �2=dof D 574=582

[349]

list of references to previous work can be found. More important is the small x
resummation because, the singlet structure functions are large in this domain of x
(while all structure functions vanish near x D 1). Here we briefly summarize the
small-x case for the singlet structure function, which is the dominant channel at
HERA, dominated by the sharp rise of the gluon and sea parton densities at small x.

The small x data collected by HERA can be fitted reasonably well, even at the
smallest measured values of x, by the NLO QCD evolution equations, so that there
is no dramatic evidence in the data for departures. This is surprising also in view of
the fact that the NNLO effects in the evolution have recently become available and
are quite large [292]. Resummation effects have been shown to resolve this apparent
paradox. For the singlet splitting function, the coefficients of all LO and NLO
corrections of order Œ˛s.Q2/ log 1=x�n and ˛s.Q2/Œ˛s.Q2/ log 1=x�n, respectively, are
explicitly known from the Balitski, Fadin, Kuraev, Lipatov (BFKL) analysis of
virtual gluon–virtual gluon scattering [191, 284]. But the simple addition of these
higher order terms to the perturbative result (with subtraction of all double counting)
does not lead to a converging expansion (the NLO logs completely override the LO
logs in the relevant domain of x and Q2).
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Fig. 2.19 More detailed view of the NLO QCD fit to a selection of the HERA data [349]
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A sensible expansion is only obtained by a proper treatment of momentum
conservation constraints, also using the underlying symmetry of the BFKL kernel
under exchange of the two external gluons, and especially, of the running coupling
effects (see the analysis in [49, 141] and references therein). In Fig. 2.21, we
present the results for the dominant singlet splitting function xPgg.x; ˛s.Q2// for
˛s.Q2/ � 0:2. We see that, while the NNLO perturbative splitting function deviates
sharply from the NLO approximation at small x, the resummed result only shows a
moderate dip with respect to the NLO perturbative splitting function in the region
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Fig. 2.21 Dominant singlet splitting function xPgg.x; ˛s.Q2// for ˛s.Q2/ � 0:2. The resummed
results from [49] (labeled ABF) and from [141] (CCSS), which are in good mutual agreement,
are compared with the LO, NLO, and NNLO perturbative results (adapted from [49] and [141])

of HERA data, and the full effect of the true small x asymptotics is only felt at much
smaller values of x. The related effects are not very important for most processes at
the LHC, but could become relevant for the next generation of hadron colliders.

2.8.3 Polarized Deep Inelastic Scattering

Polarized DIS is a subject where our knowledge is still far from satisfactory, in spite
of a great experimental effort (for recent reviews, see, for example, [24]). One major
question is how the proton helicity is distributed among quarks, gluons, and orbital
angular momentum:

1

2
�˙ C�g C Lz D 1

2
: (2.112)

Experiments with polarized leptons on polarized nucleons are sensitive to the
polarized parton densities �q D qC � q�, the difference of quark densities with
helicity plus and minus, in a proton with helicity plus. These differences are related
to the quark matrix elements of the axial current. The polarized densities satisfy
evolution equations analogous to (2.104) and (2.106), but with modified splitting
functions that were derived in [40] (the corresponding anomalous dimensions were
obtained in [22]).

Measurements have shown that the quark moment�˙ is small. This is the “spin
crisis” started by [65]: values from recent fits [104, 159, 244, 277, 303, 326] lie in
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the range�˙ � 0:2–0.3. In any case, it is a less pronounced crisis than it used to be
in the past. From the spin sum rule, one finds that either �g C Lz is relatively large
or there are contributions to �˙ at very small x, outside of the measured region.
Denoting the first moment of the net helicity carried by the sum q C Nq by �q, we
have the relations [104, 159]

a3 D �u ��d D .F C D/.1C �2/ D 1:269˙ 0:003 ; (2.113)

a8 D �u C�d � 2�s D .3F � D/.1C �3/ D 0:586˙ 0:031 ; (2.114)

where the F and D couplings are defined in the SU.3/ flavour symmetry limit, and
�2 and �3 describe the SU.2/ and SU.3/ breakings, respectively. From the measured
first moment of the structure function g1, one obtains the value of a0 D �˙ :

�1 D
Z

dx g1.x/ D 1

12

�
a3 C 1

3
.a8 C 4a0/

�
; (2.115)

with the result, at Q2 � 4GeV2,

a0 D �˙ D �u C�d C�s D a8 C 3�s � 0:25 : (2.116)

In turn, in the SU.3/ limit �2 D �3 D 0, one then obtains

�u � 0:82 ; �d � �0:45 ; �s � �0:11 : (2.117)

This is an important result! Given F, D, and �1, we know �u, �d, �s, and �˙
in the SU.3/ limit, which should be reasonably accurate. The x distribution of g1 is
known down to x � 10�4 on proton and deuterium, and the first moment of g1 does
not seem to get much from the unmeasured range at small x (also, theoretically, g1
should be smooth at small x [190]).

The value of �s � �0:11 from totally inclusive data and SU.3/ appears to be at
variance with the value extracted from single-particle inclusive DIS (SIDIS), where
one obtains a nearly vanishing result for �s in a fit to all data [159, 326] that leads
to puzzling results. There is, in fact, an apparent tension between the first moments
as determined by using the approximate SU.3/ symmetry and from fitting the data
on SIDIS (x � 0:001) (in particular for the strange density). But the adequacy of
the SIDIS data is questionable (in particular the kaon data which fix �s) and so is
their theoretical treatment (for example, the application of parton results at too low
an energy and the ambiguities in the kaon fragmentation function).
�˙ is conserved in perturbation theory at LO (i.e., it does not evolve with

Q2). Regarding conserved quantities, we would expect them to be the same for
constituent and for parton quarks. But actually, the conservation of �˙ is broken
by the axial anomaly and, in fact, in perturbation theory beyond LO, the conserved
density is actually �˙ 0 D �˙ C �g.nf=2
˛s/ [41]. Note also that ˛s�g is
conserved in LO, that is�g � logQ2. This behaviour is not controversial, but it will
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be a long time before the log growth of �g is confirmed by experiment! However,
by establishing this behaviour, one would show that the extraction of �g from the
data is correct and that the QCD evolution works as expected.

