
Chapter 9
Algebraic Quasi Cyclic Codes

9.1 Introduction

Binary self-dual codes have an interesting structure and some are known to have
the best possible minimum Hamming distance of any known codes. Closely related
to the self-dual codes are the double-circulant codes. Many good binary self-dual
codes can be constructed in double-circulant form. Double-circulant codes as a class
of codes have been the subject of a great deal of attention, probably because they
include codes, or the equivalent codes, of some of the most powerful and efficient
codes known to date. An interesting family of binary, double-circulant codes, which
includes self-dual and formally self-dual codes, is the family of codes based on
primes. A classic paper for this family was published by Karlin [9] in which double-
circulant codes based on primes congruent to±1 and±3 modulo 8 were considered.
Self-dual codes are an important category of codes because there are bounds on their
minimal distance [? ]. The possibilities for their weight spectrum are constrained,
and known ahead of the discovery, and analysis of the codes themselves. This has
created a great deal of excitement among researchers in the rush to be the first in
finding some of these codes. A paper summarising the state of knowledge of these
codes was given by Dougherty et al. [1]. Advances in high-speed digital processors
nowmake it feasible to implement near maximum likelihood, soft decision decoders
for these codes and thus, make it possible to approach the predictions for frame
error rate (FER) performance for the additive white Gaussian noise channel made
by Claude Shannon back in 1959 [16].

This chapter considers the binary double-circulant codes based on primes, espe-
cially in analysis of their Hamming weight distributions. Section9.2 introduces the
notation used to describe double-circulant codes and gives a review of double-
circulant codes based on primes congruent to ±1 and ±3 modulo 8. Section9.4
describes the construction of double-circulant codes for these primes and Sect. 9.5
presents an improved algorithm to compute theminimumHamming distance and also
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the number of codewords of a given Hamming weight for certain double-circulant
codes. The algorithm presented in this section requires the enumeration of less code-
words than that of the commonly used technique [4, 18] e.g. Sect. 9.6 considers
the Hamming weight distribution of the double-circulant codes based on primes.
A method to provide an independent verification to the number of codewords of
a given Hamming weight in these double-circulant codes is also discussed in this
section. In the last section of this chapter, Sect. 9.7, a probabilistic method−based
on its automorphism group, to determine the minimum Hamming distance of these
double-circulant codes is described.

Note that, as we consider Hamming space only in this chapter, we shall omit the
word “Hamming” when we refer to Hamming weight and distance.

9.2 Background and Notation

A code C is called self-dual if,
C = C ⊥

where C ⊥ is the dual of C . There are two types of self-dual code: doubly even or
Type-II for which the weight of every codeword is divisible by 4; singly even or
Type-I for which the weight of every codeword is divisible by 2. Furthermore, the
code length of a Type-II code is divisible by 8. On the other hand, formally self-dual
(FSD) codes are codes that have

C �= C ⊥,

but satisfy AC (z) = AC⊥(z), where A(C ) denotes the weight distribution of the
code C . A self-dual, or FSD, code is called extremal if its minimum distance is the
highest possible given its parameters. The bound of the minimum distance of the
extremal codes is [15]

d ≤ 4
⌊ n

24

⌋
+ 4 + ε, (9.1)

where

ε =

⎧⎪⎨
⎪⎩

−2 if C is Type-I with n = 2, 4, or 6,

2, if C is Type-I with n ≡ 22 (mod 24), or

0, if C is Type-I or Type-II with n �≡ 22 (mod 24).

(9.2)

for an extremal FSD code with length n and minimum distance d. For an FSD code,
the minimum distance of the extremal case is upper bounded by [4]

d ≤ 2
⌊n
8

⌋
+ 2. (9.3)
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As a consequence of this upper bound, extremal FSD codes are known to only
exist for lengths n ≤ 30 and n �= 16 and n �= 26 [7]. Databases of best-known, not
necessary extremal, self-dual codes are given in [3, 15]. A table of binary self-dual
double-circulant codes is also provided in [15].

As a class, double-circulant codes are (n, k) linear codes, where k = n/2, whose
generator matrix G consists of two circulant matrices.

Definition 9.1 (Circulant Matrix) A circulant matrix is a square matrix in which
each row is a cyclic shift of the adjacent row. In addition, each column is also a
cyclic shift of the adjacent column and the number of non-zeros per column is equal
to those per row.

A circulant matrix is completely characterised by a polynomial formed by its first
row

r(x) =
m−1∑
i=0

ri x
i ,

which is called the defining polynomial.
Note that the algebra of polynomials modulo xm − 1 is isomorphic to that of

circulants [13]. Let the polynomial r(x) have a maximum degree of m, and the
corresponding circulant matrix R is an m × m square matrix of the form

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r(x) (mod xm − 1)
xr(x) (mod xm − 1)

...

xir(x) (mod xm − 1)
...

xm−1r(x) (mod xm − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.4)

where the polynomial in each row can be represented by an m-dimensional vector,
which contains the coefficients of the corresponding polynomial.

9.2.1 Description of Double-Circulant Codes

A double-circulant binary code is an (n, n
2 ) code in which the generator matrix

is defined by two circulant matrices, each matrix being n
2 by n

2 bits. Circulant
consists of cyclically shifted rows, modulo n

2 , of a generator polynomial. These
generator polynomials are defined as r1(x) and r2(x). Each codeword consists
of two parts: the information data, defined as u(x), convolved with r1(x) mod-
ulo (1 + x

n
2 ) adjoined with u(x) and convolved with r2(x) modulo (1 + x

n
2 ). The

code is the same as a non-systematic, tail-biting convolutional code of rate one
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half. Each codeword is [u(x)r1(x), u(x)r2(x)]. If r1(x) [or r2(x)] has no common
factors of (1 + x

n
2 ), then the respective circulant matrix is non-singular and may

be inverted. The inverted circulant matrix becomes an identity matrix, and each
codeword is defined by u(x), u(x)r(x), where r(x) = r1(x)

r2(x)
modulo (1 + x

n
2 ), [or

r(x) = r2(x)
r1(x)

modulo (1 + x
n
2 ), respectively]. The code is now the same as a system-

atic, tail-biting convolutional code of rate one half.
For double-circulant codes where one circulant matrix is non-singular andmay be

inverted, the codes can be put into two classes, namely pure, and bordered double-
circulant codes, whose generator matrices G p and Gb are shown in (9.5a)

G p =

1 . . . 1 α

1
I k R

...

1

(9.5a)

and (9.5b),

Gb =
1 . . . 1 α

1

I k R
...

1

(9.5b)

respectively. Here, I k is a k-dimensional identity matrix, and α ∈ {0, 1}.
Definition 9.2 (Quadratic Residues) Letα be a generator of the finite fieldFp , where
p be an odd prime, r ≡ α2 (mod p) is called a quadratic residue modulo p and so is
r i ∈ Fp for some integer i . Because the element α has (multiplicative) order p − 1
over Fp, r = α2 has order 1

2 (p − 1). A set of quadratic residues modulo p, Q and
non-quadratic residues modulo p, N , are defined as

Q = {r, r2, . . . , r i , . . . , r p−3
2 , r

p−1
2 = 1}

= {α2, α4, . . . , α2i . . . , α p−3, α p−1 = 1} (9.6a)

and

N = {n : ∀n ∈ Fp, n �= Q and n �= 0}
= {nr, nr2, . . . , nr i , . . . , nr p−3

2 , n}
= {α2i+1 : 0 ≤ i ≤ p−3

2 }
(9.6b)

respectively.

As such R ∪ Q ∪ {0} = Fp. It can be seen from the definition of Q and N that, if
r ∈ Q, r = αe for even e; and if n ∈ N , n = αe for odd e. Hence, if n ∈ N and
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r ∈ Q, rn = α2iα2 j+1 = α2(i+ j)+1 ∈ N . Similarly, rr = α2iα2 j = α2(i+ j) ∈ Q and
nn = α2i+1α2 j+1 = α2(i+ j+1) ∈ Q.

Furthermore,

• 2 ∈ Q if p ≡ ±1 (mod 8), and 2 ∈ N if p ≡ ±3 (mod 8)
• −1 ∈ Q if p ≡ 1 (mod 8) or p ≡ −3 (mod 8), and−1 ∈ N if p ≡ −1 (mod 8)
and p ≡ 3 (mod 8)

9.3 Good Double-Circulant Codes

9.3.1 Circulants Based Upon Prime Numbers Congruent
to ±3 Modulo 8

An important category is circulantswhose length is equal to a prime number, p, which
is congruent to±3modulo 8. For many of these prime numbers, there is only a single
cyclotomic coset, apart from zero. In these cases, 1 + x p factorises into the product
of two irreducible polynomials, (1 + x)(1 + x + x2 + x3 + · · · + x p−1). Apart from
the polynomial, (1 + x + x2 + x3 + · · · + x p−1), all of the other 2p − 2 non-zero
polynomials of degree less than p are in one of two sets: The set of 2p−1 even weight,
polynomials with 1 + x as a factor, denoted as Sf , and the set of 2p−1 odd weight
polynomials which are relatively prime to 1 + x p, denoted as Sr. The multiplicative
order of each set is 2p−1 − 1, and each forms a ring of polynomials modulo 1 + x p.
Any non-zero polynomial apart from (1 + x + x2 + x3 + · · · + x p−1) is equal to
α(x)i for some integer i if the polynomial is in Sf or is equal to a(x)i for some
integer i if in Sr. An example for p = 11 is given in Appendix “Circulant Analysis
p = 11”. In this table, α(x) = 1 + x + x2 + x4 and a(x) = 1 + x + x3. For these
primes, as the circulant length is equal to p, the generator polynomial r(x) can
either contain 1 + x as a factor, or not contain 1 + x as a factor, or be equal to
(1 + x + x2 + x3 + · · · + x p−1). For the last case, this is not a good choice for r(x)
as theminimumcodewordweight is 2, which occurswhen u(x) = 1 + x . In this case,
r(x)u(x) = 1 + x p = 0 modulo 1 + x p and the codeword is [1 + x, 0], a weight of
2.

When r(x) is in the ring Sf , u(x)r(x) must also be in Sf and therefore, be of even
weight, except when u(x) = (1 + x + x2 + x3 + · · · + x p−1).

In this case u(x)r(x) = 0 modulo 1 + x p and the codeword is [1 + x + x2 +
x3 + · · · + x p−1, 0]ofweight p.Whenu(x)has evenweight, the resulting codewords
are doubly even. When u(x) has odd weight, the resulting codewords consist of two
parts, one with odd weight and the other with even weight. The net result is the
codewords that always have odd weight. Thus, there are both even and odd weight
codewords when u(x) is from Sf .

When r(x) is in the ring Sr, u(x)r(x) is always non-zero and is in Sf (even
weight) only when u(x) has even weight, and the resulting codewords are dou-
bly even. When u(x) has odd weight, u(x) = a(x) j and u(x)r(x) = a(x) j a(x)i =
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a(x)i+ j and hence is in the ring Sf and has odd weight. The resulting codewords
have even weight since they consist of two parts, each with odd weight. Thus,
when r(x) is from Sr all of the codewords have even weight. Furthermore, since
r(x) = a(x)i , r(x)a(x)2

(p−1)−1−i = a(x)2
(p−1)−1 = 1 and hence, the inverse of r(x),

1
g(x) = a(x)2

(p−1)−1−i .
By constructing a table (or sampled table) of Sr, it is very straightforward to

design non-singular double-circulant codes. The minimum codeword weight of the
code dmin cannot exceed the weight of r(x) + 1. Hence, the weight of a(x)i needs to
be at least dmin − 1 to be considered as a candidate for r(x). The weight of the inverse
of r(x), a(x)2

(p−1)−1−i also needs to be at least dmin − 1. For oddweight u(x) = a(x) j

and u(x)r(x) = a(x) j a(x)i = a(x)( j+i). Hence, theweight of u(x)r(x) can be found
simply by looking up the weight of a(x)i+ j from the table. Self-dual codes are those
with 1

r(x) = r(x−1). With a single cyclotomic coset 2
(p−1)

2 = −1, and it follows that

a(x)2
(p−1)

2 = a(x−1). With r(x) = a(x)i , r(x−1) = a(x)2
(p−1)

2 i .
In order that 1

r(x) = r(x−1), it is necessary that

a(x)2
(p−1)−1−i = a(x)2

(p−1)
2 i . (9.7)

Equating the exponents, modulo 2(p−1) − 1, gives

2
(p−1)

2 i = m(2(p−1) − 1) − i, (9.8)

where m is an integer. Solving for i:

i = m(2(p−1) − 1)

(2
(p−1)

2 + 1)
. (9.9)

Hence, the number of distinct self-dual codes is equal to (2
(p−1)

2 + 1).
For the example, p = 13 as above,

i = m
2(p−1) − 1

2
(p−1)

2 + 1
= m

4095

65
= 63m

and there are 2
(p−1)

2 + 1 = 65 self-dual codes for 1 ≤ j ≤ 65 and these are a(x)63,
a(x)126, a(x)189, . . . , a(x)4095.

As p is congruent to ±3, the set (u(x)r(x))2
t
maps to (u(x)r(x)) for t = 1 → r ,

where r is the size of the cyclotomic cosets of 2
(p−1)

2 + 1. In the case of p = 13
above, there are 4 cyclotomic cosets of 65, three of length 10 and one of length 2.
This implies that there on 4 non-equivalent self-dual codes.

For p congruent to−3modulo 8, (2
(p−1)

2 + 1) is not divisible by 3. This means that
the pure double-circulant quadratic residue code is not self-dual. Since the quadratic
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residue code hasmultiplicative order 3, thismeans that for p congruent to−3modulo
8, the quadratic residue, pure double-circulant code is self-orthogonal, and r(x) =
r(x−1).

