
Dynamic Seed Genetic Algorithm to Solve Job
Shop Scheduling Problems

Flávio Grassi, Pedro Henrique Triguis Schimit(&),
and Fabio Henrique Pereira

Universidade Nove de Julho, São Paulo, Brazil
{schimit,fabiohp}@uninove.br

Abstract. This paper proposes a simple implementation of genetic algorithm
with dynamic seed to solve deterministic job shop scheduling problems. The
proposed methodology relies on a simple indirect binary representation of the
chromosome and simple genetic operators (one-point crossover and bit-flip
mutation), and it works by changing a seed that generates a solution from time to
time, initially defined by the original sequencing of the problem addressed, and
then adopting the best individual from the past runs of the GA as the seed for the
next runs. The methodology was compared to three different approaches found
in recent researches, and its results demonstrate that despite not finding the best
results, the methodology, while being easy to be implemented, has its value and
can be a starting point to more researches, combining it with other heuristics
methods that rely in GA and other evolutionary algorithms as well.

Keywords: Genetic Algorithms � Job shop � Scheduling � Dynamic seed

1 Introduction

Scheduling is the process of assigning one or more resources to perform certain
activities whose processing will require a certain amount of time [1]. These resources in
an industrial environment may be associated with machines, and the activities that will
be processed in a machine are known as operations or tasks. Thus, a job is a set of one
or more tasks.

The scheduling problems in scenarios of job shop (JSSP) is a NP-hard problem
which has been studied by using exact methods, such as the Branch and Bound [2] and
the Shifting Bottleneck [3]. It consists of scheduling a set of tasks in different machines;
known as jobs, where the precedence of each task must be obeyed. Each job can be
processed in one machine at a time, and the task started in a certain machine must be
completed before this resource starts a new process, i.e., no pre-emption is allowed.
The time need for each task to be proceeded is known in advance for deterministic
problems, and finally, all the jobs are available in the time zero [1]. Usually, researchers
consider the minimization of the makespan as the goal, where makespan refers to the
total time needed to process all operations of all the jobs in the machines.

In recent years, the metaheuristic methods have been widely used in solving this
type of problem. Among these methods, those with greater emphasis for solving JSSP

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
I. Nääs et al. (Eds.): APMS 2016, IFIP AICT 488, pp. 170–177, 2016.
DOI: 10.1007/978-3-319-51133-7_21



are Tabu Search [4], Simulated Annealing [5], Genetic Algorithms [6, 7], and Ant
Colony Optimization [8].

This paper presents a different methodology to solve JSSP using genetic algo-
rithms. A genetic algorithm (GA) is as a class of metaheuristic techniques that is aimed
at finding solutions based on the mechanisms of natural selection and genetics. From an
initial population, each individual is evaluated by a fitness function which depends on
the purpose. Crossover and mutation operators are used for new generation of indi-
viduals in order to ensure a better access to the search space.

The paper is organized as follows. The detailed presentation of the JSSP is provided
in Sect. 2. Section 3 provides the experimental results to solve a set of deterministic
JSSP in comparison with different works that have been currently referenced. Section 4
presents the conclusions and suggests some aspects that could be subject to further
researches.

2 Proposed Methodology

The proposed methodology suggests a simple indirect representation based on a binary
matrix and, therefore, the use of simple genetic operators, such as the one-point
crossover and bit-flip mutation. Despite its simplicity, it proved powerful enough by its
association with the dynamic seed, which is based on the inheritance of the previous
seed that generated the best solution within a certain number of generations and its best
individual, as further explained in the next sections.

In order to evaluate the simulation code developed, 10 different sequences for the
FT06 problem, generated from LISA [9], were presented to the simulation code. LISA
is an open-source software developed by a group of researchers at Otto-von-Guericke
University (under the supervision of Prof. Dr. Frank Werner) for creating, editing and
troubleshooting deterministic scheduling problems, which has a useful graphical
interface.

2.1 Representation Mechanism

The representation adopted in this work is based on a binary matrix of dimension
m� n� 1ð Þ, where m is the number of the machines and n is the number of jobs. Since
this representation does not allow a direct interpretation of a solution for the problem,
Figs. 1 and 2 are used in order to clarify the process of decoding, considering a specific
instance of JSSP known as FT06, available at the OR-Library [10].

