
Chapter 1
Introduction: New Approaches
to Sustainable Offshore Food Production
and the Development of Offshore
Platforms

Poul Holm, Bela H. Buck and Richard Langan

Abstract As we exhaust traditional natural resources upon which we have relied
for decades to support economic growth, alternatives that are compatible with a
resource conservation ethic, are consistent with efforts to limit greenhouse emis-
sions to combat global climate change, and that support principles of integrated
coastal management must be identified. Examples of sectors that are prime can-
didates for reinvention are electrical generation and seafood production. Once a
major force in global economies and a symbol of its culture and character, the
fishing industry has experienced major setbacks in the past half-decade. Once
bountiful fisheries were decimated by overfishing and destructive fisheries practices
that resulted in tremendous biomass of discarded by-catch. Severe restrictions on
landings and effort that have been implemented to allow stocks to recover have had
tremendous impact on the economy of coastal communities. During the period of
decline and stagnation in capture fisheries, global production from aquaculture grew
dramatically, and now accounts for 50% of the world’s edible seafood supply. With
the convergence of environmental and aesthetic concerns, aquaculture, which was
already competing for space with other more established and accepted uses, is
having an increasingly difficult time expanding in nearshore waters. Given the
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constraints on expansion of current methods of production, it is clear that alternative
approaches are needed in order for the marine aquaculture sector to make a
meaningful contribution to global seafood supply. Farming in offshore marine
waters has been identified as one potential option for increasing seafood production
and has been a focus of international attention for more than a decade. Though there
are technical challenges for farming in the frequently hostile open ocean environ-
ment, there is sufficient rationale for pursuing the development of offshore farming.
Favorable features of open ocean waters include ample space for expansion,
tremendous carrying and assimilative capacity, reduced conflict with many user
groups, lower exposure to human sources of pollution, the potential to reduce some
of the negative environmental impacts of coastal fish farming (Ryan 2004; Buck
2004; Helsley and Kim 2005; Ward et al. 2006; Langan 2007), and optimal
environmental conditions for a wide variety of marine species (Ostrowski and
Helsley 2003; Ryan 2004; Howell et al. 2006; Benetti et al. 2006; Langan and
Horton 2003). Those features, coupled with advances in farming technology
(Fredheim and Langan 2009) would seem to present an excellent opportunity for
growth, however, development in offshore waters has been measured. This has been
due in large part to the spill over from the opposition to nearshore marine farming
and the lack of a regulatory framework for permitting, siting and managing industry
development. Without legal access to favorable sites and a “social license” to
operate without undue regulatory hardship, it will be difficult for open ocean
aquaculture to realize its true potential. Some parallels can be drawn between ocean
aquaculture and electricity generation. Continued reliance on traditional methods of
production, which for electricity means fossil fuels, is environmentally and eco-
nomically unsustainable. There is appropriate technology available to both sectors,
and most would agree that securing our energy and seafood futures are in the
collective national interest. The most advanced and proven renewable sector for
ocean power generation is wind turbines, and with substantial offshore wind
resources in the, one would think there would be tremendous potential for devel-
opment of this sector and public support for development. The casual observer
might view the ocean as a vast and barren place, with lots of space to put wind
turbines and fish farms. However, if we start to map out existing human uses such
as shipping lanes, pipelines, cables, LNG terminals, and fishing grounds, and add to
that ecological resource areas that require some degree of protection such as whale
and turtle migration routes, migratory bird flyways, spawning grounds, and sensi-
tive habitats such as corals, the ocean begins to look like a crowed place. Therefore,
when trying to locate new ocean uses, it may be worthwhile to explore possibilities
for co-location of facilities, in this case wind turbines and fish and shellfish farms.
While some might argue that trying to co-locate two activities that are individually
controversial would be a permitting nightmare, general agreement can probably be
reached that there are benefits to be gained by reducing the overall footprint of
human uses in the ocean. Meeting the challenges of multi-use facilities in the open
ocean will require careful analysis and planning; however, the opportunity to
co-locate sustainable seafood and renewable energy production facilities is
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intriguing, the concept is consistent with the goals of Marine Spatial Planning and
ecosystem based management, and therefore worthy of pursuit.