For p congruent to 3, (2
(p−1)

2 + 1) is divisible by 3 and the pure double-circulant
quadratic residue code is self-dual. In this case, a(x) has multiplicative order of

2(p−1) − 1, and a(x)
(2(p−1)−1)

3 must have exponents equal to the quadratic residues

(or non-residues). The inverse polynomial is a(x)
2(2(p−1)−1)

3 with exponents equal
to the non-residues (or residues, respectively), and defines a self-dual circulant
code. As an example, for p = 11 as listed in Appendix “Circulant Analysis p =
11”, 2(p−1) − 1 = 1023 and a(x)341 = x + x3 + x4 + x5 + x9, the quadratic non-
residues of 11 are 1, 4, 5, 9 and 3. a(x)682 = x2 + x6 + x7 + x8 + x10 corresponding
to the quadratic residues: 2, 8, 10, 7 and 6 as can be seen from Appendix “Circulant
Analysis p = 11”. Section9.4.3 discusses inmore detail pure double-circulant codes
for these primes.

9.3.2 Circulants Based Upon Prime Numbers Congruent
to ±1 Modulo 8: Cyclic Codes

MacWilliams and Sloane [13] discuss the Automorphism group of the extended
cyclic quadratic residue (eQR) codes and show that this includes the projective special
linear group PSL2(p). They describe a procedure in which a double-circulant code
may be constructed from a codeword of the eQR code. It is fairly straightforward. The
projective special linear group PSL2(p) for a prime p is defined by the permutation
y → ay+b

cy+d mod p, where the integers a, b, c, d are such that two cyclic groups of

order p+1
2 are obtained. A codeword of the (p + 1, p+1

2 ) eQR code is obtained and
the non-zero coordinates of the codeword placed in each cyclic group. This splits the
codeword into two cyclic parts each of which defines a circulant polynomial.

The procedure is best illustrated with an example. Let α ∈ Fp2 be a primitive
(p2 − 1)ti root of unity; then, β = α2p−2 is a primitive 1

2 (p + 1)TA root of unity
since p2 − 1 = 1

2 (2p − 2)(p − 1). Let λ = 1/(1 + β) and a = λ2 − λ; then, the
permutation π1 on a coordinate y is defined as

π1 : y 
→ y + 1

ay
mod p

where π1 ∈ PSL2(p) (see Sect. 9.4.3 for the definition of PSL2(p)). As an example,
consider the prime p = 23. The permutation π1 : y → y+1

5y mod p produces the two
cyclic groups

(1, 5, 3, 11, 9, 13, 8, 10, 20, 17, 4, 6)

and
(2, 21, 7, 16, 12, 19, 22, 0, 23, 14, 15, 18).
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There are 3 cyclotomic cosets for p = 23 as follows:

C0 = {0}
C1 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}
C5 = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.

The idempotent given by C1 may be used to define a generator polynomial, r(x),
which defines the (23, 12, 7) cyclic quadratic residue code:

r(x) = x + x2 + x3 + x4 + x6 + x8 + x9 + x12 + x13 + x16 + x18. (9.10)

Codewords of the (23, 12, 7) cyclic code are given by u(x)r(x) modulo 1 + x23 and
with u(x) = 1 the non-zero coordinates of the codeword obtained are

(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)

the cyclotomic coset C1.
The extended code has an additional parity check using coordinate 23 to produce

the corresponding codeword of the extended (24, 12, 8) code with the non-zero
coordinates:

(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 23).

Mapping these coordinates to the cyclic groups with 1 in the position, where each
coordinate is in the respective cyclic group and 0 otherwise, produces

(1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1)

and
(1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1)

which define the two circulant polynomials, r1(x) and r2(x), for the (24, 12, 8) pure
double-circulant code

r1(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11

r2(x) = 1 + x3 + x4 + x8 + x11. (9.11)

The inverse of r1(x) modulo (1 + x12) is ψ(x), where

ψ(x) = 1 + x + x2 + x6 + x7 + x8 + x10,

and this may be used to produce an equivalent (24, 12, 8) pure double-circulant code
which has the identity matrix as the first circulant
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Table 9.1 Double-circulant codes mostly based upon quadratic residues of prime numbers

Prime (p) p mod 8 Circulant codes
(2p, p)

Circulant codes
(2p + 2, p + 1)

Circulant codes
(p + 1, p+1

2 )

dmin

7 −1 (8, 4, 4) 4

17 1 (18, 9, 6) 6

11 3 a(22, 11, 7) β(x) (24, 12, 8) 8

23 −1 a(24, 12, 8) 8

13 −3 (26, 13, 7) b(x) 7

31 −1 (32, 16, 8) 8

19 3 (38, 19, 8) b(x) 8

41 1 (82, 41, 14) (42, 21, 10) 10

47 −1 a(48, 24, 12) 12

29 −3 (58, 29, 11) β(x) (60, 30, 12) 12

71 −1 (72, 36, 12) 12
b(72, 36, 14) 14

73 1 (74, 37, 14) 14

37 −3 (74, 37, 12) b(x) 12

79 −1 a(80, 40, 16) 16

43 3 (86, 43, 16) β(x) (88, 44, 16) 16

97 1 (98, 49, 16) 16

103 −1 a(104, 52, 20) 20

53 −3 (106, 53, 19) β(x) (108, 54, 20) 20

113 1 (114, 57, 16) 16

59 3 (118, 59, 19) β(x) (120, 60, 20) 20

61 −3 (122, 61, 19) β(x) (124, 62, 20) 20

127 −1 (128, 64, 20) 20

67 3 a(134, 67, 23) β(x) (136, 68, 24) 24

137 1 (138, 69, 22) 22

151 −1 (152, 76, 20) 20

83 3 (166, 83, 23) β(x) (168, 84, 24) 24

191 −1 (192, 96, 28) 28

193 1 (194, 97, 28) 28

199 −1 a(200, 100, 32) 32

101 −3 (202, 101, 23) β(x) (204, 102, 24) 24

107 3 (214, 107, 23) β(x) (216, 108, 24) 24

109 −3 (218, 109, 30) b(x) 30

223 −1 (224, 112, 32) 32

233 1 (234, 117, 26) 26

239 −1 (240, 120, 32) 32

241 1 (242, 121, 32?) 32?

131 3 a(262, 131, 38?) b(x) 38?
aCodes with outstanding dmin
bCodes not based on quadratic residues
The best (2p, p) circulant polynomial either contains the factor 1 + x : β(x) or is relatively prime
to 1 + xn : b(x)
β(x) circulants can be bordered to produce (2p + 2, p + 1) circulants
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r̂1(x) = (1 + x2 + x4 + x5 + x6 + x10 + x11)ψ(x) modulo (1 + x12)

r̂2(x) = (1 + x3 + x4 + x8 + x11)ψ(x) modulo (1 + x12).

After evaluating terms, the two circulant polynomials are found to be

r̂1(x) = 1

r̂2(x) = 1 + x + x2 + x4 + x5 + x9 + x11, (9.12)

and it can be seen that the first circulant will produce the identity matrix of dimension
12. Jenson [8] lists the circulant codes for primes p < 200 that can be constructed
in this way. There are two cases, p = 89 and p = 167, where a systematic double-
circulant construction is not possible. A non-systematic double-circulant code is
possible for all cases but the existence of a systematic code depends upon one of the
circulantmatrices being non-singular.Apart from p = 89 and p = 167 (for p < 200)
a systematic circulant code can always be constructed in each case.

Table9.1 lists the best circulant codes as a function of length. Most of these codes
are well known and have been previously published but not necessarily as circulant
codes. Moreover, the dmin of some of the longer codes have only been bounded and
have not been explicitly stated in the literature. Nearly, all of the best codes are codes

Table 9.2 Generator polynomials for pure double-circulant codes

Code Circulant generator polynomial exponents

(8, 4, 4) 0, 1, 2

(24, 12, 8) 0, 1, 3, 4, 5, 6, 8

(48, 24, 12) 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 17, 18

(80, 40, 16) 0, 1, 5, 7, 9, 10, 11, 14, 15, 19, 23, 25, 27, 30, 38

(104, 52, 20) 0, 2, 5, 7, 10, 13, 14, 17, 18, 22, 23, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 44,
45, 46, 47, 48, 49

(122, 61, 20) 0, 1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46,
47, 48, 49, 52, 56, 57, 58, 60

(134, 67, 23) 0, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36, 37,
39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65

(156, 78, 22) 0, 2, 3, 4, 8, 9, 11, 12, 14, 16, 17, 18, 20, 22, 24, 26, 27, 29, 33, 38, 39, 41, 42,
43, 44, 45, 46, 48, 49, 50, 52, 55, 56, 60, 64, 66, 68, 71, 72, 73, 74, 75, 77

(166, 83, 24) 1, 3, 4, 7, 9, 10, 11, 12, 16, 17, 21, 23, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37,
38, 40, 41, 44, 48, 49, 51, 59, 61, 63, 64, 65, 68, 69, 70, 75, 77, 78, 81

(180, 90, 26) 0, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 28, 36, 37, 41, 45, 50,
51, 53, 55, 58, 59, 60, 61, 62, 63, 67, 68, 69, 72, 75, 76, 78, 81, 82, 83, 84, 85,
88

(200, 100, 32) 0, 1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 26, 27, 28, 31, 34, 35, 37, 38,
39, 42, 44, 45, 50, 51, 52, 53, 57, 58, 59, 64, 66, 67, 70, 73, 75, 76, 77, 80, 82,
85, 86, 89, 92, 93, 97, 98
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based upon the two types of quadratic residue circulant codes. For codes based upon
p = ±3 mod 8, it is an open questionwhether a better circulant code exists than that
given by the quadratic residues. For p = ±1 mod 8, there are counter examples.
For example, the (72, 36, 14) code in Table9.1 is better than the (72, 36, 12) circulant
code which is based upon the extended cyclic quadratic residue code of length 71.
The circulant generator polynomial g(x) for all of the codes of Table9.1 is given in
Table9.2.

In Table9.1, where the best (2p, p) code is given as b(x), the (2p + 2, p + 1)
circulant code can still be constructed from β(x) but this code has the same dmin

as the pure, double-circulant, shorter code. For example, for the prime 109, b(x)
produces a double-circulant (218, 109, 30) code. The polynomial β(x) produces
a double-circulant (218, 109, 29) code, which bordered becomes a (220, 110, 30)
code. It should be noted that β(x) need not have the overall parity bit border added.
In this case, a (2p + 1, p + 1) code is produced but with the same dmin as the β(x)
code. In the latter example, a (219, 110, 29) code is produced.

9.4 Code Construction

Two binary linear codes,A andB, are equivalent if there exists a permutation π on
the coordinates of the codewords whichmaps the codewords ofA onto codewords of
B. We shall write this asB = π(A ). If π transforms C into itself, then we say that
π fixes the code, and the set of all permutations of this kind forms the automorphism
group of C , denoted as Aut(C ). MacWilliams and Sloane [13] gives some necessary
but not sufficient conditions on the equivalence of double-circulant codes, which are
restated for convenience in the lemma below.

Lemma 9.1 (cf. [13, Problem 7, Chap. 16]) LetA andB be double-circulant codes
with generator matrices [I k |A] and [I k |B], respectively. Let the polynomials a(x)
and b(x) be the defining polynomials of A and B. The codesA andB are equivalent
if any of the following conditions holds:

(i) B = AT , or
(ii) b(x) is the reciprocal of a(x), or
(iii) a(x)b(x) = 1 (mod xm − 1), or
(iv) b(x) = a(xu), where m and u are relatively prime.

Proof

(i) We can clearly see that b(x) = ∑m−1
i=0 ai xm−i . It follows that b(x) = π(a(x)),

where π : i → m − i (mod m) and hence, A and B are equivalent.
(ii) Given a polynomial a(x), its reciprocal polynomial can be written as ā(x) =∑m−1

i=0 ai xm−i−1. It follows that ā(x) = π(a(x)), where π : i → m − i − 1
(mod m).
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(iii) Consider the code A , since b(x) has degree less than m, it can be one of the
possible data patterns and in this case, the codeword ofA has the form |b(x)|1|.
Clearly, this is a permuted codeword ofB.

(iv) If (u,m) = 1, then π : i → iu (mod m) is a permutation on {0, 1, . . . ,m − 1}.
So b(x) = a(xu) is in the code π(A ).

Consider an (n, k, d) pure double-circulant code, we can see that for a given user
message, represented by a polynomial u(x) of degree at most k − 1, a codeword of
the double-circulant code has the form (u(x)|u(x)r(x) (mod xm − 1)). The defining
polynomial r(x) characterises the resulting double-circulant code. Before the choice
of r(x) is discussed, consider the following lemmas and corollary.

Lemma 9.2 Let a(x) be a polynomial over F2 of degree at most m − 1, i.e.
a(x) = ∑m−1

i=0 ai xi where ai ∈ {0, 1}. The weight of the polynomial (1 + x)a(x)
(mod xm − 1), denoted by wtH ((1 + x)a(x)) is even.

Proof Let w = wtH (a(x)) = wtH (xa(x)) and S = {i : ai+1 mod m = ai �= 0, 0 ≤
i ≤ m − 1}:

wtH ((1 + x)a(x)) = wtH (a(x)) + wtH (xa(x)) − 2|S|
= 2(w − |S|),

which is even.

Lemma 9.3 An m × m circulant matrix R with defining polynomial r(x) is non-
singular if and only if r(x) is relatively prime to xm − 1.

Proof If r(x) is not relatively prime to xm − 1, i.e. GCD (r(x), xm − 1) = t (x) for
some polynomial t (x) �= 1, then from the extended Euclidean algorithm, it follows
that, for some unique polynomials a(x) and b(x), r(x)a(x) + (xm − 1)b(x) = 0,
and therefore R is singular.