If �g were large enough, it could account for the difference between partons
(�˙) and constituents (�˙ 0). From the spin sum rule it is clear that the log
increase should cancel between �g and Lz. This cancelation is automatic, as a
consequence of helicity conservation in the basic QCD vertices.�g can bemeasured
indirectly by scaling violations and directly from asymmetries, e.g., in SIDIS.
Existing measurements by HERMES, COMPASS, and at RHIC are still crude, but
show no hint of a large �g at accessible values of x and Q2. Present data, affected
by large errors (see, in particular, [303] for a discussion of this point) are consistent
[104, 159, 244, 277, 303, 326] with a sizable contribution of�g to the spin sum rule
in (2.112), but there is no indication that ˛s�g effects can explain the difference
between constituents and parton quarks.

2.9 Hadron Collider Processes and Factorization

There are three classes of hard processes: those with no hadronic particles in the
initial state, like eCe� annihilation, those initiated by a lepton and a hadron, like
DIS, and those with two incoming hadrons. The parton densities, defined and
measured in DIS, are instrumental to compute hard processes initiated by collisions
of two hadrons, like pNp (Tevatron) or pp (LHC). Suppose we have a hadronic process
of the form h1Ch2 ! XCall, where hi are hadrons and X is some triggering particle,
or pair of particles, or one or more jets which specify the large scale Q2 relevant for
the process, in general somewhat, but not much, smaller than s, the total centre-
of-mass squared mass. For example, X can be a W˙, or a Z, or a virtual photon
with large Q2 (Drell–Yan processes), or a jet with large transverse momentum
pT, or a quark–antiquark pair with heavy components (of mass M). By “all” we
mean a totally inclusive collection of hadronic particles. The factorization theorem
(FT) states that, for the total cross-section or some other sufficiently inclusive
distribution, we can write, apart from power-suppressed corrections, the expression
(see also Fig. 2.22)

�.s; �/ D
X

AB

Z
dx1dx2p1A.x1;Q

2/p2B.x2;Q
2/�AB.x1x2s; �/ : (2.118)

Here � D Q2=s is a scaling variable, piA are the densities for a parton of type A
inside the hadron hi, and �AB is the partonic cross-section for

parton A + parton B ! X C all0 :
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Fig. 2.22 Diagram for the
factorization theorem
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Here all0 is the partonic version of “all”, i.e., a totally inclusive collection of quarks,
antiquarks, and gluons. This result is based on the fact that the mass singularities
associated with the initial legs are of universal nature, so that one can reproduce
the same modified parton densities by absorbing these singularities into the bare
parton densities, as in DIS. Once the parton densities and ˛s are known from other
measurements, the prediction of the rate for a given hard process is obtained without
much ambiguity (e.g., from scale dependence or hadronization effects).

At least an NLO calculation of the reduced partonic cross-section �AB is needed
in order to correctly specify the scale, and in general also the definition of the parton
densities and of the running coupling in the leading term. The residual scale and
scheme dependence is often the most important source of theoretical error. It is
important to ask to what extent the FT has been proven? In perturbation theory up to
NNLO, it has been explicitly checked to hold formany processes: if corrections exist
we already know that they must be small (we stress that we are only considering
totally inclusive processes). At all orders, the most in-depth discussions have been
carried out in [146], in particular for Drell–Yan processes. The LHC experiments
offer a wonderful opportunity for testing the FT by comparing precise theoretical
predictions with accurate data on a wide variety of processes (for a recent review,
see, for example, [119]).

A great effort has been and is being devoted to the theoretical preparation and
interpretation of the LHC experiments. For this purpose very, difficult calculations
are needed at NLO and beyond because the strong coupling, even at the large
Q2 values involved, is not that small. Further powerful techniques for amplitude
calculations have been devised.

An interesting development at the interface between string theory and QCD
is twistor calculus. A precursor was the Parke–Taylor result in 1986 [305] on
the amplitudes for n incoming gluons with given ˙ helicities [91]. Inspired by
dual models, they derived a compact formula for the maximum non-vanishing
helicity-violating amplitude (with n � 2 plus and 2 minus helicities) in terms of
spinor products. In 2003, using the relation between strings and gauge theories in
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twistor space, Witten developed [368] a formalism in terms of effective vertices
and propagators that allows one to compute all helicity amplitudes. The method,
alternative to other modern techniques for the evaluation of Feynman diagrams
[163], leads to very compact results.

Since then, there has been rapid progress (for reviews, see [128]). The method
was extended to include massless external fermions [217] and also external EW
vector bosons [96] and Higgs particles [167]. The level attained is already important
for multijet events at the LHC. The study of loop diagrams came next. The basic idea
is that loops can be fully reconstructed from their unitarity cuts. First proposed by
Bern et al. [95], the technique was revived by Britto et al. [114] and then perfected
by Ossola et al. [304] and further extended to massive particles in [186]. For a
recent review of these new methods see [188].

In parallel with this, activity on event simulation has received a big boost
from preparations at the LHC (see, for example, the review [130]). Powerful
techniques have been developed to generate numerical results at NLO for processes
with complicated final states: matrix element calculation has been matched with
modeling of parton showers in packages like Black Hat [92] (on-shell methods
for loops), used in association with Sherpa [227] (for real emission), or POWHEG
BOX [299] or aMC@NLO [203], the automated version of the general framework
MC@NLO [206]. In a complete simulation, the matrix element calculation,
improved by resummation of large logs, provides the hard skeleton (with large pT
branchings), while the parton shower is constructed by a sequence of factorized
collinear emissions fixed by the QCD splitting functions. In addition, at low scales,
a model of hadronization completes the simulation. The importance of all the
components, matrix element, parton shower, and hadronization, can be appreciated
in simulations of hard events compared with Tevatron and LHC data. One can
say that the computation of NLO corrections in perturbative QCD has now been
completely automated.