1.1 Aquaculture—A Historical Overview

The transition on land from hunting to agriculture took thousands of years. In the
oceans, the transition from capture fishing to modern aquaculture production hap-
pened in just two human generations. As late as 1965, a major review did not pay
much attention to the potential of aquaculture. Christy and Scott (1965) considered
marine farming only in passing for oysters and other mollusks and predicted that
increasing use of fresh and brackish ponds in low-income countries might be a
means to increase local protein output. By 2009, however, the world’s human
population consumed more cultured fish than was caught in the wild. Indeed,
technological progress has been so rapid that the number of species domesticated
for aquaculture now exceeds the number of species domesticated on land (Duarte
et al. 2007). Monoculture currently dominates production and a few species, carps,
shrimp, prawns, salmon and trout, make up half of total production (Asche et al.
2008). We have long since lost sight of the implications and consequences of
culturing the land—but a similar process is now taking place at sea and we hardly
notice it. As this is a change similar to the agricultural revolution on land which by
archaeologists was identified as the “Neolithic Revolution”, in all of these senses
we are living through a ‘Neolithic’ revolution of the oceans.

The fact that aquaculture, for all practical concerns, is a very recent phenomenon
may explain many of its characteristics. The industry has experienced almost
exponential growth while it has suffered heavily from the spread of diseases in
monoculture farms and has been severely impacted and restructured as a result of
boom-and-bust growth, particularly around 1990. What was to the first generation
of aquaculture entrepreneurs a business of trial-and-error and reliance on the family
and local work force is now a globalized corporate enterprise. Science and public
management largely saw their roles in the early period as ones of support and
encouragement but have now developed agendas of inquiry and management.
Major problems such as feed and access to marine space loom large as future threats
to the industry. All of these characteristics identify aquaculture as an industry in an
early rather than mature phase of growth.

Aquaculture comprises both fresh and brackish water production as well as
marine aquaculture (sometimes called mariculture). There is no clear-cut dividing
line between working in the different environments, partly because some of the
major cultured finfish such as salmon are anadromous, and partly because of
learning and innovation across the sectors. Fresh and brackish water aquaculture are
characterised by relatively small-scale operations while marine aquaculture is now
dominated by larger scale operations. Since the 1980s, marine aquaculture has
contributed between 50 and 60% of global traded production volume with a
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decreasing trend, while traded value is down from 40 to 32% in 2013 relative to
fresh and brackish species (FAO 2016).

The origins of fish farming may be found far back in time. Freshwater aqua-
culture emerged at least 3000 years ago in East Asia and the Middle East. Carp in
particular became a very important local food source for China and developed
significantly in the eighteenth and nineteenth centuries (Li 1997). Similarly, the
origins of inshore saltwater aquaculture go far back in time and seem to have
originated independently in several regions. Roman towns relied on closed inshore
lagoons for the provision of saltwater fish and shellfish at least two millennia ago
(McCann 2003). The Polynesian culture of the Hawaiian Islands had developed
extensive inshore lagoon fish farming centuries before the arrival of Europeans
(Ziegler 2002). Little historical research has been undertaken but it is clear that in
Europe, fishponds throughout the pre-modern period were prestigious undertakings,
which catered to the needs of affluent consumers who added diversity and freshness
to their meals at very high costs (Serjeantson and Woolgar 2006) (Fig. 1.1). The
system often depended on collecting and transferring young fish or shellfish to an
artificial environment. In Asia, fish farming was organically linked to local aquatic
ecosystems such as rice paddies and sewage systems. This extensive fish farming
practice was relatively inexpensive and therefore catered to the needs of farmers as
well as the elite.

The bottleneck to European fish farming was the development of artificial
hatcheries. In Germany, Jacobi (1768) cracked the code to enable external fertil-
ization of brown trout and salmon by extracting and mixing eggs and sperm from
mature trout and successfully cultivated the offspring. News of his discovery spread

Fig. 1.1 Historical image of an aquaculture farming enclosure (CC 2016)
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slowly and reached the United Kingdom in the 1830s and Norway by 1850 when it
led to a short burst of mostly failed experiments (Hovland et al. 2014). This was a
time of great expansion of cities and markets. However, this was also a time when
oceanic fisheries made great strides forward in the development of trawling and
propulsion (Cushing 1988). Steam trawlers soon provided such abundant landings
that interest in aquaculture subsided in Europe except for a minor trout industry.