If r(x) is relatively prime to xm − 1, i.e. GCD (r(x), xm − 1) = 1, then from
the extended Euclidean algorithm, it follows that, for some unique polynomials
a(x) and b(x), r(x)a(x) + (xm − 1)b(x) = 1, which is equivalent to r(x)a(x) = 1
(mod xm − 1). Hence R is non-singular, being invertiblewith amatrix inversewhose
defining polynomial is a(x).

Corollary 9.1 From Lemma 9.3,

(i) if R is non-singular, R−1 is an m × m circulant matrix with defining polynomial
r(x)−1, and

(ii) the weight of r(x) or r(x)−1 is odd.

Proof The proof for the first case is obvious from the proof of Lemma 9.3. For the
second case, if the weight of r(x) is even then r(x) is divisible by 1 + x . Since 1 + x
is a factor of xm − 1 then r(x) is not relatively prime to xm − 1 and the weight of
r(x) is necessarily odd. The inverse of r(x)−1 is r(x) and for this to exist r(x)−1

must be relatively prime to xm − 1 and the weight of r(x)−1 is necessarily odd.
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Lemma 9.4 Let p be an odd prime, and then

(i) p | 2p−1 − 1, and
(ii) the integer q for pq = 2p−1 − 1 is odd.

Proof From Fermat’s little theorem, we know that for any integer a and a prime
p, a p−1 ≡ 1 (mod p). This is equivalent to a p−1 − 1 = pq for some integer q. Let
a = 2, we have

q = 2p−1 − 1

p

which is clearly odd since neither denominator nor numerator contains 2 as a factor.

Lemma 9.5 Let p be a prime and j (x) = ∑p−1
i=0 xi ; then

(1 + x)2
p−1−1 = 1 + j (x) mod (x p − 1).

Proof We can write (1 + x)2
p−1−1 as

(1 + x)2
p−1−1 = (1 + x)2

p−1

1 + x
= 1 + x2

p−1

1 + x

=
2p−1−1∑
i=0

xi .

From Lemma 9.4, we know that the integer q = (2p−1 − 1)/p and is odd. We can
then write

∑2p−1−1
i=0 xi in terms of j (x) as follows:

2p−1−1∑
i=0

xi = 1 + x
(
1 + x + · · · + x p−1

)
︸ ︷︷ ︸

j (x)

+ x p+1
(
1 + x + · · · + x p−1

)
︸ ︷︷ ︸

j (x)

+ . . .+

x (q−3)p+1
(
1 + x + · · · + x p−1

)
︸ ︷︷ ︸

j (x)

+ x (q−2)p+1
(
1 + x + · · · + x p−1

)
︸ ︷︷ ︸

j (x)

+

x (q−1)p+1
(
1 + x + · · · + x p−1

)
︸ ︷︷ ︸

j (x)

= 1 + x j (x)(1 + x p) + x2p+1 j (x)(1 + x p) + . . . + x (q−3)p+1 j (x)(1 + x p)︸ ︷︷ ︸
J (x)

+

x (q−1)p+1 j (x)
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Since (1 + x p) (mod x p − 1) = 0 for a binary polynomial, J (x) = 0 and we have

2p−1−1∑
i=0

xi = 1 + xx (q−1)p j (x) (mod x p − 1).

Because xip (mod x p − 1) = 1,

2p−1−1∑
i=0

xi = 1 + x j (x) (mod x p − 1)

= 1 + j (x) (mod x p − 1).

For the rest of this chapter,we consider the bordered case only and for convenience,
unless otherwise stated, we shall assume that the term double-circulant code refers to
(9.5b). Furthermore, we call the double-circulant codes based on primes congruent
to ±1 modulo 8, the [p + 1, 1

2 (p + 1), d] extended quadratic residue (QR) codes
since these exist only for p ≡ ±1 (mod 8).

Following Gaborone [2], we call those double-circulant codes based on primes
congruent to ±3 modulo 8 the [2(p + 1), p + 1, d] quadratic double-circulant
(QDC) codes, i.e. p ≡ ±3 (mod 8).

9.4.1 Double-Circulant Codes from Extended Quadratic
Residue Codes

The following is a summary of the extended QR codes as double-circulant codes [8,
9, 13].

Binary QR codes are cyclic codes of length p over F2. For a given p, there exist
four QR codes:

1. L̄p, ¯Np which are equivalent and have dimension 1
2 (p − 1), and

2. Lp,Np which are equivalent and have dimension 1
2 (p + 1).

The (p + 1, 1
2 (p + 1), d) extended quadratic residue code, denoted by L̂p (resp.

ˆNp), is obtained by annexing an overall parity check to Lp (resp. Np). If p ≡ −1
(mod 8), L̂p (resp. ˆNp) is Type-II; otherwise it is FSD.

It iswell known that1 Aut(L̂p) contains the projective special linear group denoted
by PSL2(p) [13]. If r is a generator of the cyclic group Q, then σ : i → (mod p)
is a member of PSL2(p). Given n ∈ N , the cycles of σ can be written as

1Since L̂p and ˆNp are equivalent, considering either one is sufficient.
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(∞)(n, nr, nr2, . . . , nr t )(1, r, r2, . . . , r t )(0), (9.13)

where t = 1
2 (p − 3). Due to this property, G, the generator matrix of L̂p can be

arranged into circulants as shown in (9.14),

G =

∞ n nr . . . nr t−1 nr t 1 r . . . r t−1 r t 0
∞ 1 1 1 . . . 1 1 1 1 . . . 1 1 1
β 0 1
βr 0 1
...

... L R
...

βr t−1 0 1
βr t 0 1

,

(9.14)

where L and R are 1
2 (p − 1) × 1

2 (p − 1) circulantmatrices. The rowsβ, βr, . . . , βr t

in the above generator matrix contain ēβ(x), ēβr (x), . . . , ēβr t (x), where ēi (x) =
xi e(x) whose coordinates are arranged in the order of (9.13). Note that (9.14) can
be transformed to (9.5b) as follows:

[
1 J
0T L−1

]
×
[
1 J J 1
0T L R JT

]
=
[
1 J + w(LT ) J + w(RT ) 1

2 (p + 1)
0T I 1

2 (p−1) L−1R w(L−1)T

]

(9.15)

where J is an all-ones vector and w(A) = [wtH (A0) (mod 2),wtH (A1)

(mod 2), . . .], Ai being the i th row vector of matrix A. The multiplication in (9.15)
assumes that L−1 exists and following Corollary 9.1, wtH (l−1(x)) = wtH (l(x)) is
odd. Therefore, (9.15) becomes

G =

J + w(RT ) 1
2 (p + 1)

I 1
2 (p+1)

1

L−1R
...

1

. (9.16)

In relation to (9.14), consider extended QR codes for the classes of primes:

1. p = 8m + 1, the idempotent e(x) = ∑
n∈N xn and β ∈ N . Following [13, Theo-

rem 24, Chap. 16], we know that ēβr i (x) where βr i ∈ N , for 0 ≤ i ≤ t , contains
2m + 1 quadratic residues modulo p (including 0) and 2m − 1 non-quadratic
residues modulo p. As a consequence, wtH (r(x)) is even, implying w(RT ) = 0
and r(x) is not invertible (cf. Corollary 9.1); andwtH (l(x)) is odd and l(x)may be
invertible over polynomial modulo x

1
2 (p−1) − 1 (cf. Corollary 9.1). Furthermore,

referring to (9.5b), we have α = 1
2 (p + 1) = 4m + 1 = 1 mod 2.
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2. p = 8m − 1, the idempotent e(x) = 1 +∑
n∈N xn and β ∈ Q. Following [13,

Theorem 24, Chap. 16], if we have a set S containing 0 and 4m − 1 non-quadratic
residues modulo p, the set β + S contains 2m + 1 quadratic residues modulo
p (including 0) and 2m − 1 non-quadratic residues modulo p. It follows that
ēβr i (x), where βr i ∈ Q, for 0 ≤ i ≤ t , contains 2m quadratic residues modulo
p (excluding 0), implying that R is singular (cf. Corollary 9.1); and 2m − 1
non-quadratic residues modulo p, implying L−1 may exist (cf. Corollary 9.1).
Furthermore,w(RT ) = 0 and referring to (9.5b), we haveα = 1

2 (p + 1) = 4m =
0 mod 2.

For many L̂p, L is invertible and Karlin [9] has shown that p = 73, 97, 127, 137,
241 are the known cases where the canonical form (9.5b) cannot be obtained.

Consider the case for p = 73, with β = 5 ∈ N , we have l(x), the defining poly-
nomial of the left circulant, given by

l(x) = x2 + x3 + x4 + x5 + x6 + x11 + x15 + x16 + x18+
x20 + x21 + x25 + x30 + x31 + x32 + x33 + x34.

The polynomial l(x) contains some irreducible factors of x
1
2 (p−1) − 1 = x36 − 1, i.e.

GCD (l(x), x36 − 1) = 1 + x2 + x4, and hence, it is not invertible. In addition to
form (9.5b), G can also be transformed to (9.5a), and Jenson [8] has shown that, for
7 ≤ p ≤ 199, except for p = 89, 167, the canonical form (9.5a) exists.

9.4.2 Pure Double-Circulant Codes for Primes ±3 Modulo 8

Recall that Sr is a multiplicative group of order 2p−1 − 1 containing all polynomials
of odd weight (excluding the all-ones polynomial) of degree at most p − 1, where p
is a prime. We assume that a(x) is a generator of Sr. For p ≡ ±3 (mod 8), we have
the following lemma.

Lemma 9.6 For p ≡ ±3 (mod 8), let the polynomials q(x) = ∑
i∈Q xi andn(x) =∑

i∈N xi . Self-dual pure double-circulant codes with r(x) = q(x) or r(x) = n(x)
exist if and only if p ≡ 3 (mod 8).

Proof For self-dual codes the condition q(x)T = n(x) must be satisfied where
q(x)T = q(x−1) = ∑

i∈Q x−i . Let r(x) = q(x), for the casewhen p ≡ ±3 (mod 8),
2 ∈ N we have q(x)2 = ∑

i∈Q x2i = n(x). We know that 1 + q(x) + n(x) = j (x),
therefore, q(x)3 = q(x)2q(x) = n(x)q(x) = (1 + q(x) + j (x))q(x) = q(x) +
n(x) + j (x) = 1. Then, q(x)2

q(x)3 = q(x)2 and q(x)2 = n(x) = q(x)−1 = q(x−1). On

the other hand, −1 ∈ N if p ≡ 3 (mod 8) and thus q(x)T = n(x). If p ≡ −3
(mod 8), −1 ∈ Q, we have q(x)T = q(x). For r(x) = n(x), the same arguments
follow.
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LetPp denote a (2p, p, d) pure double-circulant code for p ≡ ±3 (mod 8). The
properties of Pp can be summarised as follows:

1. For p ≡ 3 (mod 8), since q(x)3 = 1 and a2
p−1−1 = 1, we have q(x) =

a(x)(2
p−1−1)/3 and q(x)T = a(x)(2

p−2)/3. There are two full-rank generator matri-
ces with mutually disjoint information sets associated withPp for these primes.
Let G1 be a reduced echelon generator matrix ofPp, which has the form of (9.5a)
with R = B, where B is a circulantmatrixwith defining polynomial b(x) = q(x).
The other full-rank generator matrix G2 can be obtained as follows:

G2 =
XXXX
BT

X X XX
× G1 =

XXXX XXXX
BT I p

X X X X XXXX
. (9.17)

The self-duality of this pure double-circulant code is obvious from G2.
2. For p ≡ −3 (mod 8), (p − 1)/2 is even and hence, neither q(x) nor n(x) is

invertible, which means that if this polynomial was chosen as the defining poly-
nomial forPp, there exists only one full-rank generator matrix. However, either
1 + q(x) (resp. 1 + n(x)) is invertible and the inverse is 1 + n(x) (resp. 1 + q(x)),
i.e.

(1 + q(x))(1 + n(x)) = 1 + q(x) + n(x) + q(x)n(x)

= 1 + q(x) + n(x) + q(x)(1 + j (x) + q(x))

= 1 + q(x) + n(x) + q(x) + q(x) j (x) + q(x)2,

and since q(x) j (x) = 0 and q(x)2 = n(x) under polynomial modulo x p − 1, it
follows that

(1 + q(x))(1 + n(x)) = 1 (mod x p − 1).

Let G1 be the first reduced echelon generator matrix, which has the form of
(9.5a) where R = I p + Q. The other full-rank generator matrix with disjoint
information sets G2 can be obtained as follows:

G2 =
XXXX
I p + N
XXXX

× G1 =
XXXX XXXX
I p + N I p

X X X X XXXX
. (9.18)

Since−1 ∈ Q for this prime, (I p + Q)T = I p + Q implying that the (2p, p, d)

pure double-circulant code is FSD, i.e. the generator matrix of P⊥
p is given by

G⊥ =
XXXX XXXX
I p + Q I p

X X X X XXXX
.
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A bordered double-circulant construction based on these primes—commonly
known as the quadratic double-circulant construction—also exists, see Sect. 9.4.3
below.