A partial list of examples of recent NLO calculations in pp collisions, obtained
with these techniques is: W + 3 jets [187], Z, �� + 3 jets [93], W, Z + 4 jets [94],
W + 5 jets [97], tNtbNb [113], tNt + 2 jets [100], tNt W [129], WW + 2 jets [289],
WWbNb [161], bNbbNb [232], etc. In the following we shall detail a number of the
most important and simplest examples, without any pretension to completeness.

2.9.1 Vector Boson Production

Drell–Yan processes which include lepton pair production via virtual � , W, or Z
exchange, offer a particularly good opportunity to test QCD. This process, among
those quadratic in parton densities with a totally inclusive final state, is perhaps
the simplest one from a theoretical point of view. The large scale is specified and
measured by the invariant mass squared Q2 of the lepton pair, which is not itself
strongly interacting (so there are no dangerous hadronization effects). The improved
QCD parton model leads directly to a prediction for the total rate as a function of
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s and � D Q2=s. The value of the LO cross-section is inversely proportional to the
number of colours NC, because a quark of given colour can only annihilate with an
antiquark of the same colour to produce a colourless lepton pair. The order ˛s.Q2/
NLO corrections to the total rate were computed long ago [42, 273] and found to be
particularly large, when the quark densities are defined from the structure function
F2 measured in DIS at q2 D �Q2. The ratio �corr=�LO of the corrected and the
Born cross-sections was called the K-factor [28], because it is almost a constant in
rapidity. More recently, the NNLO full calculation of the K-factor was completed in
a truly remarkable calculation [240].

Over the years the QCD predictions for W and Z production, a better testing
ground than the older fixed-target Drell–Yan experiments, have been compared with
experiments at CERN SpNpS and Tevatron energies and now at the LHC. Q � mW;Z

is large enough to make the prediction reliable (with a not too large K-factor)
and the ratio

p
� D Q=

p
s is not too small. Recall that, in lowest order, one has

x1x2s D Q2, so that the parton densities are probed at x values around
p
� . We

have
p
� D 0:13–0.15 (for W and Z production, respectively) at

p
s D 630GeV

(CERN SpNpS collider) and
p
� D 0:04–0.05 at the Tevatron. At the LHC at 8 TeV

or at 14 TeV, one has
p
� � 10�2 or � 6 � 10�3, respectively (for both W and

Z production). A comparison of the experimental total rates for W and Z with the
QCD predictions at hadron colliders [327] is shown in Fig. 2.23. It is also important
to mention that the cross-sections for di-boson production (i.e., WW, WZ, ZZ, W� ,
Z� ) have been measured at the Tevatron and the LHC and are in fair agreement with
the SM prediction (see, for example, the summary in [285] and references therein).
The typical precision is comparable to or better than the size of NLO corrections.

The calculation of the W=Z pT distribution is a classic challenge in QCD. For
large pT, for example pT � O.mW/, the pT distribution can be reliably computed in
perturbation theory, and this was done up to NLO in the late 1970s and early 1980s
[183]. A problem arises in the intermediate range �QCD � pT � mW , where the
bulk of the data is concentrated, because terms of order ˛s. p2T/ logm

2
W=p

2
T become

Fig. 2.23 Data vs. theory for W and Z production at hadron colliders [327] (included with
permission)
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of order 1 and should be included to all orders [330]. At order ˛s, we have

1

�0

d�0
dp2T

D .1C A/ı. p2T/C B

p2T
log

m2W
. p2T/C

C C

. p2T/C
C D. p2T/ ; (2.119)

where A, B, C, D are coefficients of order ˛s. The “+” distribution is defined in
complete analogy with (2.108):

Z p2TMAX

0

g.z/f .z/Cdz D
Z p2TMAX

0

�
g.z/� g.0/

�
f .z/dz : (2.120)

The content of this, at first sight mysterious, definition is that the singular “+” terms
do not contribute to the total cross-section. In fact, for the cross-section, the weight
function is g.z/ D 1 and we obtain

� D �0

"

.1C A/C
Z p2TMAX

0

D.z/dz

#

: (2.121)

The singular terms, of infrared origin, are present at the not completely inclusive
level, but disappear in the total cross-section. Solid arguments have been given [330]
to suggest that these singularities exponentiate. Explicit calculations in low order
support the exponentiation, and this leads to the following expression:

1

�0

d�0
dp2T

D
Z

d2b

4

exp .�ib � pT/.1C A/ exp S.b/ ; (2.122)

with

S.b/ D
Z pTMAX

0

d2kT
2


�
exp.ikT � b/ � 1�

�
B

k2T
log

m2W
k2T

C C

k2T

�
: (2.123)

At large pT the perturbative expansion is recovered. At intermediate pT the infrared
pT singularities are resummed (the Sudakov log terms, which are typical of vector
gluons, are related to the fact that for a charged particle in acceleration, it is
impossible not to radiate, so that the amplitude for no soft gluon emission is
exponentially suppressed). A delicate procedure for matching perturbative and
resummed terms is needed [43]. However, this formula has problems at small pT,
for example, because of the presence of ˛s under the integral for S.b/. Presumably,
the relevant scale is of order k2T. So it must be completed by some non-perturbative
ansatz or an extrapolation into the soft region [330].

All the formalism has been extended to NLO accuracy [64], where one starts
from the perturbative expansion at order ˛2s , and generalises the resummation to
include also NLO terms of order ˛s. p2T/

2 logm2W=p
2
T. The comparison with the data

is very impressive. Figure 2.24 shows the pT distribution as predicted in QCD (with
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Fig. 2.24 QCD predictions
for theW pT distribution
compared with recent D0 data
at the Tevatron
(
p
s D 1:8TeV) (adapted

from [64, 347])
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a number of variants that differ mainly in the approach to the soft region) compared
with some recent data at the Tevatron [347]. TheW and Z pT distributions have also
been measured at the LHC and are in fair agreement with the theoretical expectation
[343].