Only in the 1960s did a new and sustained push for aquaculture begin. It came
about as a result of independent developments in many regions of the world
including Japan, China, the United States, and Europe. The origin of these devel-
opments is so far poorly researched with the notable exception of the important
Norwegian case (Hovland et al. 2014). Our lack of knowledge is compounded by
the fact that the statistical evidence for aquaculture only becomes solid in the 1980s.
Nevertheless, it is safe to say that the first major increase took place in Southeast
Asia. The expansion built on traditional techniques, but was supported by state
policies. The widespread use of explosives and poison in local fisheries had led to a
rapid depletion of marine resources. The governments of the Philippines, Indonesia
and Thailand saw aquaculture as a means to feed a growing population and as a
source of employment for fishermen who were losing their jobs. This local
development prepared fish farmers to seize the opportunity when—as a conse-
quence of overfishing—the market for penaeid shrimp soared in Japanese and
Western markets around 1970. Over the next twenty years, coastal mangrove for-
ests were cut down to give way for fish and shrimp ponds that were used for
extensive practices relying on the natural productivity of the environment. In the
mid to late 1980s a new intensive form of cultivation in Southeast Asia gained
ground. Intensive farming involves controlling the environment by means of
pumps, aerators and generators as well as access to quality feed. Globalisation of
markets enabled the injection of capital into an industry that rapidly became
dominated by a few large business groups. The giant tiger shrimp (Penaeus mon-
odon) was the most profitable commodity and quickly dominated production
(Butcher 2004). With concentration came, however, increased threats from diseases
that caused heavy losses to the industry, which responded by injections of antibi-
otics, salinization of lands and expanding production to new fertile mangrove
forests (Zink 2013; Hall 2003). In short, the environmental consequences of this
early success of the industry were dire while profits were high.

The rise of aquaculture depended on a concomitant dramatic increase in the
availability of feed. In the early 1970s, Peruvian (Glantz 1986) and Danish (Holm
et al. 1998) fish reduction operations provided millions of tonnes of fishmeal and
fish oil as cheap and efficient feed for agriculture as well as aquaculture. As these
pelagic resources proved volatile and vulnerable to overexploitation, the aquacul-
ture industry faced a potentially limiting factor to growth. Despite massive
improvements in feed technology and the introduction of vegetable (but omega
3-deficient) protein, the feed problem remains a major challenge both to future
growth and public perception (Natale et al. 2013).

Science and technological innovation pointed to a way forward. Aquaculture
science developed in the United States in particular, and by 1969 the World
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Mariculture Society was established, renamed in 1986 the World Aquaculture
Society or WAS (Avault and Guthrie 1986). Today the WAS has more than 3000
members in about 100 countries. Although the match of science and industry
seemed straightforward, the differing aims and measures of success of business and
academia have caused friction at times. Perhaps the most staggering example of the
success and problems of the marriage is that of Norwegian salmon farming. Local
fishermen and craftsmen began experimenting with salmon farming in Norwegian
fjords in the late 1960s. When an entrepreneur developed a cheap open net cage in
1970, the industry took off on a staggering growth trajectory. By 1990 the processes
of globalisation and capitalisation had created a Norwegian multi-billion dollar
industry. The ripple effects of foreign emulation and Norwegian investments created
similar large-scale operations in Chile and smaller-size industries in Canada,
Scotland and elsewhere. Almost from the beginning, the Norwegian state and
industry joined forces to ensure that science matched industry needs. The state
provided lucrative land and water licenses for industry and invested heavily in
research. Population genetics in particular perfected the cultured salmon species,
while epidemiological research was crucial in combating diseases. Scientists
became divided, however, in their belief in the sustainability of the industry. The
concern became obvious in 2010 when one director of research predicted a tenfold
increase of production while the Director of the Department of the Environment
advocated a halving of the industry out of concern for wild salmon and the natural
environment (Hovland et al. 2014). Such disagreement, based on differing scientific
measures and methods, indicates the degree to which aquaculture had rapidly
moved from being a productive force to also being a risk.

The rise of aquaculture depended on the willingness of buyers to substitute
cultured products for wild fish. While environmental concerns have been voiced by
some consumer organisations, the overall picture is one of market acceptance
(Natale et al. 2013). The rise in Western per capita demand for fish was associated
with the recognition of fish as a health food, including farmed fish, and has enabled
a doubling of fish consumption in developed countries since 1950. Local com-
munities have also largely embraced aquaculture as a source of income despite
environmental and land issues. A comparative study of the introduction of forestry
and aquaculture industries in South East Asia showed that public perception of
aquaculture entrepreneurs—including big companies—was positive while forestry
companies were resented as intrusions by big capital (Hall 2003). Similarly, the
public perception of aquaculture in Chile was a warm welcome because of job
creation. The demands on land and water access are now being identified in Norway
as a major challenge to the public perception of the industry (Hovland et al. 2014).