9.4.3 Quadratic Double-Circulant Codes

Let p be a prime that is congruent to ±3 modulo 8. A (2(p + 1), p + 1, d) binary
quadratic double-circulant code, denoted byBp, can be constructed using the defin-
ing polynomial

b(x) =
{
1 + q(x) if p ≡ 3 (mod 8), and

q(x) if p ≡ −3 (mod 8)
(9.19)

where q(x) = ∑
i∈Q xi . Following [13], the generator matrix G ofBp is

G =

l∞ l0 . . . l p−1 r∞ r0 . . . rp−1

1 0
... I p

... B
1 0
0 0 . . . 0 1 1 . . . 1

(9.20)

which is, if the last row of G is rearranged as the first row, the columns indexed by
l∞ and r∞ are rearranged as the last and the first columns, respectively, equivalent
to (9.5b) with α = 0 and k = p + 1. Let j (x) = 1 + x + x2 + · · · + x p−1, and the
following are some properties of Bp [9]:

1. for p ≡ 3 (mod 8), b(x)3 = (1 + q(x))2(1 + q(x)) = (1 + n(x))(1 + q(x)) =
1 + j (x), sinceq(x)2 = n(x) (2 ∈ N for this prime) andq(x) j (x) = n(x) j (x) =
j (x) (wtH (q(x)) = wtH (n(x)) is odd). Also, (b(x) + j (x))3 = (1 + q(x) +
j (x))2(1 + q(x) + j (x)) = n(x)2(1 + q(x) + j (x)) = q(x)+ n(x)+ j (x)= 1
because n(x)2 = q(x). Since −1 ∈ N and we have b(x)T = 1 +∑

i∈Q x−i =
1 + n(x) and thus, b(x)b(x)T = (1 + q(x))(1 + n(x)) = 1 + j (x).
There are two generator full-rank matrices with disjoint information sets forBp.
This is because, although b(x) has no inverse, b(x) + j (x) does, and the inverse
is (b(x) + j (x))2.
Let G1 has the form of (9.5b) where R = B, and the other full-rank generator
matrix G2 can be obtained as follows:
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G2 =
1 1 . . . 1
0
... BT

0

× G1 =
0 1 . . . 1 1 0 . . . 0
1 0
... BT

... I p

1 0

. (9.21)

It is obvious that G2 is identical to the generator matrix of B⊥
p and hence, it is

self-dual.
2. for p ≡ −3 (mod 8), b(x)3 = n(x)q(x) = (1 + j (x) + q(x))q(x) = 1 + j (x)

since q(x)2 = n(x) (2 ∈ N for this prime) and q(x) j (x) = n(x) j (x) = 0
(wtH (q(x)) = wtH (n(x)) is even). Also, (b(x) + j (x))3 = (q(x) + j (x))2(1 +
n(x)) = q(x)2 + q(x)2n(x) + j (x)2 + j (x)2n(x) = n(x) + q(x) + j (x) = 1
because n(x)2 = q(x). Since −1 ∈ Q and we have b(x)T = ∑

i∈Q x−i = b(x)
and it follows that Bp is FSD, i.e. the generator matrix ofB⊥

p is given by

G⊥ =
0 1 . . . 1 1 0 . . . 0
1 0
... B

... I p

1 0

Since (b(x) + j (x))−1 = (b(x) + j (x))2, there exist full-rank two generator
matrices of disjoint information sets forBp. Let G1 has the form of (9.5b) where
R = B, and the other full-rank generator matrix G2 can be obtained as follows:

G2 =
1 1 . . . 1
0
... B2

0

× G1 =
0 1 . . . 1 1 0 . . . 0
1 0
... B2

... I p

1 0

(9.22)

Codes of the form Bp form an interesting family of double-circulant codes.
In terms of self-dual codes, the family contains the longest extremal Type-II code
known, n = 136. Probably, it is the longest extremal code that exists, see Sect. 9.7.
Moreover, Bp is the binary image of the extended QR code over F4 [10].

The (p + 1, 1
2 (p + 1), d) double-circulant codes for p ≡ ±1 (mod 8) are fixed

by PSL2(p), see Sect. 9.4.1. This linear group PSL2(p) is generated by the set of all
permutations to the coordinates (∞, 0, 1, . . . , p − 1) of the form

y → ay + b

cy + d
, (9.23)

where a, b, c, d ∈ Fp, ad − bc = 1, y ∈ Fp ∪ {∞}, and it is assumed that ± 1
0 = ∞

and ± 1
∞ = 0 in the arithmetic operations.
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We know from [13] that this form of permutation is generated by the following
transformations:

S : y → y + 1

V : y → α2y

T : y → −1

y
,

(9.24)

where α is a primitive element of Fp. In fact, V is redundant since it can be obtained
from S and T , i.e.

V = T SαT SμT Sα (9.25)

for2 μ = α−1 ∈ Fp.
The linear group PSL2(p) fixes not only the (p + 1, 1

2 (p + 1), d) binary double-
circulant codes, for p ≡ ±1 (mod 8), but also the (2(p + 1), p + 1, d) binary
quadratic double-circulant codes, as shown as follows. Consider the coordinates
(∞, 0, 1, . . . , p − 1) of a circulant, the transformation S leaves the coordinate ∞
invariant and introduces a cyclic shift to the rest of the coordinates and hence S fixes
a circulant. Let Ri and Li denote the i th row of the right and left circulants of (9.20),
respectively (we assume that the index starts with 0), and let J and J ′ denote the
last row of the right and left circulant of (9.20), respectively.

Consider the primes p = 8m + 3, R0 = (
0 | 1 +∑

i∈Q xi
)
. Let ei and f j , for

some integers i and j , be even and odd integers, respectively. If i ∈ Q, −1/ i =
−1 × α p−1/αe1 = α f1 × αe2−e1 ∈ N since −1 ∈ N for these primes. Therefore, the
transformation T interchanges residues to non-residues and vice versa. In addition,
we also know that T interchanges coordinates ∞ and 0. Applying transformation T
to R0, T (R0), results in

T (R0) =
⎛
⎝1 |

∑
j∈N

x j

⎞
⎠ = R0 + J .

Similarly, for the first row of L, which has 1 at coordinates ∞ and 0 only, i.e.
L0 = (1 | 1)

T (L0) = L0 + J .

2T SαT SμT Sα(y) = T SαT SμT (y + α) = T SαT Sμ(−y−1+α) = T SαT
(
− 1

y+μ
+ α

)
=

T SαT(
αy+αμ−1

y+μ

)
= T Sα

(−αy−1+αμ−1
−y−1+μ

)
= T

(−α(y+α)−1+αμ−1
−(y+α)−1+μ

)
= T

(
(αμ−1)y+α(αμ−1)−α

μy+(αμ−1)

)
=(

(−αμ−1)y−1+α(αμ−1)−α

−μy−1+(αμ−1)

)
=
( −α

−μy−1

)
= α2y = V (y).
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Let s ∈ Q and let the set Q̂ = Q ∪ {0}, Rs =
(
0 | ∑i∈Q̂ xs+i

)
andT

(∑
i∈Q̂ xs+i

)
=∑

i∈Q̂ x−1/(s+i). FollowingMacWilliams and Sloane [13, Theorem 24, Chap. 16], we
know that the exponents of

∑
i∈Q̂ xs+i contain 2m + 1 residues and

2m + 1 non-residues. Note that s + i produces no 0.3 It follows that −1/(s +
i) contains 2m + 1 non-residues and 2m + 1 residues. Now consider R−1/s =(
0 | ∑i∈Q̂ x i−1/s

)
, i − 1/s contains4 0 i, s ∈ Q, 2m residues and 2m + 1 non-

residues. We can write −1/(s + i) as

− 1

s + i
= i/s

s + i
− 1

s
= z − 1

s
.

Let I ⊂ Q̂ be a set of all residues such that for all i ∈ I , i − 1/s ∈ N . If −1/
(s + i) ∈ N , z ∈ Q̂ and we can see that z must belong to I such that z − 1/s ∈ N .
This means these non-residues cancel each other in T (Rs) + R−1/s . On the other
hand, if −1/(s + i) ∈ Q, z ∈ N and it is obvious that z − 1/s �= i − 1/s for all
i ∈ Q̂, implying that all 2m + 1 residues in T (Rs) are disjoint from all 2m + 1

residues (including 0) in R−1/s . Therefore, T (Rs) + R−1/s =
(
0 | ∑i∈Q̂ x i

)
, i.e.

T (Rs) = R−1/s + R0.

Similarly, T (Ls) = (
0 | 1 + x−1/s

)
and L−1/s = (

1 | x−1/s
)
, which means

T (Ls) = L−1/s + L0.

Let t ∈ N , Rt =
(
0 | ∑i∈Q̂ x t+i

)
and T

(∑
i∈Q̂ x t+i

)
= ∑

i∈Q̂ x−1/(t+i). We know

that t + i contains 0, 2m residues and 2m + 1 non-residues [13, Theorem 24, Chap.
16], and correspondingly −1/(t + i) contains ∞, 2m non-residues and 2m + 1

residues. As before, now consider R−1/t =
(
0 | ∑i∈Q̂ x i−1/t

)
. There are 2m + 1

residues (excluding 0) and 2m + 1 non-residues in i − 1/t , and let I ′ ⊂ Q̂ be a
set of all residues such that, for all i ∈ I ′, i − 1/t ∈ Q. As before, we can write
−1/(t + i) as z − 1/t , where z = (i/t)/(t + i). If −1/(t + i) ∈ Q, z ∈ I ′ and
hence, the 2m + 1 residues from −1/(t + i) are identical to those from i − 1/t .
If −1/(t + i) ∈ N , z ∈ N and hence, all of the 2m non-residues of −1/(t + i)
are disjoint from all 2m + 1 non-residues of i − 1/t . Therefore, T (Rt ) + R−1/t =(
1 | ∑i∈N xi

)
, i.e.

T (Rt ) = R−1/t + R0 + J .

3Consider a prime p = ±3 (mod 8), q ∈ Q and an integer a where (a, p) = 1. In order for
q + a = 0 to happen, a = −q. The integer a is a residue if p = 8m − 3 and a non-residue if
p = 8m + 3.
4This is because all i ∈ Q are considered and 1/s ∈ Q.
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Similarly, T (Lt ) = (
0 | 1 + x−1/t

)
and L−1/t = (

1 | x−1/t
)
, which means

T (Lt ) = L−1/t + L0 + J ′.

For primes p = 8m − 3, R0 = (
0 | ∑i∈Q xi

)
and since −1 ∈ Q, −1/ i ∈ Q for

i ∈ Q. Thus,

T (R0) =
⎛
⎝0 |

∑
i∈Q

x−1/ i

⎞
⎠ = R0.

Similarly, for L0, which contains 1 at coordinates 0 and ∞,

T (L0) = L0.

Consider Rs = (
0 | ∑i∈Q xs+i

)
, for s ∈ Q,T

(∑
i∈Q xs+i

) = ∑
i∈Q x−1/(s+i). There

are 0 (when i = −s ∈ Q), 2m − 2 residues and 2m − 1 non-residues in the set
s + i [13, Theorem 24, Chap. 16]. Correspondingly, −1/(s + i) = z − 1/s, where
z = (i/s)/(s + i), contains∞, 2m − 2 residues and 2m − 1 non-residues. Now con-
sider R−1/s = (

0 | ∑i∈Q xi−1/s
)
, the set i − 1/s contains 0 (when i = 1/s ∈ Q),

2m − 2 residues and 2m − 1 non-residues. Let I ⊂ Q be a set of all residues such
that for all i ∈ I , i − 1/s ∈ Q. If −1/(s + i) ∈ Q then z − 1/s ∈ Q which means
z ∈ Q and z must belong to I . This means all 2m − 2 residues of −1/(s + i) and
those of i − 1/s are identical. On the contrary, if −1/(s + i) ∈ N , z ∈ N and this
means z − 1/s �= i − 1/s for all i ∈ Q, and therefore all non-residues in−1/(s + i)
and i − 1/s are mutually disjoint. Thus, T (Rs) + R−1/s = (

1 | 1 +∑
i∈N xi

)
, i.e.

T (Rs) = R−1/s + R0 + J .

Similarly, T (Ls) = (
0 | 1 + x−1/s

)
, and we can write

T (Ls) = L−1/s + L0 + J ′.

For t ∈ N , we have Rt = (
0 | ∑i∈Q xt+i

)
and T (

∑
i∈Q xt+i ) = ∑

i∈Q x−1/(t+i). Fol-
lowing [13, Theorem 24, Chap. 16], there are 2m − 1 residues and 2m − 1 non-
residues in the set t + i and the same distributions are contained in the set−1/(t + i).
Considering R−1/t = (

0 | ∑i∈Q xi−1/t
)
, there are 2m − 1 residues and 2m − 1 non-

residues in i − 1/t . Rewriting −1/(t + i) = z − 1/t , for z = (i/t)/(t + i), and
letting I ′ ⊂ Q be a set of all residues such that for all i ∈ I ′, i − 1/t ∈ N , we
know that if −1/(t + i) ∈ N then z − 1/t ∈ N which means that z ∈ Q and z
must belong to I ′. Hence, the non-residues in i − 1/t and −1/(t + i) are iden-
tical. If −1/(t + i) ∈ Q, however, z ∈ N and for all i ∈ Q, i − 1/t �= z − 1/t ,
implying that the residues in −1/(t + i) and i − 1/t are mutually disjoint. Thus,
T (Rt ) + R−1/t = (

0 | ∑i∈Q xi
)
, i.e.
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T (Rt ) = R−1/t + R0.

Similarly, T (Lt ) = (
0 | 1 + x−1/t

)
, and we can write

T (Lt ) = L−1/t + L0.

The effect T to the circulants is summarised as follows:

T for p ≡ 3 (mod 8) for p ≡ −3 (mod 8)
T (R0) R0 + J R0

T (Rs) R−1/s + R0 R−1/s + J
T (Rt ) R−1/t + R0 + J R−1/t + R0

T (L0) L0 + J ′ L0

T (Ls) L−1/s + L0 L−1/s + J ′
T (Lt ) L−1/t + L0 + J ′ L−1/t + L0

where s ∈ Q and t ∈ N . This shows that, for p ≡ ±3 (mod 8), the transformation
T is a linear combination of at most three rows of the circulant and hence it fixes the
circulant. This establishes the following theorem on Aut(Bp) [2, 13].

Theorem 9.1 Theautomorphismgroupof the (2(p + 1), p + 1, d)binaryquadratic
double-circulant codes contains PSL2(p) applied simultaneously to both circulants.

The knowledge of Aut(Bp) can be exploited to deduce the modular congruence
weight distributions of Bp as shown in Sect. 9.6.