First, the matrix of routes (Fig. 1a), which is given by the problem, is converted
into a sequence of jobs per machine, according to the natural order of arrival of jobs,
which is the seed for the solutions (Fig. 1b). To that end, the initial matrix is read by
columns, from left to right, for each machine, in ascending order of jobs. This process
is executed just once within GA, at the first run of the optimization process.

Thus, reading the first column in the matrix of routes, job 1 comes first in the
machine 3, followed by jobs 3, 5, and jobs 2, 4 and 6 from the columns 2, 3 and 6 in the

Dynamic Seed GA to Solve Job Shop Scheduling Problems 171



matrix of routes, respectively; thereby generating the third row of the seed (Fig. 1b).
Then, the process is repeated for all other machines.

The GA generates a binary matrix (Fig. 2b), which is the chromosome. After the
first generation, the genetic operators act over this matrix. A reading of this matrix by
rows is performed, from top to bottom, and where the value 1 is identified, a permu-
tation in the seed is accomplished. The permutation occurs between the element in the
same position where the value 1 in the chromosome was found, and its successor.

Therefore, as the value of first element of the chromosome (in Fig. 2b) is 1, a
permutation between the values 1 and 4 in the seed occurs (Fig. 2a), generating the first

Fig. 1. Generation of the seed (b) based on the routes (a)

Fig. 2. Representation schema of FT06 instance

172 F. Grassi et al.



element of the new array of sequences (Fig. 2c), which is the job 4, and the second
element, that is the job 1. Until this moment, the job 1 is temporarily in the position 2,
since his stay in that position depends upon the value of the second element in the
chromosome.

As the value of the second position in the chromosome is 0, there will be not
swapping between the second and third element of the original sequence. Thus, the first
two elements of the new matrix are really the jobs 4 and 1, respectively. This process is
repeated with all the elements of the first row of the seed, and then all the elements of
the second row of the seed, and so forth. The reason to have just five elements in the
rows of the chromosome is because the swapping occurs between the element in the
current position and its successor, which means a value of 1 in the fifth position already
generates permutation between the fifth and sixth elements of the original seed, and
therefore is not necessary to have a sixth column (considering the problem FT06).

Finally, the new matrix generated through the permutation is turned into a matrix of
priority of the jobs per machine (Fig. 2d), which is the way that the simulation code
interprets the sequences. Analyzing the first three jobs in the first row of the permuted
matrix is clear to see that job 4 should be scheduled first in the machine 1, followed by
jobs 1 and 6, respectively. Therefore, in the matrix of the priorities (which is the
representation of the solution itself), these are the jobs that receive priority values 1, 2,
and 3, respectively. This process is conducted on all elements of the new matrix, called
a solution (Fig. 2d).

2.2 Dynamic Seed Genetic Algorithm

The proposed approach, called Dynamic Seed Genetic Algorithm (DSGA), applies the
classical GA as an inner level in which the candidate solutions are generated through
permutations of the seed based on chromosomes, according to Fig. 2. Additionally, an
external level is created in order to update the seed dynamically. After some genera-
tions of the classic GA in the inner level, a defined number of best solutions are chosen
and a local search is performed in each of them, related to the original route of the
problem addressed, thus generating new seeds. Specifically, the local search permutes
the predecessor and successor of a chosen job that its delay will directly cause a delay
that affects the whole system (i.e. a job that belongs to the so called critical path). Then,
the best current solution and the corresponding permuted seed are used to update the
seed from the previous step and a new set of generations in the inner level takes place.

3 Experiments

To prove the effectiveness of the proposed approach, a set of JSSP instances was taken
from OR-Library, which is used by several researchers to compare their results against
different methods and techniques. The instances set range from LA01 to LA10, due to
Lawrence [11]. This set of problems deals with the classical deterministic job shop
problem, which does not take into account the dynamic and stochastic behavior that
can reflect more appropriately real-world industry situations. However, GA presents

Dynamic Seed GA to Solve Job Shop Scheduling Problems 173



peculiar aspects in relation to other optimization methods and it is simple, flexible,
robust and particularly useful in solving problems where other optimization techniques
facing difficulties. Especially in relation to the fitness function, that may be a mathe-
matical function, an experiment, a simulation model or a metamodel.

So, the proposed approach can be easily integrated with a simulation model in order
to deal with a dynamic job shop scheduling problem that can take into account factors
like, for example, random release and processing times, setup times, random machine
breakdowns, and create more robust scheduling with regard to the stochastic and
dynamically changes in the real manufacturing environment [12].