While most of the world’s aquaculture is still conducted in semi-intensive
operations there is no doubt that the direction is towards increased control of
production (Asche et al. 2008). Fish farmers have leap-frogged the technological
innovation that took millennia on land and use advanced technologies in a marine
environment—of which, paradoxically, we have not yet developed a scientific
understanding. The expansion of aquaculture has brought about lower fish prices
and introduced jobs and income to developing countries as well as to regions in the
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developed world that might otherwise have been depopulated. The industry is,
however, highly volatile and subject to major threats such as disease and marine
space access. Aquaculture has often been branded as a Blue Revolution akin to the
1970s Green Revolution of agriculture. The comparison is apt in terms of the
contribution by the industry to increased food security as production has vastly
exceeded population growth and offset the stagnation of capture fish landings. It is
also apt in terms of the increased use of medicine, toxins and other technology for
the production of natural resources and in terms of species manipulation such as by
turning a species like salmon into a semi-vegetarian. Aquaculture may be seen as a
true harbinger of the human condition in the Anthropocene—an epoch in which
humans have become the main geo-biological agent.

Despite the tremendous growth in aquaculture over the past five decades, sea-
food demand is projected to outpace supply by 40 million metric tons by 2030
(FAO 2006). With capture fisheries stagnant, and space constraints on continued
expansion of nearshore aquaculture, it is clear that alternative means of production
are needed. There are two potential means by which marine aquaculture production
can expand either land-based recirculating aquaculture systems or development of
the technological capacity for farming in exposed oceanic locations. A Canadian
study indicated that land based systems are not yet profitable for full grow out of
larger fish while they are highly efficient and provide better environmental controls
for the production of juvenile fish (Boulet et al. 2010). Recent investments in
land-based systems in Europe indicate the potential of cutting transportation costs
by locating the industry close to market when energy and water resources are
available. Land-based systems may also help alleviate the problem of coastal land
access by restricting the use of marine ponds for mature fish. Thus, technological
advances in land-based systems have the potential to change the parameters of
aquaculture in the future.

1.2 Moving Aquaculture Operations Offshore

Farming in offshore marine waters is the other potential option for increasing
seafood production and has been a focus of international attention for more than
two decades. Though there are technical challenges for farming in the frequently
hostile open ocean environment, there is sufficient rationale for pursuing the
development of offshore farming. Favorable features of open ocean waters include
ample space for expansion, tremendous carrying and assimilative capacity, reduced
conflict with many user groups, lower exposure to human sources of pollution, the
potential to reduce some of the negative environmental impacts of coastal fish
farming, and optimal environmental conditions for a wide variety of marine species,
to name a few (Buck 2002, 2004; Ryan 2004; Langan 2007; Langan and Horton
2003; Ostrowski and Helsley 2003; Buck et al. 2004; Helsley and Kim 2005;
Benetti et al. 2006; Howell et al. 2006; Ward et al. 2006). A recent study conducted
in New Zealand indicated an additional benefit that open ocean locations may be
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subjected to less biofouling (Atalah et al. 2016), a costly maintenance operation for
coastal aquaculture. Those features, coupled with advances in farming technology
(Fredheim and Langan 2009) would seem to present an excellent opportunity for
growth, however, development in offshore waters has been limited. The reasons for
this vary depending on location, but include risk aversion, lack of access to capital,
clear identification of ownership, and unresolved technological issues (Langan
2012). In some countries, like the USA and some EU member states, lack of a
regulatory structure for permitting offshore farms has been an impediment (e.g.
Cicin-Sain et al. 2001; Buck et al. 2003), as well as opposition form environmental
NGOs (Langan 2012).

Similar to the recent developments in aquaculture, the energy sector has
undergone significant changes. Over the course of the last decade, the establishment
of offshore wind farms as a sustainable and economically viable form of energy
production has generated interest in the potential for optimizing use of offshore sites
to include other activities. Thus, consideration of multiple uses of offshore
renewable energy systems in the design phase so that the economic benefits from a
unit area of sea can be maximized in a sustainable way has been a central research
topic since the year 2000 (Buck 2001).