9.5 Evaluation of the Number of Codewords of Given
Weight and the Minimum Distance: A More Efficient
Approach

In Chap.5 algorithms to compute the minimum distance of a binary linear code
and to count the number of codewords of a given weight are described. Assuming
the code rate of the code is a half and its generator matrix contains two mutually
disjoint information sets, each of rank k (the code dimension), these algorithms
require enumeration of

(
k

w/2

)
+ 2

w/2−1∑
i=1

(
k

i

)

codewords in order to count the number of codewords of weight w. For FSD double-
circulant codes with p ≡ −3 (mod 8) and self-dual double-circulant codes a more
efficient approach exists. This approach applies to both pure and bordered double-
circulant cases.

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Lemma 9.7 Let Tm(x) be a set of binary polynomials with degree at most m.
Let ui (x), vi (x) ∈ Tk−1(x) for i = 1, 2, and e(x), f (x) ∈ Tk−2(x). The numbers of
weight w codewords of the form c1(x) = (u1(x)|v1(x)) and c2(x) = (v2(x)|u2(x))
are equal, where

(i) for self-dual pure double-circulant codes, u2(x) = u1(x)T and v2(x) = v1(x)T ;
(ii) for self-dual bordered double-circulant codes, u1(x) = (ε|e(x)), v1(x) =

(γ | f (x)), u2(x) = (ε|e(x)T ) and v2(x) = (γ | f (x)T ), where γ = wtH (e(x))
(mod 2);

(iii) for FSD pure double-circulant codes (p ≡ −3 (mod 8)), u2(x) = u1(x)2 and
v2(x) = v1(x)2;

(iv) for FSD bordered double-circulant codes (p ≡ −3 (mod 8)), u1(x)=(ε|e(x)),
v1(x) = (γ | f (x)), u2(x) = (ε|e(x)2), v2(x) = (γ | f (x)2), where γ = wtH
(e(x)) (mod 2).

Proof

(i) Let G1 = [I k |R] and G2 = [RT |I k] be the two full-rank generator matrices
withmutually disjoint information sets of a self-dual pure double-circulant code.
Assume that r(x) and r(x)T are the defining polynomials of G1 and G2, respec-
tively. Given u1(x) as an input, we have a codeword c1(x) = (u1(x)|v1(x)),
where v1(x) = u1(x)r(x), from G1. Another codeword c2(x) can be obtained
from G2 using u1(x)T as an input, c2(x) = (v1(x)T |u1(x)T ), where v1(x)T =
u1(x)T r(x)T = (u1(x)r(x))T . Since the weight of a polynomial and that of its
transpose are equal, for a given polynomial of degree at most k − 1, there exist
two distinct codewords of the same weight.

(ii) Let G1, given by (9.5b), and G2 be two full-rank generator matrices with pair-
wise disjoint information sets, of bordered self-dual double-circulant codes. It is
assumed that the form of G2 is identical to that given by (9.21) with RT = BT .
Let f (x) = e(x)r(x), consider the following cases:

a. ε = 0 and wtH (e(x)) is odd, we have a codeword c1(x) = (0 | e(x) | 1 |
f (x)) from G1. Applying

(
0 | e(x)T ) as an information vector to G2, we

have another codeword c2(x) = (
1 | e(x)T r(x)T | 0 | e(x)T ) = (

1 | f (x)T

| 0 | e(x)T ).
b. ε = 1 and wtH (e(x)) is odd, G1 produces c1(x)= (1 | e(x) | 1 |

f (x)+ j (x)).Applying
(
1 | e(x)T ) as an informationvector toG2,wehave a

codeword c2(x)= (
1 | e(x)T r(x)T + j (x) | 1 | e(x)T ) = (

1 | f (x)T +
j (x) | 1 | e(x)T ).

c. ε = 0 andwtH (e(x)) is even,G1 produces a codeword c1(x) = (0 | e(x) | 0 |
f (x)). Applying

(
0 | e(x)T ) as an information vector toG2, we have another

codeword c2(x) = (
0 | e(x)T r(x)T | 0 | e(x)T ) = (

0 | f (x)T | 0 | e(x)T ).
d. ε = 1 and wtH (e(x)) is even, G1 produces c1(x) = (1 | e(x) | 0 | f (x)+

j (x)). Applying
(
1 | e(x)T ) as an information vector to G2, we have a code-

word c2(x) = (
0 | e(x)T r(x)T + j (x) | 1 | e(x)T ) = (

0 | f (x)T + j (x)
| 1 | e(x)T ).
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It is clear that in all cases, wtH (c1(x)) = wtH (c2(x)) since wtH (v(x)) =
wtH (v(x)T ) and wtH (v(x) + j (x)) = wtH (v(x)T + j (x)) for some polyno-
mial v(x). This means that given an information vector, there always exist two
distinct codewords of the same weight.

(iii) Let G1, given by (9.5a) with R = I p + Q, and G2, given by (9.18), be two full-
rank generator matrices with pairwise disjoint information sets, of pure FSD
double-circulant codes for p ≡ −3 (mod 8).
Given u1(x) as input, we have a codeword c1(x) = (u1(x)|v1(x)), where
v1(x) = u1(x)(1 + q(x)), from G1 and another codeword c2(x) = (v2(x)|u2
(x)), where u2(x) = u1(x)2 and v2(x) = u1(x)2(1 + n(x)) = u1(x)2(1
+q(x))2 = v1(x)2, from G2. Since the weight of a polynomial and that of its
square are the same over F2, the proof follows.

(iv) Let G1, given by (9.5b) with B = R, and G2, given by (9.22), be two full-rank
generator matrices with pairwise disjoint information sets, of bordered FSD
double-circulant codes for p ≡ −3 (mod 8). Let f (x) = e(x)b(x), consider
the following cases:

a. ε = 0 andwtH (e(x)) is odd,wehave a codeword c1(x)= (0 | e(x) | 1 | f (x))
from G1. Applying

(
0 | e(x)2) as an information vector to G2, we have

another codeword c2(x) = (
1 | e(x)2n(x) | 0 | e(x)2). Since e(x)2n(x) =

e(x)2b(x)2 = f (x)2, the codeword c2 = (
1 | f (x)2 | 0 | e(x)2).

b. ε = 1 and wtH (e(x)) is odd, G1 produces c1(x) = (1 | e(x) | 1 | f (x)
+ j (x)). Applying

(
1 | e(x)2) as an information vector to G2, we have a

codeword c2(x) = (
1 | e(x)2n(x) + j (x) | 1 | e(x)2) = (

1 | f (x)2 + j (x)
| 1 | e(x)2).

c. ε = 0 and wtH (e(x)) is even, G1 produces a codeword c1(x) = (0 | e(x) | 0
| f (x)). Applying

(
0 | e(x)2) as an information vector to G2, we have

another codeword c2(x) = (
0 | e(x)2n(x) | 0 | e(x)2) = (

0 | f (x)2 | 0
| e(x)2).

d. ε = 1 and wtH (e(x)) is even, G1 produces c1(x) = (1 | e(x) | 0 | f (x)
+ j (x)). Applying

(
1 | e(x)2) as an information vector to G2, we have a

codeword c2(x) = (
0 | e(x)2n(x) + j (x) | 1 | e(x)2) = (

0 | f (x)2 + j (x)
| 1 | e(x)2).

It is clear that in all cases, wtH (c1(x)) = wtH (c2(x)) since wtH (v(x)) =
wtH (v(x)2) and wtH (v(x) + j (x)) = wtH (v(x)2 + j (x)) for some polynomial
v(x). Thismeans that given an information vector, there always exist two distinct
codewords of the same weight.

From Lemma 9.7, it follows that, in order to count the number of codewords of
weight w, we only require

w/2∑
i=1

(
k

i

)

codewords to be enumerated and if Aw denotes the number of codewords of weightw,
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Aw = aw/2 + 2
w/2−1∑
i=1

ai (9.26)

where ai is the number of weight w codewords which have i non-zeros in the first k
coordinates.

Similarly, the commonly used method to compute the minimum distance of half-
rate codes with two full-rank generator matrices of mutually disjoint information
sets, for example, see van Dijk et al. [18], assuming that d is the minimum distance
of the code, requires as many as

S = 2
d/2−1∑
i=1

(
n

i

)

codewords to be enumerated. Following Lemma 9.7, only S/2 codewords are
required forPp andBp for p ≡ −3 (mod 8), and self-dual double-circulant codes.
Note that the bound d/2 − 1may be improved for singly even and doubly even codes,
but we consider the general case here.

9.6 Weight Distributions

The automorphism group of both (p + 1, 1
2 (p + 1), d) extended QR and (2(p +

1), p + 1, d) quadratic double-circulant codes contains the projective special linear
group, PSL2(p). LetH be a subgroup of the automorphism group of a linear code,
and the number of codewords of weight i , denoted by Ai , can be categorised into
two classes:

1. a class of weight i codewords which are invariant under some element ofH ; and
2. a class of weight i codewords which forms an orbit of size |H |, the order ofH .

In the other words, if c is a codeword of this class, applying all elements of H
to c, |H | distinct codewords are obtained.

Thus, we can write Ai in terms of congruence as follows:

Ai = ni × |H | + Ai (H ),

≡ Ai (H ) (mod |H |) (9.27)

where Ai (H ) is the number of codewords of weight i fixed by some element of
H . This was originally shown by Mykkeltveit et al. [14], where it was applied to
extended QR codes for primes 97 and 103.
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9.6.1 The Number of Codewords of a Given Weight
in Quadratic Double-Circulant Codes

For Bp, we shall choose H = PSL2(p), which has order |H | = 1
2 p(p

2 − 1). Let
the matrix

[
a b
c d

]
represent an element of PSL2(p), see (9.23). Since |H | can be

factorised as |H | = ∏
j q

e j
j , where q j is a prime and e j is some integer, Ai (H )

(mod |H |) can be obtained by applying the Chinese remainder theorem to Ai (Sq j )

(mod q
e j
j ) for all q j that divides |H |, where Sq j is the Sylow-q j -subgroup of H .

In order to compute Ai (Sq j ), a subcode ofBp which is invariant under Sq j needs to
be obtained in the first place. This invariant subcode, in general, has a considerably
smaller dimension thanBp, and hence, its weight distribution can be easily obtained.

For each odd prime q j , Sq j is a cyclic group which can be generated by some[
a b
c d

] ∈ PSL2(p) of order q j . Because Sq j is cyclic, it is straightforward to obtain
the invariant subcode, from which we can compute Ai (Sq j ).

On the other hand, the case of q j = 2 is more complicated. For q j = 2, S2 is a
dihedral group of order 2m+1, where m + 1 is the maximum power of 2 that divides
|H | [? ]. For p = 8m ± 3, we know that

|H | = 1

2
(8m ± 3)

(
(8m ± 3)2 − 1

) = 22
(
64m3 ± 72m2 + 26m ± 3

)
,

which shows that the highest power of 2 that divides |H | is 22 (m = 1). Following
[? ], there are 2m + 1 subgroups of order 2 in S2, namely

H2 = {1, P},
G0

2 = {1, T }, and

G1
2 = {1, PT },

where P, T ∈ PSL2(p), P2 = T 2 = 1 and T PT−1 = P−1.
Let T = [

0 p−1
1 0

]
, which has order 2. It can be shown that any order 2 permutation,

P = [
a b
c d

]
, if a constraint b = c is imposed, we have a = −d. All these subgroups,

however, are conjugates in PSL2(p) [? ] and therefore, the subcodes fixed by G0
2, G

1
2

and H2 have identical weight distributions and considering any of them, say G0
2, is

sufficient.
Apart from 2m + 1 subgroups of order 2, S2 also contains a cyclic subgroup of

order 4, 2m−1 non-cyclic subgroups of order 4, and subgroups of order 2 j for j ≥ 3.
Following [14], only the subgroups of order 2 and the non-cyclic subgroups of

order 4 make contributions towards Ai (S2). For p ≡ ±3 (mod 8), there is only
one non-cyclic subgroup of order 4, denoted by G4, which contains, apart from an
identity, three permutations of order 2 [? ], i.e. a Klein 4 group,

G4 = {1, P, T, PT }.
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Having obtained Ai (G0
2) and Ai (G4), following the argument in [14], the number of

codewords of weight i that are fixed by some element of S2 is given by

Ai (S2) ≡ 3Ai (G
0
2) − 2Ai (G4) (mod 4). (9.28)

In summary, in order to deduce the modular congruence of the number of weight
i codewords inBp, it is sufficient to do the following steps:

1. compute the number of weight i codewords in the subcodes fixed by G0
2, G4 and

Sq , for all odd primes q that divide |H |;
2. apply (9.28) to Ai (G0

2) and Ai (G4) to obtain Ai (S2); and then
3. apply the Chinese remainder theorem to Ai (S2) and all Ai (Sq) to obtain Ai (H )

(mod |H |).
GivenBp and an element of PSL2(p), how can we find the subcode consisting of

the codewords fixed by this element? Assume that Z = [
a b
c d

] ∈ PSL2(p) of prime
order. Let cli (resp. cri ) and cli ′ (resp. cri ′ ) denote the i th coordinate and πZ (i)th
coordinate (i th coordinate with the respect to permutation πZ ), in the left (resp.
right) circulant form, respectively. The invariant subcode can be obtained by solving
a set of linear equations consisting of the parity-check matrix of Bp (denoted by
H), cli + cli ′ = 0 (denoted by π Z (L)) and cri + cri ′ = 0 (denoted by π Z (R)) for all
i ∈ Fp ∪ {∞}, i.e.

H sub =
H

π Z (L)

π Z (R)

.