For each instance the proposed approach was run 10 times, in order to allow
statistical references. The implementation was made through GAlib, which is a library
of GA written in C++ by Matthew Wall, from the Massachusetts Institute of Tech-
nology [13]. Parameters adopted in GA are summarized in Table 1.

3.1 Performance Related to the Quality of the Solution

Unlike to run the total number of iterations once with elitism, which is largely used in
the classic GA, in addition to inherit the best individual, the proposed approach also
copies to the next generations the generator seed that was associated with that better
individual. So, the seed is updated and used to create new candidate solutions in the
following inner level, which contributes to the convergence process.

This approach allows the GA to route new and possibly better paths, as the initial
population after each external loop is based on the best seed from previous generations
in the inner level (i.e., a classic GA). By route better paths we mean to create a larger
number of feasible solutions during the evolution process of the genetic algorithm in
relation to the classical elitism approach, as it can be seen in Table 2.

The results of the proposed approach were also compared to three different
methodologies found in the current researches. The Memetic Algorithm approach

Table 1. Parameters of the GA adopted in the experiments

Parameter Adopted value Reason

Chromosome representation Binary, matrix of
dimension m� n� 1ð Þ

Proposed methodology

Selection Steady state [14]
Replacement rate 90% Experiments
Population size 10 Experiments
Crossover One-point Proposed methodology
Crossover rate 10% Experiments
Mutation Bit-flip Proposed methodology
Mutation rate 1% Experiments
Total number of generations 20,000 (50 internal

plus 400 external)
Experiments

Stop criteria Number of generations [15]
Fitness Function Simulation code Proposed methodology

174 F. Grassi et al.



(MA) is due to [16], while the Differential Algorithm with Sub-Group (DE) is due to
[17] and the Hybrid Genetic Algorithm (HGA) is due to [7].

In order to ease compare the approaches, Table 3 summarize the makespan values
obtained from the proposed methodology and those reported from other recent
methodologies used to compare with. It is important highlight that the approaches DE,
MA and HGA are not based only on the AG and can therefore be even more difficult to
program and use.

Table 2. Feasible solutions of LA01 problem: classic GA vs. DSGA

Classic GA (with elitism) DSGA
Run Feasible

solutions
Non-feasible solutions Run Feasible

solutions
Non-feasible solutions

1 103377 21623 1 115866 9134
2 102310 22690 2 116068 8932
3 101788 23212 3 114116 10884
4 101450 23550 4 115649 9351
5 102594 22406 5 114525 10475
6 103293 21707 6 118684 6316
7 104061 20939 7 118174 6826
8 102746 22254 8 115275 9725
9 101706 23294 9 116231 8769
10 103665 21335 10 116218 8782
Average 82.16% 17.84% Average 92.86% 7.14%

Table 3. Makespan values obtained from the different methodologies (BKS = Best Known
Solution, Avg. = Average)

Methodology

MA DE HGA DSGA
Instance Size (n x m) BKS Best Avg. Best Avg. Best Avg. Best Avg.

LA01 10 × 5 666 666 NA 666 666.0 666 NA 666 672.6
LA02 10 × 5 655 655 NA 655 663.6 655 NA 660 680.8
LA03 10 × 5 597 597 NA 597 610.4 597 NA 616 619.2
LA04 10 × 5 590 590 NA 590 597.3 590 NA 607 619.8
LA05 10 × 5 593 593 NA 593 593.0 593 NA 593 593.0
LA06 15 × 5 926 926 NA 926 926.0 926 NA 926 926.0
LA07 15 × 5 890 890 NA 890 890.0 890 NA 890 890.0
LA08 15 × 5 863 863 NA 863 863.0 863 NA 863 863.0
LA09 15 × 5 951 951 NA 951 951.0 951 NA 951 951.0
LA10 15 × 5 958 958 NA 958 958.0 958 NA 958 958.0

Dynamic Seed GA to Solve Job Shop Scheduling Problems 175



4 Conclusions and Suggestions

This paper presented a different methodology to solve Job Shop scheduling problems
using Genetic Algorithms, which the authors called DSGA. The methodology works by
using a simple indirect binary representation as the chromosome and simple genetic
operators (one-point crossover and bit-flip mutation), and change the seed that gen-
erates a solution from time to time, initially defined by the original sequencing of the
problem addressed, and then adopting the best individual from the past runs of the GA
as the seed for the next runs.