1.3 The Multi-use Concept

One particular area of interest is combining energy and aquaculture-based seafood
production within the same ocean footprint (Buck and Krause 2012, 2013). Interest
in marine aquaculture in exposed oceanic locations has been explored as a stan-
dalone activity, however, commercial development has been thus far very limited.
The stability of offshore energy production structures (e.g. wind turbine and oil
drilling platforms) is an attractive feature for a suite of requirements for aquaculture
production, including attachment points for mooring cages and longlines, and for
mounting feeding, hatchery and nursery systems. Though desirable attributes for
energy and seafood production may not exist at all offshore sites, there is likely a
subset of locations that are suitable, acceptable and economically viable. Thus, the
slogan “Maximizing the benefit of a piece of land” (Buck 2009a) is a potential
solution to foster offshore multi-use concepts of renewable energy systems, but also
from any other offshore installation type, such as other renewable energy installa-
tions (e.g. tidal energy) or oil and gas (Kaiser et al. 2011).

1.3.1 Pilot Projects in Russia

The first synergy of offshore platforms with aquaculture was initiated in the Caspian
Sea (27 km off the Turkmenian shore) in 1987 (Fig. 1.2a–d), where a fish farm was
moored next to an oil rig (Bugrov 2016). Unfortunately, high operating costs led to
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a shutdown of this enterprise at a very early stage (Bugrov 1992, 1996). Over the
past 25 years more than 1000 oil and gas structures were installed in the same area
and more than 300 in the Black Sea. The amount of time to decommission these
platforms takes on average of one year and international experience in disassem-
bling those platforms showed that the average cost of disassembly works is several
million Euros (Bugrov 1991). Resigning the dismantling of the platforms and
therefore saving costs could support a cross-subsidasation of aquaculture. This
would have had an influence on the commercial potential of these multi-use con-
cept, however, that was not taken into account at that time.

1.3.2 Pilot Projects in the USA

In the Gulf of Mexico the cumulative costs of a total removal of oil rigs had reached
an estimated $1 billion by the year 2000 (Dauterive 2000). In this respect the search
for a way of conversion of such structures became more important and initiated the
search for alternatives. Operators have recognized that during a rig’s productive
years, significant marine life aggregates on and around its structures. This is also

Fig. 1.2 Submersible cage complex “Sadco-Kitezh” (consisting of 6 individual cage modules)
disposed next to an offshore oil-rig in the Caspian Sea in 1988, floating (a) and submerged (b);
c displays a concept for a series of submerged cages and d shows a collection of submergible
devices for fish and bivalves and floating seaweed a test site following an IMTA-concept (Bugrov
2016 following Buck et al. 2004)
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caused by the fact that marine areas occupied by offshore platforms are off limits for
commercial fishing vessels due to safety reasons (Berkenhagen et al. 2010). This
results in an increase in biomass of fish or other species and/or a greater number of
species in this area aggregating at the artificial reefs. These areas then can be
considered as more or less a marine protected area (MPA). Marine scientists have
therefore suggested preserving much of this marine life and encouraging further
natural productivity (Jensen et al. 2000). While the operator benefits by avoiding
the substantial cost of removal, populations of marine species benefit from the
refuge the structures provide. These findings encouraged recreational fisherman,
divers, offshore oil and gas operators, aquaculturists and others who could benefit
from the increased density to establish the “Rigs-to-Reefs” program in American
and European Seas (Reggio 1987), where decommissioned offshore oil and gas rigs
were turned into artificial reefs. Since then many scientists have reported that these
artificial reefs increase the number and diversity of marine organisms adjacent to
these sites (e.g. Bohnsack et al. 1994; Zalmon et al. 2002) including many com-
mercially important fish, shellfish and crustacean species (Bohnsack et al. 1991;
Jensen et al. 2000).

To this point, some efforts have been carried out to successfully install offshore
aquaculture constructions as pilot systems even in the open Pacific but none have so
far reached a continuous commercial operation. In particular, projects carried out in
the USA were of prime importance for the successful installation of various offshore
systems (e.g. Loverich 1997, 1998; Loverich and Gace 1997; Braginton-Smith and
Messier 1998; Loverich and Forster 2000). These efforts led to the idea to include
various disused oil platforms in the Gulf of Mexico in a multi-use concept (Miget
1994; Wilson and Stanley 1998) (Fig. 1.3a–b).