The solution to H sub is amatrix of rank r > (p + 1), which is the parity-checkmatrix
of the (2(p + 1), 2(p + 1) − r, d ′) invariant subcode. For subgroup G4, which con-
sists of permutations P , T and PT , we need to solve the following matrix

H sub =

H

π P(L)

π P(R)

πT (L)

πT (R)

π PT (L)

π PT (R)

to obtain the invariant subcode. Note that the parity-check matrix ofBp is assumed
to have the following form:
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H =

l∞ l0 . . . l p−1 r∞ r0 . . . rp−1

0 1
... BT

... I p

0 1
1 1 . . . 1 0 0 . . . 0

. (9.29)

One useful application of the modular congruence of the number of codewords
of weight w is to verify, independently, the number of codewords of a given weight
w that were computed exhaustively.

Computing the number of codewords of a given weight in small codes using a
single-threaded algorithm is tractable, but for longer codes, it is necessary to use
multiple computers working in parallel to produce a result within a reasonable time.
Even so it can take several weeks, using hundreds of computers, to evaluate a long
code. In order to do the splitting, the codeword enumeration task is distributed among
all of the computers and each computer just needs to evaluate a predetermined number
of codewords, finding the partial weight distributions. In the end, the results are
combined to give the total number of codewords of a given weight. There is always
the possibility of software bugs or mistakes to be made, particularly in any parallel
computing scheme. The splitting may not be done correctly or double-counting or
miscounting introduced as a result, apart frompossible errors in combining the partial
results. Fortunately, the modular congruence approach can also provide detection of
computing errors by revealing inconsistencies in the summed results. The importance
of this facet of modular congruence will be demonstrated in determining the weight
distributions of extended QR codes in Sect. 9.6.2. In the following examples wework
through the application of themodular congruence technique in evaluating theweight
distributions of the quadratic double-circulant codes of primes 37 and 83.

Example 9.1 For prime 37, there exists an FSD (76, 38, 12) quadratic double-
circulant code, B37. The weight enumerator of an FSD code is given by Gleason’s
theorem [15]

A(z) =
� n
8 �∑

i=0

Ki (1 + z2)
n
2 −4i (z2 − 2z4 + z6)i (9.30)

for integers Ki . The number of codewords of any weightw is given by the coefficient
of zw of A(z). In order to compute A(z) of B37, we need only to compute A2i for
6 ≤ i ≤ 9. Using the technique described in Sect. 9.5, the number of codewords of
desired weights is obtained and then substituted into (9.30). The resulting weight
enumerator function giving the whole weight distribution of the (76, 38, 12) code,
B37 is
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A(z) = (
1 + z76

)+ 2109 × (
z12 + z64

)+
86469 × (

z16 + z60
)+ 961704 × (

z18 + z58
)+

7489059 × (
z20 + z56

)+ 53574224 × (
z22 + z54

)+
275509215 × (

z24 + z52
)+ 1113906312 × (

z26 + z50
)+

3626095793 × (
z28 + z48

)+ 9404812736 × (
z30 + z46

)+
19610283420 × (

z32 + z44
)+ 33067534032 × (

z34 + z42
)+

45200010670 × (
z36 + z40

)+ 50157375456 × z38.

(9.31)

Let H = PSL2(37), and we know that |H | = 22 × 32 × 19 × 37 = 25308. Con-
sider the odd primes as factors q. For q = 3,

[
0 1
36 1

]
generates the following permu-

tation of order 3:

(∞, 0, 1)(2, 36, 19)(3, 18, 13)(4, 12, 10)(5, 9, 23)(6, 22, 7)(8, 21, 24)

(11)(14, 17, 30)(15, 29, 33)(16, 32, 31)(20, 35, 25)(26, 34, 28)(27)

The corresponding invariant subcode has a generator matrix G(S3) of dimension 14,
which is given by

G(S3) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

and its weight enumerator function is

A(S3)(z) = (
1 + z76

)+ 3 × (
z12 + z64

)+ 24 × (
z16 + z60

)+
54 × (

z18 + z58
)+ 150 × (

z20 + z56
)+ 176 × (

z22 + z54
)+

171 × (
z24 + z52

)+ 468 × (
z26 + z50

)+ 788 × (
z28 + z48

)+
980 × (

z30 + z46
)+ 1386 × (

z32 + z44
)+ 1350 × (

z34 + z42
)+

1573 × (
z36 + z40

)+ 2136 × z38.
(9.32)

For q = 19,
[

0 1
36 3

]
generates the following permutation of order 19:

(∞, 0, 25, 5, 18, 32, 14, 10, 21, 2, 1, 19, 30, 26, 8, 22, 35, 15, 3)

(4, 36, 28, 34, 31, 33, 16, 17, 29, 27, 20, 13, 11, 23, 24, 7, 9, 6, 12).

The resulting generator matrix of the invariant subcode G(S19), which has dimension
2, is
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G(S19) = [ 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

and its weight enumerator function is

A(S19)(z) = 1 + 2z38 + z76. (9.33)

For the last odd prime, q = 37, a permutation of order 37

(∞, 0, 18, 24, 27, 14, 30, 15, 13, 32, 25, 26, 33, 19, 7, 4, 6, 23, 34,

1, 12, 29, 31, 28, 16, 2, 9, 10, 3, 22, 20, 5, 21, 8, 11, 17, 35)(36)

is generated by
[

0 1
36 35

]
and it turns out that the corresponding invariant subcode, and

hence, the weight enumerator function, are identical to those of q = 19.
For q = 2, subcodes fixed by some element of G0

2 and G4 are required. We have
P = [

3 8
8 34

]
and T = [

0 36
1 0

]
, and the resulting order 2 permutations generated by P ,

T and PT are

(∞, 5)(0, 22)(1, 17)(2, 21)(3, 29)(4, 16)(6, 31)(7, 18)(8, 26)(9, 30)(10, 25)

(11, 34)(12, 14)(13, 36)(15)(19, 28)(20, 24)(23, 27)(32)(33, 35)

(∞, 0)(1, 36)(2, 18)(3, 12)(4, 9)(5, 22)(6)(7, 21)(8, 23)(10, 11)(13, 17)

(14, 29)(15, 32)(16, 30)(19, 35)(20, 24)(25, 34)(26, 27)(28, 33)(31)

and

(∞, 22)(0, 5)(1, 13)(2, 7)(3, 14)(4, 30)(6, 31)(8, 27)(9, 16)(10, 34)(11, 25)

(12, 29)(15, 32)(17, 36)(18, 21)(19, 33)(20)(23, 26)(24)(28, 35)

respectively. It follows that the corresponding generator matrices and weight enu-
merator functions of the invariant subcodes are

G(G0
2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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which has dimension 20, with

A(G0
2)(z) = (

1 + z76
)+ 21 × (

z12 + z64
)+ 153 × (

z16 + z60
)+

744 × (
z18 + z58

)+ 1883 × (
z20 + z56

)+ 4472 × (
z22 + z54

)+
10119 × (

z24 + z52
)+ 21000 × (

z26 + z50
)+ 36885 × (

z28 + z48
)+

58656 × (
z30 + z46

)+ 85548 × (
z32 + z44

)+ 108816 × (
z34 + z42

)+
127534 × (

z36 + z40
)+ 136912 × z38

(9.34)

and

G(G4) =

⎡
⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎦ ,

which has dimension 12, with

A(G4)(z) = (
1 + z76

)+ 3 × (
z12 + z64

)+ 11 × (
z16 + z60

)+
20 × (

z18 + z58
)+ 51 × (

z20 + z56
)+ 56 × (

z22 + z54
)+

111 × (
z24 + z52

)+ 164 × (
z26 + z50

)+ 187 × (
z28 + z48

)+
224 × (

z30 + z46
)+ 294 × (

z32 + z44
)+ 328 × (

z34 + z42
)+

366 × (
z36 + z40

)+ 464 × z38

(9.35)

respectively. Consider the number of codewords of weight 12, from (9.31)−(9.35),
we know that A12(G0

2) = 21 and A12(G4) = 3; applying (9.28),

A12(S2) ≡ 3 × 21 − 2 × 3 (mod 4) ≡ 1 (mod 4)

and thus, we have the following set of simultaneous congruences:

A12(S2) ≡ 1 (mod 22)

A12(S3) ≡ 3 (mod 32)

A12(S19) ≡ 0 (mod 19)

A12(S37) ≡ 0 (mod 37).

Following the Chinese remainder theorem, a solution to the above congruences,
denotedby A12(H ), is congruentmoduloLCM{22, 32, 19, 37},whereLCM{22, 32, 19,
37} is the least common multiple of the moduli 22, 32, 19 and 37, which is equal to
22 × 32 × 19 × 37 = 25308 in this case. Since these moduli are pairwise coprime,
by the extended Euclidean algorithm, we can write
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1 = 4 × 1582 + 25308

4
× (−1)

1 = 9 × 625 + 25308

9
× (−2)

1 = 19 × 631 + 25308

19
× (−9)

1 = 37 × 37 + 25308

37
× (−2).

A solution to the congruences above is given by

A12(H ) = 1 ×
[
(−1)

25308

4

]
+ 3 ×

[
(−2)

25308

9

]
+ 0 ×

[
(−9)

25308

19

]

+ 0 ×
[
(−2)

25308

37

]
(mod 25308)

= − 1 × 6327 + −6 × 2812 (mod 25308)

= 2109 (mod 25308)

= 25308n12 + 2109.

Referring to the weight enumerator function, (9.31), we can immediately see that
n12 = 0, indicating that A12 has been accurately evaluated. Repeating the above pro-
cedures for weights larger than 12, we have Table9.3 which shows that the weight
distributions of B37 are indeed accurate. In fact, since the complete weight distrib-

Table 9.3 Modular congruence weight distributions of B37

i/n − i Ai (S2) Ai (S3) Ai (S19) Ai (S37) Ai (H ) ni in

mod 22 mod 32 mod 19 mod 37 mod 25308 Ai = 25308ni + Ai (H )

0/76 1 1 1 1 1 0

12/64 1 3 0 0 2109 0

16/60 1 6 0 0 10545 3

18/58 0 0 0 0 0 38

20/56 3 6 0 0 23199 295

22/54 0 5 0 0 22496 2116

24/52 3 0 0 0 6327 10886

26/50 0 0 0 0 0 44014

28/48 1 5 0 0 16169 143278

30/46 0 8 0 0 5624 371614

32/44 0 0 0 0 0 774865

34/42 0 0 0 0 0 1306604

36/40 2 7 0 0 23902 1785996

38 0 3 2 2 7032 1981878
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utions can be obtained once the first few terms required by Gleason’s theorem are
known, verification of these few terms is sufficient.

Example 9.2 Gulliver et al. [6] have shown that the (168, 84, 24) doubly even self-
dual quadratic double-circulant code B83 is not extremal since it has minimum
distance less than or equal to 28. The weight enumerator of a Type-II code of length
n is given by Gleason’s theorem, which is expressed as [15]

A(z) =
�n/24�∑
i=0

Ki (1 + 14z4 + z8)
n
8 −3i {z4(1 − z4)4}i , (9.36)

where Ki are some integers. As shown by (9.36), only the first few terms of Ai are
required in order to completely determine the weight distribution of a Type-II code.
For B83, only the first eight terms of Ai are required. Using the parallel version
of the efficient codeword enumeration method described in Chap.5, Sect. 9.5, we
determined that all of these eight terms are 0 apart from A0 = 1, A24 = 571704 and
A28 = 17008194.

We need to verify independently whether or not A24 and A28 have been correctly
evaluated. As in the previous example, the modular congruence method can be used
for this purpose. For p = 83, we have |H | = 22 × 3 × 7 × 41 × 83 = 285852. We
will consider the odd prime cases in the first place.

For prime q = 3, a cyclic group of order 3, S3 can be generated by
[

0 1
82 1

] ∈
PSL2(83), and we found that the subcode invariant under S3 has dimension 28 and
has 63 and 0 codewords of weights 24 and 28, respectively.

For prime q = 7, we have
[

0 1
82 10

]
which generates S7. The subcode fixed by S7

has dimension 12 and no codewords of weight 24 or 28 are contained in this subcode.
Similarly, for prime q = 41, the subcode fixed by S41, which is generated by[

0 1
82 4

]
and has dimension 4, contains no codewords of weight 24 or 28.

Finally, for prime q = 83, the invariant subcode of dimension 2 contains the all-
zeros, the all-ones, {0, 0, . . . , 0, 0︸ ︷︷ ︸

84

, 1, 1, . . . , 1, 1︸ ︷︷ ︸
84

} and {1, 1, . . . , 1, 1︸ ︷︷ ︸
84

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
84

}

codewords only. The cyclic group S83 is generated by
[

0 1
82 81

]
.

For the case of q = 2, we have P = [
1 9
9 82

]
and T = [

0 82
1 0

]
. The subcode fixed

by S2, which has dimension 42, contains 196 and 1050 codewords of weights 24
and 28, respectively. Meanwhile, the subcode fixed by G4, which has dimension 22,
contains 4 and 6 codewords of weights 24 and 28, respectively.

Thus, using (9.28), the numbers of codewords of weights 24 and 28 fixed by S2
are

A24(S2) = 3 × 196 − 2 × 4 ≡ 0 (mod 4), and

A28(S2) = 3 × 1050 − 2 × 6 ≡ 2 (mod 4)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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and by applying the Chinese remainder theorem to all Ai (Sq) for i = 24, 28, we
arrive at

A24 = n24 × 285852 (9.37a)

and

A28 = n28 × 285852 + 142926 . (9.37b)

From (9.37) we have now verified A24 and A28, since they have equality for non-
negative integers n24 and n28 (n24 = 2 and n28 = 59). Using Gleason’s theorem,
i.e. (9.36), the weight enumerator function of the (168, 84, 24) codeB83 is obtained
and it is given by

A(z) = (z0 + z168)+
571704 × (z24 + z144)+
17008194 × (z28 + z140)+
5507510484 × (z32 + z136)+
1252615755636 × (z36 + z132)+
166058829151929 × (z40 + z128)+
13047194638256310 × (z44 + z124)+
629048483051034984 × (z48 + z120)+
19087129808556586056 × (z52 + z116)+
372099697089030108600 × (z56 + z112)+
4739291490433882602066 × (z60 + z108)+
39973673426117369814414 × (z64 + z104)+
225696677517789500207052 × (z68 + z100)+
860241109321000217491044 × (z72 + z96)+
2227390682939806465038006 × (z76 + z92)+
3935099587279668544910376 × (z80 + z88)+
4755747411704650343205104 × z84 .