The proposed methodology is easy to implement and, despite not finding the
optimal solution for all instances, the simple proposed approach fails in problems in
which the convergence to the optimal makespan is harder in all the different approa-
ches, even for more sophisticated techniques which is especially true for square
problems that are admittedly more difficult problems. Moreover, the proposed approach
allows the GA to go through new and possibly better paths, which means to create a
larger number of feasible solutions during the evolution process of the genetic algo-
rithm in relation to the classical elitism approach.

As a continuity of this work, it is suggested to implement the proposed method-
ology in stochastic problems, with randomly processing times, obeying a probability
distribution.

Acknowledgements. The authors would like to thank grant #2014/08688-4, São Paulo
Research Foundation (FAPESP), for their funding of this research.

References

1. Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. Springer, New York (2008)
2. Jamili, A.: Robust job shop scheduling problem: mathematical models, exact and heuristic

algorithms. Expert Syst. Appl. 55(15), 341–350 (2016)
3. Braune, R., Zäpfel, G.: Shifting bottleneck scheduling for total weighted tardiness

minimization—a computational evaluation of subproblem and reoptimization heuristics.
Comput. Oper. Res. 66, 130–140 (2016)

4. Bo, P., Zhipeng, L., Cheng, T.C.E.: A tabu search/path relinking algorithm to solve the job
shop scheduling problem. Comput. Oper. Res. 53, 154–164 (2015)

5. Faccio, M., Ries, J., Saggioro, N.: Simulated annealing approach to solve dual resource
constrained job shop scheduling problems: layout impact analysis on solution quality. Int.
J. Math. Oper. Res. 7(6), 609–629 (2015)

6. Kurdi, M.: An effective New Island model genetic algorithm for job shop scheduling
problem. Comput. Oper. Res. 67, 132–142 (2016)

7. Qing-Dao-Er-Ji, R., Wang, Y.: A new hybrid genetic algorithm for job shop scheduling
problem. Comput. Oper. Res. 39(10), 2291–2299 (2012)

8. Huang, R., Yang, C.-L., Cheng, W.-C.: Flexible job shop scheduling with due window—a
two-pheromone ant colony approach. Int. J. Prod. Econ. 141(2), 685–697 (2013)

9. LISA: A Library of Scheduling Algorithms. http://www.math.ovgu.de/Lisa.html
10. Beasley, J.E.: OR-Library (2003). http://people.brunel.ac.uk/*mastjjb/jeb/orlib/files/

jobshop1.txt

176 F. Grassi et al.

http://www.math.ovgu.de/Lisa.html
http://people.brunel.ac.uk/~emastjjb/jeb/orlib/files/jobshop1.txt
http://people.brunel.ac.uk/~emastjjb/jeb/orlib/files/jobshop1.txt


11. Lawrence, S.: Resource constrained project scheduling: an experimental investigation
of heuristic scheduling techniques (supplement). Ph.D. dissertation, Carnegie-Mellon
University (1984)

12. Menezes, F.M., Blanco, G.T., Rodriguez, P.C., Pereira, F.H.: Application of simulation and
optimization for dynamic job shop scheduling under stochastic demand variability. In:
Proceedings of 7th International Conference on Management of Computational and
Collective Intelligence in Digital EcoSystems (MEDES 2015), vol. 1, pp. 1–8 (2015)

13. GAlib: A C++ Library of Genetic Algorithm Components. http://lancet.mit.edu/ga/dist/.
Accessed 19 Nov 2014

14. Yamada, T.: Studies on metaheuristics for jobshop and flowshop scheduling problems. Ph.D.
dissertation, Kyoto University (2003)

15. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
16. Gao, L., Zhang, G., Zhang, L., Li, X.: An efficient memetic algorithm for solving the job

shop scheduling problem. Comput. Industr. Eng. 60(4), 699–705 (2011)
17. Wisittipanich, W., Kachitvichyanukul, V.: Two enhanced differential evolution algorithms

for job shop scheduling problems. Int. J. Prod. Res. 50(10), 2757–2773 (2012)

Dynamic Seed GA to Solve Job Shop Scheduling Problems 177

http://lancet.mit.edu/ga/dist/

	Dynamic Seed Genetic Algorithm to Solve Job Shop Scheduling Problems
	Abstract
	1 Introduction
	2 Proposed Methodology
	2.1 Representation Mechanism
	2.2 Dynamic Seed Genetic Algorithm

	3 Experiments
	3.1 Performance Related to the Quality of the Solution

	4 Conclusions and Suggestions
	Acknowledgements