The rapidity distributions of the produced W and Z have also been measured
with fair accuracy at the Tevatron and at the LHC, and predicted at NLO [55].
A representative example of great significance is provided by the combined LHC
results for theW charge asymmetry, defined as A � .WC �W�/=.WC CW�/, as a
function of the pseudo-rapidity � [340]. These data combine the ATLAS and CMS
results at smaller values of � with those of the LHCb experiments at larger � (in the
forward direction). This is very important input for the disentangling of the different
quark parton densities.

2.9.2 Jets at Large Transverse Momentum

Another simple and important process at hadron colliders is the inclusive production
of jets at high energy

p
s and transverse momentum pT. A comparison of the data

with the QCD NLO predictions [147, 180] in pp or pNp collisions is shown in
Fig. 2.25 [369]. This is a particularly significant test because the rates at different
centre-of-mass energies and, for each energy, at different values of pT, span many
orders of magnitude. This steep behaviour is determined by the sharp drop in the
parton densities with increasing x. Moreover, the corresponding values of

p
s and
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Fig. 2.25 Jet production cross-section at pp or pNp colliders, as a function of pT [369]. Theoretical
predictions are from NLO perturbative calculations with state-of-the-art parton densities with the
corresponding value of ˛s plus a non-perturbative correction factor due to hadronization and the
underlying event, obtained using Monte Carlo event generators (included with permission)

pT are large enough to be well inside the perturbative region. The overall agreement
of the data from ISR, UA1,2, STAR (at RHIC), CDF/D0, and now ATLAS/CMS,
is indeed spectacular. In fact, the uncertainties in the resulting experiment/theory
ratio, due to systematics and to ambiguities in the parton densities, the value of ˛s,
the scale choice, and so on, which can reach a factor of 2–3, are much smaller than
the spread of the cross-section values over many orders of magnitude.

Similar results also hold for the production of photons at large pT. The ATLAS
data [342], shown in Fig. 2.26, are in fair agreement with the theoretical predictions.
For the same process, a less clear situation was found with fixed target data. Here,
first of all, the experimental results show some internal discrepancies. Moreover, the
accessible values of pT being smaller, the theoretical uncertainties are greater.

2.9.3 Heavy Quark Production

We now discuss heavy quark production at colliders. The totally inclusive cross-
sections have been known at NLO for a long time [300]. The resummation of
leading and next-to-leading logarithmically enhanced effects in the vicinity of
the threshold region have also been studied [108]. The bottom production at
the Tevatron has represented a problem for some time: the total rate and the
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Fig. 2.26 Single-photon production in pNp colliders as a function of pT [342] (included with
permission)

pT distribution of b quarks observed at CDF and D0 appeared in excess of the
prediction, up to the highest measured values of pT [83, 124]. But this is a
complicated problem,with different scales present at the same time:

p
s, pT,mb. The

discrepancy was finally explained by more carefully taking into account a number
of small effects from resummation of large logarithms, the difference between b
hadrons and b partons, the inclusion of better fragmentation functions, etc. [125].
At present the LHC data on b production are in satisfactory agreement with the
theoretical predictions (Fig. 2.27 [67]).

The top quark is really special: its mass is of the order of the Higgs VEV or its
Yukawa coupling is of order 1, and in this sense, it is the only “normal” case among
all quarks and charged leptons. Due to its heavy mass, it decays so fast that it has no
time to be bound in a hadron: thus it can be studied as a quark. It is very important to
determine its mass and couplings for different precision predictions of the SM. The
top quark may be particularly sensitive to new heavy states or have a connection to
the Higgs sector when we go beyond the SM theories.

Top quark physics has thus attracted much attention, both from the experimental
side, at hadron colliders, and from the theoretical point of view. In particular,
the top–antitop inclusive cross-section has been measured in pNp collisions at the
Tevatron [15], and now in pp collisions at the LHC [339, 346]. The QCD prediction
is at present completely known at NNLO [150]. Soft gluon resummation has also
been performed at NNLL [127]. The agreement between theory and experiment is
good for the best available parton density functions together with the values of ˛s



84 2 QCD: The Theory of Strong Interactions

Fig. 2.27 The b production pT distribution at the LHC [67]

Fig. 2.28 The tNt production cross-section at the LHC collider. Scale dependence of the total cross-
section at LO (blue), NLO (red), and NNLO (black) as a function of mtop (left) or

p
s (right) at the

LHC 8TeV [150] (included with permission)

and mt measured separately (the top mass is measured from the invariant mass of
the decay products), as can be seen from Fig. 2.28 [150].

The mass of the top (and the value of ˛s) can be determined from the cross-
section, assuming that QCD is correct, and compared with the more precise value
from the final decay state. The value of the top pole mass derived in [27] from the
cross-section data, using the best available parton densities with the correlated value
of ˛s, ism

pole
t D 173:3˙2:8GeV. This is to be compared with the value measured at

the Tevatron by the CDF and D0 collaborations, viz., mexp
t D 173:2˙ 0:9GeV. This

quoted error is clearly too optimistic, especially if one identifies this value with
the pole mass which it resembles. This error is only adequate within the specific
procedure used by the experimental collaborations to define their mass (including
Montecarlo, with assumptions about higher order terms, non-perturbative effects,
etc.). The problem is how to export this value to other processes. Leaving aside the
thorny issue of the precise relation between mexp

t with mpole
t , it is clear that there is

good overall consistency.
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The inclusive forward–backward asymmetry, AFB, in the tNt rest frame has been
measured by both the CDF [6] and D0 [9] collaborations, and found to be in excess
of the SM prediction, by about 2� [247]. For CDF the discrepancy increases at
large tNt invariant mass, and reaches about 2:5� for MtNt � 450GeV. Recently, CDF
has obtained [7] the first measurement of the top quark pair production differential
cross-section as a function of cos � , with � the production angle of the top quark.
The coefficient of the cos � term in the differential cross-section, viz., a1 D 0:40˙
0:12, is found to be in excess of the NLO SM prediction, viz., 0:15C0:07

�0:03 , while
all other terms are in good agreement with the NLO SM prediction, and AFB is
dominated by this excess linear term. Is this a real discrepancy? The evidence is far
from compelling, but this effect has received much attention from theorists [321].
A related observable at the LHC is the charge asymmetry AC in tNt production. In
contrast to AFB, the combined value of AC reported by ATLAS [1] and CMS [144]
agrees with the SM, within the still limited accuracy of the data.