(9.38)

For the complete weight distributions and their congruences of the (2(p + 1),
p + 1, d) quadratic double-circulant codes, for 11 ≤ p ≤ 83, except p = 37 as it
has already been given in Example 9.1, refer to Appendix “Weight Distributions of
Quadratic Double-Circulant Codes and their Modulo Congruence”.
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9.6.2 The Number of Codewords of a Given Weight
in Extended Quadratic Residue Codes

Wehavemodified themodular congruence approach ofMykkeltveit et al. [14], which
was originally introduced for extended QR codes L̂p, so that it is applicable to the
quadratic double-circulant codes. Whilst Bp contains one non-cyclic subgroup of
order 4, L̂p contains two distinct non-cyclic subgroups of this order, namely G0

4 and
G1

4. As a consequence, (9.28) becomes

Ai (S2) ≡ (2m + 1)Ai (H2) − 2m−1Ai (G
0
4) − 2m−1Ai (G

1
4) (mod 2m+1), (9.39)

where 2m+1 is the highest power of 2 that divides |H |. Unlike Bp, where there are
two circulants in which each one is fixed by PSL2(p), a linear group PSL2(p) acts on
the entire coordinates of L̂p. In order to obtain the invariant subcode, we only need
a set of linear equations containing the parity-check matrix of L̂p, which is arranged
in (0, 1, . . . , p − 2, p − 1)(∞) order, and ci + ci ′ = 0 for all i ∈ Fp ∪ {∞}. Note
that ci and ci ′ are defined in the same manner as in Sect. 9.6.1.

We demonstrate the importance of this modular congruence approach by proving
that the published results for the weight distributions of L̂151 and L̂137 are incorrect.
However, first let us derive the weight distribution of L̂167.

Example 9.3 There exists an extendedQR code L̂167 which has identical parameters
(n = 168, k = 84 and d = 24) as the code B83. Since L̂167 can be put into double-
circulant form and it is Type-II self-dual, the algorithm in Sect. 9.5 can be used to
compute the number of codewords of weights 24 and 28, denoted by A′

24 and A′
28 for

convenience, from which we can use Gleason’s theorem (9.36) to derive the weight
enumerator function of the code, A′(z). By codeword enumeration using multiple
computers we found that

A′
24 = 776216

A′
28 = 18130188.

(9.40)

In order to verify the accuracy of A′
24 and A′

28, the modular congruence method
is used. In this case, we have Aut(L̂167) ⊇ H = PSL2(167). We also know that
|PSL2(167)| = 23 × 3 × 7 × 83 × 167 = 2328648. Let P = [

12 32
32 155

]
and T =[

0 166
1 0

]
.

Let the permutations of orders 3, 7, 83 and 167 be generated by
[

0 1
166 1

]
,
[

0 1
166 19

]
,[

0 1
166 4

]
and

[
0 1
166 165

]
, respectively. The numbers of codewords of weights 24 and 28

in the various invariant subcodes of dimension k are

H2 G0
4 G1

4 S3 S7 S83 S167
k 42 22 21 28 12 2 1

A24 252 6 4 140 0 0 0
A28 1812 36 0 0 6 0 0
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For L̂167, equation (9.39) becomes

Ai (S2) ≡ 5 × Ai (H2) − 2 × Ai (G
0
4) − 2 × Ai (G

1
4) (mod 8) . (9.41)

It follows that

A24(S2) ≡ 0 (mod 8)

A28(S2) ≡ 4 (mod 8)

and thus,

A′
24 = n′

24 × 2328648 + 776216 (9.42a)

and

A′
28 = n′

28 × 2328648 + 1829652 (9.42b)

from the Chinese remainder theorem.
From (9.37a) and (9.42a), we can see thatB83 and L̂167 are indeed inequivalent.

This is because for integers n24, n′
24 ≥ 0, A24 �= A′

24.
Comparing Eq. (9.40) with (9.42a) and (9.42b) establishes that A′

24 = 776216
(n′

24 = 0) and A′
28 = 18130188 (n′

28 = 7). Theweight enumerator of L̂167 is derived
from (9.36) and it is given in (9.43). In comparison to (9.38), it may be seen that
L̂167 is a slightly inferior code than B83 having more codewords of weights 24, 28
and 32.

A′(z) =(z0 + z168)+
776216 × (z24 + z144)+
18130188 × (z28 + z140)+
5550332508 × (z32 + z136)+
1251282702264 × (z36 + z132)+
166071600559137 × (z40 + z128)+
13047136918828740 × (z44 + z124)+
629048543890724216 × (z48 + z120)+
19087130695796615088 × (z52 + z116)+
372099690249351071112 × (z56 + z112)+
4739291519495550245228 × (z60 + z108)+
39973673337590380474086 × (z64 + z104)+
225696677727188690570184 × (z68 + z100)+
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860241108921860741947676 × (z72 + z96)+
2227390683565491780127428 × (z76 + z92)+
3935099586463594172460648 × (z80 + z88)+
4755747412595715344169376 × z84 .

(9.43)

Example 9.4 Gaborit et al. [4] gave A2i , for 22 ≤ 2i ≤ 32, of L̂137 and we will
check the consistency of the published results. For p = 137, we have |PSL2(137)| =
23 × 3 × 17 × 23 × 137 = 1285608 and we need to compute A2i (Sq), where 22 ≤
2i ≤ 32, for all primes q dividing |PSL2(137)|. Let P = [

137 51
51 1

]
and T = [

0 136
1 0

]
.

Let
[

0 1
136 1

]
,
[

0 1
136 6

]
and

[
0 1
136 11

]
be generators of permutation of orders 3, 17 and

23, respectively. It is not necessary to find a generator of permutation of order 137
as it fixes the all-zeros and all-ones codewords only. Subcodes that are invariant
under G0

2, G
0
4, G

1
4, S3, S17 and S23 are obtained and the number of weight i , for

22 ≤ 2i ≤ 32, codewords in these subcodes is then computed. The results are shown
as follows, where k denotes the dimension of the corresponding subcode,

H2 G0
4 G1

4 S3 S17 S23 S137
k 35 19 18 23 5 3 1
A22 170 6 6 0 0 0 0
A24 612 10 18 46 0 0 0
A26 1666 36 6 0 0 0 0
A28 8194 36 60 0 0 0 0
A30 34816 126 22 943 0 0 0
A32 114563 261 189 0 0 0 0

.

We have

Ai (S2) ≡ 5 × Ai (H2) − 2 × Ai (G
0
4) − 2 × Ai (G

1
4) (mod 8) ,

for L̂137, which is identical to that for L̂167 since they both have 23 as the highest
power of 2 that divides |H |. Using this formulation, we obtain

A22(S2) = 2 (mod 8)

A24(S2) = 4 (mod 8)

A26(S2) = 6 (mod 8)

A28(S2) = 2 (mod 8)

A30(S2) = 0 (mod 8)

A32(S2) = 3 (mod 8)

and combining all the results using the Chinese remainder theorem, we arrive at
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A22 = n22 × 1285608 + 321402

A24 = n24 × 1285608 + 1071340

A26 = n26 × 1285608 + 964206

A28 = n28 × 1285608 + 321402

A30 = n30 × 1285608 + 428536

A32 = n32 × 1285608 + 1124907

(9.44)

for some non-negative integers ni . Comparing these to the results in [4], we can
immediately see that n22 = 0, n24 = 1, n26 = 16, n28 = 381, and both A30 and A32

were incorrectly reported. By codeword enumeration using multiple computers in
parallel, we have determined that

A30 = 6648307504

A32 = 77865259035

hence, referring to (9.44) it is found that n30 = 5171 and n32 = 60566.

Example 9.5 Gaborit et al. [4] also published the weight distribution of L̂151 and
we will show that this has also been incorrectly reported. For L̂151, |PSL2(151)| =
23 × 3 × 52 × 19 × 151 = 1721400 and we have P = [

104 31
31 47

]
and T = [

0 150
1 0

]
.

Let
[

0 1
150 1

]
,
[

0 1
150 27

]
and

[
0 1

150 8

]
be generators of permutation of orders 3, 5 and 19,

respectively. The numbers of weight i codewords for i = 20 and 24, in the various
fixed subcodes of dimension k, are

H2 G0
4 G1

4 S3 S5 S19 S151
k 38 20 19 26 16 4 1
A20 38 2 0 25 15 0 0
A24 266 4 4 100 0 0 0

and Ai (S2) is again the same as that for primes 167 and 137, see (9.41). Using this
equation, we have A20(S2) = A24(S2) = 2 (mod 8). Following the Chinese remain-
der theorem, we obtain

A20 = n20 × 1721400 + 28690

A24 = n24 × 1721400 + 717250
. (9.45)

It follows that A20 is correctly reported in [4], but A24 is incorrectly reported as
717230. Using the method in Sect. 9.5 implemented on multiple computers, we have
determined that

A20 = 28690

A24 = 717250,
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hence n20 = 0 and n24 = 0 in (9.45). Since A20 and A24 are required to derive the
complete weight distribution of L̂151 according to Gleason’s theorem for Type-II
codes (9.36), the weight distribution of L̂151 given in [4] is not correct. The correct
weight distribution of this code, given in terms of the weight enumerator function, is

A(z) = (
z0 + z152

)+
28690 × (

z20 + z132
)+

717250 × (
z24 + z128

)+
164250250 × (

z28 + z124
)+

39390351505 × (
z32 + z120

)+
5498418962110 × (

z36 + z116
)+

430930711621830 × (
z40 + z112

)+
19714914846904500 × (

z44 + z108
)+

542987434093298550 × (
z48 + z104

)+
9222363801696269658 × (

z52 + z100
)+

98458872937331749615 × (
z56 + z96

)+
670740325520798111830 × (

z60 + z92
)+

2949674479653615754525 × (
z64 + z88

)+
8446025592483506824150 × (

z68 + z84
)+

15840564760239238232420 × (
z72 + z80

)+
19527364659006697265368 × z76.

(9.46)

9.7 Minimum Distance Evaluation: A Probabilistic
Approach

An interesting observation is that theminimumweight codewords of L̂p, for p ≡ ±1
(mod 8), andBp, for p ≡ ±3 (mod 8) are always contained in one or more of their
fixed subcodes. At least, this is true for all known cases (n ≤ 200) and this is depicted
in Table9.4. We can see that the subcode fixed by H2 appears in all the known cases.
In Table9.4, the column dU denotes the minimum distance upper bound of extremal
doubly even self-dual codes of a given length and the last column indicates the
various subgroups whose fixed subcodes contain the minimum weight codewords.
The highest n, for which the minimum distance of extended QR codes is known,
is 168 [5] and we provide further results for n = 192, 194, and 200. We obtained
the minimum distance of these extended QR codes using the parallel version of the
minimum distance algorithm for cyclic codes (QR codes are cyclic) described in
Chap.5, Sect. 5.4. Note that the fact that the code is singly even (n = 194) or doubly

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Table 9.4 The minimum distance of L̂p and Bp for 12 ≤ n ≤ 200

n p p mod 8 d dU Subgroups

12 5 −3 4 H2, G4

18 17 1 6 H2, G0
4, S3

24 23 −1 8 8 H2, G0
4, G

1
4

28 13 −3 6 H2, G4, S3
32 31 −1 8 8 H2, G0

4, S3
40 19 3 8 8 H2, G4, S3
42 41 1 10 H2, G1

4, S5
48 47 −1 12 12 H2, G1

4, S5
60 29 −3 12 H2, S3
72 71 −1 12 16 H2, G1

4, S3, S5
74 73 1 14 H2, G0

4, G
1
4, S3

76 37 −3 12 H2, G4, S3
80 79 −1 16 16 H2, G0

4, G
1
4, S3

88 43 3 16 16 H2, S3, S7
90 89 1 18 H2, G0

4, G
1
4, S3

98 97 1 16 H2, G0
4

104 103 −1 20 20 H2, G0
4, S3

108 53 −3 20 H2, G4

114a 113 1 16 H2, G1
4, S7

120 59 3 20 24 H2, G4, S5
124 61 −3 20 H2, G4, S3, S5
128 127 −1 20 24 H2, S3
136 67 3 24 24 H2, G4, S3, S11
138 137 1 22 H2, G0

4, G
1
4

152a 151 −1 20 28 H2, G0
4, S3, S5

168 167 −1 24 32 H2, G0
4, G

1
4, S3

168 83 3 24 32 H2, G4, S3
192 191 −1 28 36 H2, G1

4

194 193 1 28 H2, G1
4, S3

200 199 −1 32 36 H2, G0
4, G

1
4, S3

aExtended duadic code [12] has higher minimum distance

even (n = 192, 200) is also taken into account in order to reduce the number of
codewords that need to be enumerated, see Chap.5, Sects. 5.2.3 and 5.4. This code
property is also taken into account for computing the minimum distance ofBp using
the method described in Sect. 9.5.