The National Sea Grant College Program funded such research projects to
explore offshore sites for stand-alone mariculture purposes. The Open Ocean
Aquaculture Program at the University of New Hampshire is one of the few
attempts made so far (Ward et al. 2001) as well as the Hawaiian Offshore
Aquaculture Research Project (HOARP) (Ostrowski and Helsley 2003). Due to the

Fig. 1.3 a Ocean Spar Cage deployed next to an offshore oil rig in federal waters 22 miles off
Mississippi in the Gulf of Mexico (Bridger 2004); b typical 4–5 m winter seas moving through the
cage and platform site
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technological capacity of the US and their extended marine areas, the movement of
aquaculture activities into offshore areas gained momentum for a period of time
(Dalton 2004) and has encouraged other western countries to follow.

Several studies have estimated that tons to tens of tons of wild fish congregate in
the immediate area around fish farms in both warm and cold-temperate environ-
ments (Dempster et al. 2004, 2009; Leonard et al. 2011). For some species, artificial
reefs can increase the availability of critical habitat (Polovina and Sakai 1989) for
feeding, spawning, and juvenile refugia (Jensen et al. 2000) in addition to reducing
the detrimental impacts on existing habitats by mobile gear exclusion (Claudet and
Pelletier 2004). Additionally, these constructions can be helpful in developing cost
effective fishing practices by reducing displacement cost for the inshore fleets and
reducing competition for territory between fishermen. The question whether arti-
ficial reefs close to aquaculture sites would decrease the impact of cultured fish
waste on the surrounding ecosystem has been suggested as a topic of research
(Buschmann et al. 2008).

1.3.3 Pilot Projects in Germany

In Germany, the plans for the massive expansion of wind farms in offshore areas of
the North Sea triggered the idea of a combination of wind turbines with other uses.
Various multi-use concepts were followed led by tourism, marine protected areas
(MPAs), passive fishery actions as well as desalination and research, just to name a
few (see Fig. 1.4). Another concept is to co-use wind farm installations with
extensive aquaculture of native bivalves and macroalgae (e.g. Buck 2002, 2004;
Buck and Buchholz 2004; Buck et al. 2008, 2012; Lacroix and Pioch 2011). Due
to the fact that offshore wind farms provide an appropriately sized area free of
commercial shipping traffic (as most offshore wind farms are designed as
restricted-access areas due to hazard mitigation concerns), projects on open ocean
aquaculture have been carried out since 2000 in the German Bight (Buck 2001).
Further expansion towards finfish culture has since then been proposed and carried
out in land-based facilities with regard to system design and coupling technologies
for submersible fish cages as well as Integrated Multi-trophic Aquaculture (IMTA)
and site-selection.

The combination of wind energy and aquaculture enterprises was already proven
in China in the early 1990s (Chunrong et al. 1994), however, these wind turbines
were land-based and used to enhance dissolved oxygen in the water column as well
as to increase fishpond temperature. Today, many other research institutes have
adopted this concept and have conducted feasibility studies within their coastal and
EEZ waters, in Denmark, The Netherlands, Belgium, the UK, USA and others
(Figs. 1.4 and 1.5; Wever et al. 2015).
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Fig. 1.4 Assessment of potential uses and achievable multi-use options for users/installations, which
are already at sea, and for those, which are currently in planning phase. A includes traditional fishing
techniques without seabed connection (due to avoid any contact to ground cables/pipes) as well as
sustainable/passive and recreational fishing; B includes MPA’s, nature conservation, compensatory
measures; C including e.g. buffer zones, nutrient cycling, primary production, etc.; D includes e.g.
shellfish or seaweed restoration and rehabilitation; E includes e.g. manganese/copper/cobalt and others;
F includes the monitoring of oceanographic parameters (salinity, pH, temperature, O2, etc.), chemical
parameters (nitrite, nitrate, phosphate, etc.), as well as harmful substances (toxins, heavy metals, etc.);
G includes mapping of flora and fauna, other habitat parameters; H includes the surveillance of the
national/EEZ territory (traffic of drugs or other illegal goods, illegal passage of persons and equipment,
etc.), as well as security on the entire traffic (commercial and recreational); I includes also tsunami watch;
J includes marine/coastal research on moving platforms (vessels, buoys, etc.) and fixed platforms
(research stations); K includes e.g. radar; L includes telephone and network cables as well as wireless
systems;M includes sport fishing, diving, daily visiting tourists with interacting interests, etc.;N includes
e.g. sailing regatta, races, etc.; O includes security training for work at platforms/vessels for the offshore
industry or to teach students; P includes preparation of advertising films, movies;Q includes commercial
as well as recreational shipping; R includes marine practice areas, firing and torpedo areas as well as
submarine areas (Modified after Buck (2013), images by AWI/Prof. Dr. Bela H. Buck)
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1.4 Initiation to the Topic