2.9.4 Higgs Boson Production

We now turn to the discussion of the SM Higgs inclusive production cross-section
(for a review and a list of references, see [165]). The most important Higgs
production modes are gluon fusion, vector boson fusion, Higgs strahlung, and
associated production with top quark pairs. Some typical Feynman diagrams for
these different modes are depicted in Fig. 2.29. The predicted rates are shown in
Fig. 2.30 [168].

The most important channel at the LHC is Higgs production via gCg ! H. The
amplitude is dominated by the top quark loop [216]. The NLO corrections turn out
to be particularly large [156], as can be seen in Fig. 2.31. Higher order corrections
can be computed either in the effective Lagrangian approach, where the heavy top
is integrated away and the loop is shrunk down to a point [182] (the coefficient
of the effective vertex is known to ˛4s accuracy [139]), or in the full theory. At the
NLO, the two approaches agree very well for the rate as a function ofmH [270]. The
NNLO corrections have been computed in the effective vertex approximation [133]
(see Fig. 2.31). Beyond fixed order, resummation of large logs has been carried out
[134]. Further, the NLO EW contributions have been computed [20]. Rapidity (at
NNLO) [56] and pT distributions (at NLO) [158] have also been evaluated. At
smaller pT, the large logarithms [Log. pT=mH/�

n have been resummed in analogy
with what was done long ago for W and Z production [110]. For additional recent
works on Higgs physics at colliders, see, for example, [184].

So far we have seen examples of resummation of large logs. This is a very
important chapter of modern QCD. The resummation of soft gluon logs enter into
different problems, and the related theory is subtle. The reader is referred here to
some recent papers where additional references can be found [77]. A particularly
interesting related development has to do with the so-called non-global logs (see,
for example, [153]). If in the measurement of an observable some experimental cuts



86 2 QCD: The Theory of Strong Interactions

q

t, b

g

g

q

q

qq

q

b

dc

a

H

H

H
H

V

V

t

Z

Z

t
_

q
_

q
_

Fig. 2.29 Representative Feynman diagrams for the Higgs production cross-section mechanisms.
(a) Gluon fusion. (b) Vector boson fusion (V D W; Z). (c) Higgs strahlung from a Z boson (an
analogous diagram can be drawn for theW boson). (d) tNt associated production

Fig. 2.30 Production cross-sections at the LHC for a Higgs with mass MH � 125GeV for
different centre-of-mass energies [168]
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Fig. 2.31 Higgs gluon fusion cross-section in LO, NLO, and NLLO [57]. Figure reproduced with
permission. Copyright (c) 2005 by American Physical Society

are introduced, which is very often the case, then a number of large logs can arise
from the corresponding breaking of inclusiveness. It is also important to mention the
development of software for the automated implementation of resummation (see, for
example, [78]).

2.10 Measurements of ˛s

Very precise and reliable measurements of ˛s.mZ/ are obtained from eCe� colliders
(in particular LEP), from deep inelastic scattering, and from the hadron colliders
(Tevatron and LHC). The “official” compilation due to Bethke [99, 311], included
in the 2012 edition of the PDG [307], is reproduced here in Fig. 2.32. The agreement
among so many different ways of measuring ˛s is a strong quantitative test of
QCD. However, for some entries the stated error is taken directly from the original
works and is not transparent enough when viewed from the outside (e.g., the lattice
determination). In my opinion one should select a few of the theoretically cleanest
processes for measuring ˛s and consider all other ways as tests of the theory. Note
that, in QED, ˛ is measured from a single very precise and theoretically clean
observable (one possible calibration process is at present the electron g � 2 [242]).
The cleanest processes for measuring ˛s are the totally inclusive ones (no hadronic
corrections) with light cone dominance, like Z decay, scaling violations in DIS, and
perhaps £ decay (but for £ the energy scale is dangerously low). We will review
these cleanest methods for measuring ˛s in the following.
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Fig. 2.32 Left: Summary of measurements of ˛s.mZ/. The yellow band is the proposed average:
˛s.mZ/ D 0:1184˙0:0007. Right: Summary of measurements of ˛s as a function of the respective
energy scale Q. Figures from [99]

2.10.1 ˛s from eCe� Colliders

The totally inclusive processes for measuring ˛s at eCe� colliders are hadronic Z
decays (Rl, �h, �l, �Z) and hadronic £ decays. As we have seen in Sect. 2.7.1, for a
quantity like Rl we can write a general expression of the form

Rl D � .Z; £ ! hadrons/

� .Z; £ ! leptons/
� REW.1C ıQCD C ıNP/ ; (2.124)

where REW is the electroweak-corrected Born approximation, and ıQCD, ıNP are
the perturbative (logarithmic) and non-perturbative (power suppressed) QCD cor-
rections. For a measurement of ˛s (in the following we always refer to the MS
definition of ˛s) at the Z resonance peak, one can use all the information from Rl,
�Z D 3�l C �h C �inv, and �F D 12
�l�F=.m2Z�

2
Z /, where F stands for h or l.

In the past, the measurement from Rl was preferred (taken by itself it leads to
˛s.mZ/ D 0:1226˙ 0:0038, a bit on the large side), but after LEP there is no reason
for this preference. In all these quantities ˛s enters through�h, but the measurements
of, say,�Z , Rl, and �l are really independent, as they are affected by entirely different
systematics: �Z is extracted from the line shape, and Rl and �l are measured at the
peak, but Rl does not depend on the absolute luminosity, while �l does. The most
sensitive single quantity is �l. It gives ˛s.mZ/ D 0:1183 ˙ 0:0030. The combined
value from the measurements at the Z (assuming the validity of the SM and the
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observed Higgs mass) is [268]

˛s.mZ/ D 0:1187˙ 0:0027 : (2.125)

Similarly, by adding all other electroweak precision tests (in particular mW), one
finds [350]

˛s.mZ/ D 0:1186˙ 0:0026 : (2.126)

These results have been obtained from the ıQCD expansion up to and including the
c3 term of order ˛3s . But by now the c4 term (NNNLO!) has also been computed
[74] for inclusive hadronic Z and £ decay. For nf D 5 and as D ˛s.mZ/=
 , this
remarkable calculation of about 20,000 diagrams for the inclusive hadronic Z width
leads to the result

ıQCD D 1C as C 0:76264a2s � 15:49a3s � 68:2a4s C � � � : (2.127)

This result can be used to improve the value of ˛s.mZ/ from the EW fit given
in (2.126), which becomes

˛s.mZ/ D 0:1190˙ 0:0026 : (2.128)

Note that the error shown is dominated by the experimental errors. Ambiguities
from higher perturbative orders [328], from power corrections, and also from
uncertainties on the Bhabha luminometer (which affect �h;l) [157] are very small. In
particular, the fact of having now fixed mH does not decrease the error significantly
[73] (Grunewald, M., for the LEP EW Group, private communication). The main
source of error is the assumption of no new physics, for example, in the ZbNb vertex,
which may affect the �h prediction.

We now consider the measurement of ˛s.mZ/ from £ decay. R£ has a number of
advantages which, at least in part, tend to compensate for the smallness of m£ D
1:777GeV. First, R£ is maximally inclusive, more so than ReCe�.s/, because one
also integrates over all values of the invariant hadronic squared mass:

R£ D 1




Z m2£

0

ds

m2£

�
1 � s

m2£

�2
Im˘£.s/ : (2.129)

As we have seen, the perturbative contribution is now known at NNNLO [74].
Analyticity can be used to transform the integral into one on the circle at jsj D m2£ :

R£ D 1

2
i

I

jsjDm2£

ds

m2£

�
1 � s

m2£

�2
˘£.s/ : (2.130)
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Furthermore, the factor .1 � s=m2£/
2 is important to kill the sensitivity in the region

ReŒs� D m2£ where the physical cut and the associated thresholds are located.
However, the sensitivity to hadronic effects in the vicinity of the cut is still a non-
negligible source of theoretical error which the formulation of duality violation
models tries to decrease. But the main feature that has attracted attention to £ decays
for the measurement of ˛s.mZ/ is that even a rough determination of �QCD at a low
scale Q � m£ leads to a very precise prediction of ˛s at the scale mZ , just because
in logQ=�QCD the value of �QCD counts less and less as Q increases. The absolute
error in ˛s shrinks by a factor of about one order of magnitude in going from ˛s.m£/
to ˛s.mZ/.

Still it seems a little suspicious that, in order to obtain a better measurement
of ˛s.mZ/, we have to go down to lower and lower energy scales. And in fact, in
general, one finds that the decreased control of higher order perturbative and non-
perturbative corrections makes the apparent advantage totally illusory. For ˛s from
R£, the quoted amazing precision is obtained by taking for granted that corrections
suppressed by 1=m2£ are negligible. The argument is that, in the massless theory, the
light cone expansion is given by

ıNP D ZERO

m2£
C c4

hO4i
m4£

C c6
hO6i
m6£

C � � � : (2.131)

In fact there are no 2D Lorentz and gauge invariant operators. For example, TrŒg�g��
[recall (1.12)] is not gauge invariant. In the massive theory, ZERO here is replaced
by the light quark mass-squared m2. This is still negligible if m is taken as a
Lagrangian mass of a few MeV. If on the other hand the mass were taken to be the
constituent mass of order�QCD, this term would not be negligible at all, and would
substantially affect the result [note that ˛s.m£/=
 � 0:1 � .0:6GeV=m£/2 and
that �QCD for three flavours is large]. The principle that coefficients in the operator
expansion can be computed from the perturbative theory in terms of parton masses
has never really been tested (due to ambiguities in the determination of condensates)
and this particular case with a ZERO there is unique in making the issue crucial.
Many distinguished theorists believe the optimistic version. I am not convinced that
the gap is not filled up by ambiguities in O.�2

QCD=m
2
£/ from ıpert [45].

There is a vast and sophisticated literature on ˛s from £ decay. Unbelievably
small errors are obtained in one or the other of several different procedures and
assumptions that have been adopted to end up with a specified result.With time there
has been an increasing awareness of the problem of controlling higher orders and
non-perturbative effects. In particular, fixed order perturbation theory (FOPT) has
been compared with resummation of leading beta function effects in the so-called
contour-improved perturbation theory (CIPT). The results are sizeably different in
the two cases, and there have been many arguments in the literature about which
method is best.

One important piece of progress comes from the experimental measurement
of moments of the £ decay mass distributions, defined by modifying the weight
function in the integral in (2.129). In principle, one can measure ˛s from the
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sum rules obtained from different weight functions that emphasize different mass
intervals and different operator dimensions in the light cone operator expansion. A
thorough study of the dependence of the measured value of ˛s on the choice of the
weight function, and in general of higher order and non-perturbative corrections,
has appeared in [89], and the interested reader is advised to look at that paper and
the references therein.