For this rather risky and expensive development to happen in practical terms, an
understanding of basic needs, such as design requirements, data acquisition, site
specifications, operation and maintenance issues, etc. is required. Offshore struc-
tures will need to be modified or adapted to accommodate other uses without
compromising functionality and safety. Indeed, this move further from shore and
into higher energy open ocean environments has created demand for new vessels
for installation, operation, maintenance and decommissioning. While it is clear that
multi-uses will require multiple types of service vessels, there will be areas of
overlap where economies of scale can be achieved, for example in the transport of
technicians. Technologies for aquaculture in exposed environments are still in the
early stages of development, and combined use at energy production sites will
require some rethinking of engineering design.

Other combinations of offshore uses are possible, thus supporting the trend to
combine expensive infrastructure and collocate it in offshore areas (Buck 2009b). In
this respect a great deal of discussion has begun on moving various kinds of uses to
regions where more space is available, focusing specifically on resources, which
could become scarce in the near future (e.g. production of food). However, one has
to keep in mind that plausibility and profitability are incontrovertible constraints to
any enterprise offshore, especially when combining them into a multi-use concept.
Some concepts to move industrial interests off the coast did not fulfil these

Fig. 1.5 a Graph shows a time scale with the number of events worldwide in which the
combination of aquaculture within offshore wind farms was discussed; b countries involved in
aquaculture wind farm combinations on a time line. Both images modified after Wever et al. 2015
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requirements. For instance, the ChevronTexaco Corp plan to construct a US$ 650
million offshore liquefied natural gas receiving and re-gasification terminal with
accommodation for personnel (to be located 13 km off the coast of Baja California,
Mexico) (ChevronTexaco 2003) could not be realized as originally conceived due
to escalating costs. The Forschungsplattform Nordsee (FPN, Research Platform
“North Sea”), which was constructed for 35 million DM1 in 1974 about 75 km NW
off the Island of Helgoland (Germany) housed 14–25 people, a helicopter landing
site as well as a jetty (Fig. 1.6a–d), and were equipped for a number of different
functions, including marine ecology, oceanography, and climate research by natural
scientists, underwater technology and sensors by engineers as well as defence
technology by the former Federal Office of Defence and Procurement (BWB).
However, even this met, over the course of time, a similar fate. The platform was
dismantled in 1993 due to high maintenance and operational costs (Dolezalek 1992).

Fig. 1.6 a Research platform “Nordsee” (FPN) about 75 km off the German mainland;
b dismantling of the platform 20 years later; c sonar research device from the Federal Office of
Defense and Procurement (BWB) before positioning at the basement of the foundation; d drawing
of the sonar research device. All images modified after IMS 2016

1DM = Former German currency, 1 DM � 0.5 €.
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Hundreds of offshore future visions, such as the concepts for space, land and sea of
Agence Jacques Rougerie Architecte (Rougerie 2012) or the carbon-neutral
self-sufficient offshore farming platform, called Equinox (FDG 2011), exist on
paper, but are yet far away from practical realization. Other uses that could have an
economic potential but have not been realized so far are passive fishing in com-
bination with other uses in the open ocean. Furthermore, there is strong interest in
the production of freshwater off the coast in areas with a significant lack of fresh-
water supply (He et al. 2010). Although there has been plenty of research into the
use of renewable energy to power the desalination process (Carta et al. 2003;
Forstmeier et al. 2007; Heijman et al. 2010) no offshore demonstration has been
carried out so far.

This book pulls the different strands of investigations in this new emerging field
together and provides an overview of the current state-of-the-art of the research
fields involved. Out of an array of different possible offshore renewable energy
systems, offshore wind farms are most advanced in practical terms. Thus, the
expertise focuses strong on these systems and its potential link with offshore
aquaculture. The suitability of aquaculture production together with or at offshore
wind energy sites will be discussed in detail.
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