We consider here the recent evaluations of ˛s from £ decay based on the NNNLO
perturbative calculations [74] and different procedures for estimating the different
kinds of corrections. From the papers given in [90], we obtain an average value and
error that agrees with the Erler and Langacker’s values as given in PDG12 [307]:

˛s.m£/ D 0:3285˙ 0:018 ; (2.132)

or

˛s.mZ/ D 0:1194˙ 0:0021 : (2.133)

In any case, one can discuss the error, but what is true and remarkable is that the
central value of ˛s from � decay, obtained at very small Q2, is in good agreement
with all other precise determinations of ˛s at more typical LEP values of Q2.

2.10.2 ˛s from Deep Inelastic Scattering

In principle, DIS is expected to be an ideal laboratory for the determination of ˛s,
but in practice the outcome is still to some extent unsatisfactory. QCD predicts the
Q2 dependence of F.x;Q2/ at each fixed x, not the x shape. But theQ2 dependence is
related to the x shape by the QCD evolution equations. For each x bin, the data can be
used to extract the slope of an approximately straight line in d logF.x;Q2/=d logQ2,
i.e., the log slope. TheQ2 span and the precision of the data are not very sensitive to
the curvature, for most x values. A single value of�QCD must be fitted to reproduce
the collection of the log slopes. For the determination of ˛s, the scaling violations of
non-singlet structure functions would be ideal, because of the minimal impact of the
choice of input parton densities. We can write the non-singlet evolution equations
in the form

d

dt
logF.x; t/ D ˛s.t/

2


Z 1

x

dy

y

F.y; t/

F.x; t/
Pqq

�
x

y
; ˛s.t/

�
; (2.134)

where Pqq is the splitting function. At present, NLO and NNLO corrections are
known. It is clear from this form that, for example, the normalization error on the
input density drops out, and the dependence on the input is reduced to a minimum
(indeed, only a single density appears here, while in general there are quark and
gluon densities).
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Unfortunately, the data on non-singlet structure functions are not very accurate.
If we take the difference Fp � Fp in the data on protons and neutrons, experimental
errors add up and become large in the end. The F3�N data are directly non-singlet,
but are not very precise. Another possibility is to neglect sea and glue in F2 at
sufficiently large x. But by only taking data at x > x0, one decreases the sample
and introduces a dependence on x0 and an error from residual singlet terms. A
recent fit to non singlet structure functions in electron or muon production extracted
from proton and deuterium data, neglecting sea and gluons at x > 0:3 (error to be
evaluated), has led to the results [105]:

˛s.mZ/ D 0:1148˙ 0:0019.exp/C‹ .NLO/ ; (2.135)

˛s.mZ/ D 0:1134˙ 0:0020.exp/C‹ .NNLO/ : (2.136)

The central values are rather low and there is not much difference between NLO
and NNLO. The question marks refer to the uncertainties from the residual singlet
component at x > 0:3, and also to the fact that the old BCDMS data, whose
systematics has been questioned, are very important at x > 0:3 and push the fit
towards small values of ˛s.

When one measures ˛s from scaling violations in F2, measured with e or �
beams, the data are abundant, the statistical errors are small, the ambiguities from
the treatment of heavy quarks and the effects of the longitudinal structure function
FL can be controlled, but there is an increased dependence on input parton densities,
and most importantly a strong correlation between the result on ˛s and the adopted
parametrization of the gluon density. In the following we restrict our attention to
recent determinations of ˛s from scaling violations at NNLO accuracy, such as those
in [26, 254] which report the results:

˛s.mZ/ D 0:1134˙ 0:0011.exp/C‹ ; (2.137)

˛s.mZ/ D 0:1158˙ 0:0035 : (2.138)

In the first line the question mark refers to the issue of the ˛s–gluon correlation.
In fact, ˛s tends to slide towards low values (˛s � 0:113–0.116) if the gluon input
problem is not fixed. Indeed, in the second line, taken from [254], the large error
also includes an estimate of the ambiguity from the gluon density parametrization.
One way to restrict the gluon density is to use the Tevatron and LHC high pT jet
data to fix the gluon parton density at large x. Via the momentum conservation sum
rule, this also constrains the small x values of the same density. Of course, in this
way one has to go outside the pure domain of DIS. Further, the jet rates have been
computed at NLO only. In a simultaneous fit of ˛s and the parton densities from a
set of data which, although dominated by DIS data, also contains Tevatron jets and
Drell–Yan production, the result was [287]

˛s.mZ/ D 0:1171˙ 0:0014C‹ : (2.139)
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The authors of [287] attribute their higher value of ˛s to a more flexible parametriza-
tion of the gluon and the inclusion of Tevatron jet data, which are important to fix
the gluon at large x.

An alternative way to cope with the gluon problem is to drastically suppress the
gluon parametrization rigidity by adopting the neural network approach. With this
method, the following value was obtained, in [76], from DIS data alone, treated at
NNLO accuracy:

˛s.mZ/ D 0:1166˙ 0:0008.exp/˙ 0:0009.th/C‹ ; (2.140)

where the stated theoretical error is that quoted by the authors within their
framework, while the question mark has to do with possible additional systematics
from the method adopted. Interestingly, in the same approach, not much difference
is found by also including the Tevatron jets and the Drell–Yan data:

˛s.mZ/ D 0:1173˙ 0:0007.exp/˙ 0:0009.th/C‹ : (2.141)

We see that, when the gluon input problem is suitably addressed, the fitted value of
˛s is increased.

As we have seen there is some spread of results, even among the most recent
determinations based on NNLO splitting functions. We tend to favour determina-
tions from the whole DIS set of data (i.e., beyond the pure non-singlet case) and
with attention paid to the gluon ambiguity problem (even if some non DIS data
from Tevatron jets at NLO have to be included). A conservative proposal for the
resulting value of ˛s from DIS which emerges from the above discussion would be
something like

˛s.mZ/ D 0:1165˙ 0:0020 : (2.142)

The central value is below those obtained from Z and £ decays, but perfectly
compatible with those results.

2.10.3 Recommended Value of ˛s.mZ/

According to my proposal to calibrate ˛s.mZ/ from the theoretically cleanest and
most transparent methods, identified as the totally inclusive, light cone operator
expansion dominated processes, I collect here my understanding of the results:

• From Z decays and EW precision tests, i.e., (2.126):

˛s.mZ/ D 0:1190˙ 0:0026 : (2.143)

• From scaling violations in DIS, i.e., (2.142):

˛s.mZ/ D 0:1165˙ 0:0020 : (2.144)
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• From R£ (2.133):

˛s.mZ/ D 0:1194˙ 0:0021: (2.145)

If one wants to be on the safe side, one can take the average of Z decay and DIS,
i.e.,

˛s.mZ/ D 0:1174˙ 0:0016 : (2.146)

This is my recommended value. If one adds to the average the rather conservative
R£ value and error given above in (2.145), which takes into account the dangerously
low energy scale of the process, one obtains

˛s.mZ/ D 0:1184˙ 0:0011 : (2.147)

Note that this essentially coincides with the “official” average, with a moderate
increase in the error.

2.10.4 Other ˛s.mZ/ Measurements as QCD Tests

There are a number of other determinations of ˛s that are important because they
arise from qualitatively different observables and methods. Here I will give a few
examples of the most interesting measurements.

A classic set of measurements comes from a number of infrared-safe observables
related to event rates and jet shapes in eCe� annihilation. One important feature
of these measurements is that they can be repeated at different energies in the
same detector, like the JADE detector in the energy range of PETRA (most of the
intermediate energy points in the right-hand panel of Fig. 2.32 are from this class of
measurements) or the LEP detectors from LEP1 to LEP2 energies. As a result, one
obtains a striking direct confirmation of the running of the coupling according to the
renormalization group prediction. The perturbative part is known at NNLO [213],
and resummations of leading logs arising from the vicinity of cuts and/or boundaries
have been performed in many cases using effective field theory methods. The main
problem with these measurements is the possibly large impact of non-perturbative
hadronization effects on the result, and therefore on the theoretical error.

According to [99], a summarizing result that takes into account the central values
and the spread from the JADE measurements at PETRA, in the range 14–46GeV, is

˛s.mZ/ D 0:1172˙ 0:0051 ;

while from the ALEPH data at LEP, in the range 90–206GeV, the reported value
[164] is

˛s.mZ/ D 0:1224˙ 0:0039 :
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It is amazing to note that among the related works there are a couple of papers by
Abbate et al. [10, 11] where an extremely sophisticated formalism is developed
for the thrust distribution, based on NNLO perturbation theory with resummations
at NNNLL plus a data/theory-based estimate of non-perturbative corrections. The
final quoted results are unbelievably precise:

˛s.mZ/ D 0:1135˙ 0:0011 ;

from the tail of the thrust distribution [10], and

˛s.mZ/ D 0:1140˙ 0:0015 ;

from the first moment of the thrust distribution [11]. I think that this is a good
example of an underestimated error which is obtained within a given machinery
without considering the limits of the method itself.

Another allegedly very precise determination of ˛s.mZ/ is obtained from lattice
QCD by several groups [288] with different methods and compatible results. A
value that summarizes these different results is [307]

˛s.mZ/ D 0:1185˙ 0:0007 :

With all due respect to the lattice community, I think this small error is totally
unrealistic. But we have shown that a sufficiently precise measurement of ˛s.mZ/

can be obtained, viz., (2.146) and (2.147), by using only the simplest processes,
where the control of theoretical errors is maximal. One is left free to judge whether
a further restriction of theoretical errors is really on solid ground.

The value of � (for nf D 5) which corresponds to (2.146) is

�5 D 202˙ 18MeV ; (2.148)

while the value from (2.147) is

�5 D 213˙ 13MeV : (2.149)

� is the scale of mass that finally appears in massless QCD. It is the scale where
˛s.�/ is of order 1. Hadron masses are determined by �. Actually, the � mass
or the nucleon mass receive little contribution from the quark masses (the case of
pseudoscalar mesons is special, as they are the pseudo-Goldstone bosons of broken
chiral invariance). Hadron masses would be almost the same in massless QCD.
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2.11 Conclusion

We have seen that perturbative QCD based on asymptotic freedom offers a rich
variety of tests, and we have described some examples in detail. QCD tests are
not as precise as for the electroweak sector. But the number and diversity of such
tests has established a very firm experimental foundation for QCD as a theory of
strong interactions. The physics content of QCD is very large and our knowledge,
especially in the non-perturbative domain, is still very limited, but progress both
from experiment (Tevatron, RHIC, LHC, etc.) and from theory is continuing at a
healthy rate. And all the QCD predictions that we have been able to formulate and
to test appear to be in very good agreement with experiment.

The field of QCD appears to be one of great maturity, but also of robust vitality,
with many rich branches and plenty of new blossoms. I may mention the very
exciting explorations of supersymmetric extensions of QCD and the connections
with string theory (for a recent review and a list of references, see [166]). In
particular, N D 4 SUSY QCD (that is, with four spinor charge generators) has a
vanishing beta function and is loop-finite. In the limit NC ! 1 with � D e2sNC

fixed, planar diagrams are dominant. There is progress towards a solution of planar
N D 4 SUSY QCD. The large � limit corresponds by the AdS/CFT duality (anti-
de Sitter/conformal field theory), a string theory concept, to the weakly coupled
string (gravity) theory on AdS5 � S5 (the 10 dimensions are compactified in a 5-
dimensional anti-de Sitter space times a 5-dimensional sphere). By moving along
this very tentative route, one can transfer some results (assumed to be of sufficiently
universal nature) from the computable weak limit of the associated string theory to
the non-perturbative ordinary QCD domain. Further along this line of investigation,
there are studies of N D 8 supergravity, related to N D 4 SUSY Yang–Mills, which
has been proven finite up to four loops. It could possibly lead to a finite field theory
of gravity in four dimensions.
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