Based on the above observation, a probabilistic approach to minimum distance
evaluation is developed. Given L̂p orBp, the minimum distance of the code is upper
bounded by

d ≤ min
Z={G0

2,G
0
4,G

1
4,Sq1 ,Sq2 ,...}

{d(Z)} , (9.47)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Table 9.5 The minimum distance of L̂p and Bp for 204 ≤ n ≤ 450

n p p mod 8 d dU Subgroups

203 101 −3 ≤ 24 H2, G4, S5
216 107 3 ≤ 24 40 H2, G4, S3
220 109 −3 ≤ 30 H2, S3
224 223 −1 ≤ 32 40 H2, G0

4, G
1
4

234a 233 1 ≤ 26 H2, S13
240b 239 −1 ≤ 32 44 H2, G1

4

242b 241 1 ≤ 32 H2, G1
4, S3, S5

258b 257 1 ≤ 34 H2, G1
4

264b 263 −1 ≤ 36 48 H2, G0
4, S3

264b 131 3 ≤ 40 48 H2, G4

272b 271 −1 ≤ 40 48 H2, G0
4, G

1
4, S3

280b 139 3 ≤ 36 48 H2, S3
282b 281 1 ≤ 36 H2, G0

4, G
1
4, S3

300b 149 −3 ≤ 36 H2, G4

312b 311 −1 ≤ 36 56 H2, G0
4, S3

314b 313 1 ≤ 40 H2, G1
4, S3

316b 157 −3 ≤ 40 H2, S3
328b 163 3 ≤ 44 56 H2, G4

338b 337 1 ≤ 40 H2, G1
4, S3

348b 173 −3 ≤ 42 H2, S3
354b 353 1 ≤ 42 H2, G1

4

360b 359 −1 ≤ 40 64 H2, G0
4, G

1
4, Z5

360b 179 3 ≤ 40 64 H2, G4, Z5

364b 181 −3 ≤ 40 H2, G4, Z3

368b 367 −1 ≤ 48 64 H2, G0
4, Z3,

384b 383 −1 ≤ 48 68 H2, G0
4, Z3

396b 197 −3 ≤ 44 H2, Z11

402b 201 1 ≤ 42 H2, G0
4, G

1
4, Z5

410b 409 1 ≤ 48 H2, G0
4, Z3

424b 211 3 ≤ 56 72 H2, G4, Z3, Z7

432b 431 −1 ≤ 48 76 H2, G0
4, G

1
4, Z3

434b 433 1 ≤ 38 H2, G0
4, Z3

440b 440 −1 ≤ 48 76 H2, G0
4, G

1
4, Z3

450b 449 1 ≤ 56 H2, G1
4

aExtended duadic code [12] has higher minimum distance
bThe minimum distance of the subcode is computed probabilistically

where d(Z) is the minimum distance of the subcode fixed by Z ∈ PSL2(p) and q
runs through all odd primes that divide |PSL2(p)|. Note that forBp,G0

4 = G1
4 hence,

only one is required. Using (9.47), we give an upper bound of the minimum distance
of L̂p and Bp for all codes where n ≤ 450 and this is tabulated in Table9.5. The
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Fig. 9.1 Minimum distance and the extremal bound for distance of doubly even self-dual codes

various fixed subgroups where the minimum weight codewords are found are given
in the last column of this table. As shown in Tables9.4 and 9.5, there is no extremal
extended QR or quadratic double-circulant codes for 136 < n ≤ 450 and we plot the
minimum distance (or its upper bound for n > 200) against the extremal bound in
Fig. 9.1. From this figure, it is obvious that, as the block length increases, the gap
between the extremal bound and the minimum distance widens and it seems that
longer block lengths will follow the same trend. Thus, we conjecture that n = 136 is
the longest doubly even extremal self-dual double-circulant code. It is worth noting
that, for extended QR codes, the results obtained using this probabilistic method are
the same as those published by Leon [11].

9.8 Conclusions

Bordered double-circulant codes based on primes can be classified into two classes:
(p + 1, (p + 1)/2, d) extended QR codes, for primes ±1 (mod 8), and (2(p +
1), p + 1, d) quadratic double-circulant codes, for primes ±3 (mod 8).

Whilst quadratic double-circulant codes always exist, given a prime p ≡ ±3
(mod 8), bordered double-circulant codes may not exist given a prime p ≡ ±1
(mod 8).

There always exist (2p, p, d) pure double-circulant codes for any prime p ≡ ±3
(mod 8).
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For primes p ≡ −1, 3 (mod 8), the double-circulant codes are self-dual and for
other primes, the double-circulant codes are formally self-dual.

By exploiting the code structure of formally self-dual, double-circulant codes for
p ≡ −3 (mod 8) and also the self-dual double-circulant codes for both pure and
bordered cases, we have shown that, compared to the standard method of evaluation,
the number of codewords required to evaluate the minimum distance or to count the
number of codewords of a given weight can be reduced by a factor of 2.

The automorphismgroup of the (p + 1, (p + 1)/2, d) extendedQRcode contains
the projective special linear group PSL2(p) acting on the coordinates (∞)(0, 1, . . . ,
p − 2, p − 1).

The automorphism group of the (2(p + 1), p + 1, d) quadratic double-circulant
code contains PSL2(p), acting on coordinates (∞)(0, 1, . . . , p − 2, p − 1), applied
simultaneously to left and right circulants.

The number of codewords of weight i of prime-based double-circulant codes,
denoted by Ai , can be written as Ai = ni × |PSL2(p)| + Ai (PSL2(p)) ≡
Ai (PSL2(p)) (mod |PSL2(p)|) where Ai (PSL2(p)) denotes the number of code-
words of weight i that are fixed by some element of PSL2(p). This result was due
to Mykkeltveit et al. [14] and was originally introduced for extended QR codes. We
have shown in this chapter that, with some modifications, this modulo congruence
method can also be applied to quadratic double-circulant codes.

The modulo congruence technique is found to be very useful in verifying the
number of codewords of a given weight obtained exhaustively by computation. We
have shown the usefulness of this method by providing corrections to mistakes in
previously published results of the weight distributions of extended QR codes for
primes 137 and 151.

The weight distribution of the (168, 84, 24) extended QR code, which was previ-
ously unknown, has been evaluated and presented above. There also exists a quadratic
double-circulant code with identical parameters (n, k and d) and the weight dis-
tribution of this code has also been presented above. The (168, 84, 24) quadratic
double-circulant code is a better code than the (168, 84, 24) extended QR code since
it has less low-weight codewords. The usefulness of the modulo congruence method
in checking weight distribution results has been demonstrated in verifying the cor-
rectness of the weight distributions of these two codes.

The weight enumerator polynomial of an extended QR code of prime p, denoted
by AL̂ (z), can be obtained using Gleason’s theorem once the first few terms are
known. Since PSL2(p) is doubly transitive [13], knowing AL̂ (z) implies AL (z),
the weight enumerator polynomial of the corresponding cyclic QR code, is also
known, i.e.

AL (z) = AL̂ (z) + 1 − z

p + 1
A′
L̂

(z)
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where A′
L̂

(z) is the first derivative of AL̂ (z) with the respect to z [19]. As a con-
sequence, we have been able to evaluate the weight distributions of the QR codes
for primes 151 and 167. These are tabulated in Appendix “Weight Distributions of
Quadratic Residues Codes for Primes 151 and 167”, Tables9.19 and 9.20, respec-
tively.

A new probabilistic method to obtain the minimum distance of double-circulant
codes based on primes has been described. This probabilistic approach is based on the
observation that theminimumweight codewords are always contained in one ormore
subcodes fixed by some element of PSL2(p). Using this approach, we conjecture that
there are no extremal double-circulant self-dual codes longer than 136 and that this
is the last extremal code to be found.

9.9 Summary

In this chapter, self-dual and binary double-circulant codes based on primes have
been described in detail. These binary codes are some of the most powerful codes
known and as such form an important class of codes due to their powerful error-
correcting capabilities and their rich mathematical structure. This structure enables
the entire weight distribution of a code to be determined. With these properties,
this family of codes has been a subject of extensive research for many years. For
these codes that are longer than around 150 bits, an accurate determination of the
codeword weight distributions has been an unsolved challenge. We have shown that
the code structure may be used in a new algorithm that requires less codewords to
be enumerated than traditional methods. As a consequence we have presented new
weight distribution results for codes of length 152, 168, 192, 194 and 200. We have
shown how a modular congruence method can be used to check weight distributions
and have corrected somemistakes in previously published results for codes of lengths
137 and 151. For evaluation of the minimum Hamming distance for very long codes
a new probabilistic method has been presented along with results for codes up to
450 bits long. It is conjectured that the (136, 68, 24) self-dual code is the longest
extremal code, meeting the upper bound for minimum Hamming distance, and no
other, longer, extremal code exists.

Appendix

Circulant Analysis p = 11

See Tables 9.6, 9.7 and 9.8.
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Table 9.8 Circulant analysis p = 11, j (x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8 +
x9 + x10, factors of 1 + x p

i j (x)i

1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Weight Distributions of Quadratic Double-Circulant Codes
and their Modulo Congruence

Primes +3 Modulo 8

Prime 11

We have P = [
1 3
3 10

]
and T = [

0 10
1 0

]
, P, T ∈ PSL2(11), and the permutations of

order 3, 5 and 11 are generated by
[

0 1
10 1

]
,
[

0 1
10 3

]
and

[
0 1
10 9

]
, respectively. In addition,

PSL2(11) = 22 · 3 · 5 · 11· = 660

and the weight enumerator polynomials of the invariant subcodes are

A
G0

2
B11

(z) = (
1 + z24

)+ 15 · (z8 + z16
)+ 32 · z12

AG4
B11

(z) = (
1 + z24

)+ 3 · (z8 + z16
)+ 8 · z12

AS3
B11

(z) = (
1 + z24

)+ 14 · z12
AS5
B11

(z) = (
1 + z24

)+ 4 · (z8 + z16
)+ 6 · z12

AS11
B11

(z) = (
1 + z24

)+ 2 · z12 .

Theweight distributions ofB11 and theirmodular congruence are shown inTable9.9.

Table 9.9 Modular congruence weight distributions of B11

i Ai (S2) Ai (S3) Ai (S5) Ai (S11) Ai (H ) ni a Ai

mod 22 mod 3 mod 5 mod 11 mod 660

0 1 1 1 1 1 0 1

8 3 0 4 0 99 1 759

12 0 2 1 2 596 3 2576

16 3 0 4 0 99 1 759

24 1 1 1 1 1 0 1

ani = Ai−Ai (H )

660



Weight Distributions of Quadratic Double-Circulant … 269

Prime 19

We have P = [
1 6
6 18

]
and T = [

0 18
1 0

]
, P, T ∈ PSL2(19), and the permutations of

order 3, 5 and 19 are generated by
[

0 1
18 1

]
,
[

0 1
18 4

]
and

[
0 1
18 17

]
, respectively. In addition,

PSL2(19) = 22 · 32 · 5 · 19· = 3420

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B19
(z) =

(
1 + z40

)
+ 5 ·

(
z8 + z32

)
+ 80 ·

(
z12 + z28

)
+ 250 ·

(
z16 + z24

)
+ 352 · z20

A(G4)

B19
(z) =

(
1 + z40

)
+ 1 ·

(
z8 + z32

)
+ 8 ·

(
z12 + z28

)
+ 14 ·

(
z16 + z24

)
+ 16 · z20

A(S3)
B19

(z) =
(
1 + z40

)
+ 6 ·

(
z8 + z32

)
+ 22 ·

(
z12 + z28

)
+ 57 ·

(
z16 + z24

)
+ 84 · z20

A(S5)
B19

(z) =
(
1 + z40

)
+ 14 · z20

A(S19)
B19

(z) =
(
1 + z40

)
+ 2 · z20.

The weight distributions of B19 and their modular congruence are shown in
Table9.10.

Prime 43

We have P = [
1 16
16 42

]
and T = [

0 42
1 0

]
, P, T ∈ PSL2(43), and the permutations of

order 3, 7, 11 and 43 are generated by
[

0 1
42 1

]
,
[

0 1
42 8

]
,
[

0 1
42 4

]
and

[
0 1
42 41

]
, respectively.

In addition,

PSL2(43) = 22 · 3 · 7 · 11 · 43· = 39732

Table 9.10 Modular congruence weight distributions of B19

i Ai (S2) Ai (S3) Ai (S5) Ai (S19) Ai (H ) ni a Ai

mod 22 mod 32 mod 5 mod 19 mod 3420

0 1 1 1 1 1 0 1

8 1 6 0 0 285 0 285

12 0 4 0 0 760 6 21280

16 2 3 0 0 570 70 239970

20 0 3 4 2 2244 153 525504

24 2 3 0 0 570 70 239970

28 0 4 0 0 760 6 21280

32 1 6 0 0 285 0 285

40 1 1 1 1 1 0 1

ani=
Ai−Ai (H )

3420
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and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B43
(z) =

(
1 + z88

)
+ 44 ·

(
z16 + z72

)
+ 1232 ·

(
z20 + z68

)
+ 10241 ·

(
z24 + z64

)
+

54560 ·
(
z28 + z60

)
+ 198374 ·

(
z32 + z56

)
+ 491568 ·

(
z36 + z52

)
+

839916 ·
(
z40 + z48

)
+ 1002432 · z44

A(G4)

B43
(z) =

(
1 + z88

)
+ 32 ·

(
z20 + z68

)
+ 77 ·

(
z24 + z64

)
+ 160 ·

(
z28 + z60

)
+

330 ·
(
z32 + z56

)
+ 480 ·

(
z36 + z52

)
+ 616 ·

(
z40 + z48

)
+ 704 · z44

A(S3)
B43

(z) =
(
1 + z88

)
+ 7 ·

(
z16 + z72

)
+ 168 ·

(
z20 + z68

)
+ 445 ·

(
z24 + z64

)
+

1960 ·
(
z28 + z60

)
+ 4704 ·

(
z32 + z56

)
+ 7224 ·

(
z36 + z52

)
+

10843 ·
(
z40 + z48

)
+ 14832 · z44

A(S7)
B43

(z) =
(
1 + z88

)
+ 6 ·

(
z16 + z72

)
+ 16 ·

(
z24 + z64

)
+ 6 ·

(
z28 + z60

)
+

9 ·
(
z32 + z56

)
+ 48 ·

(
z36 + z52

)
+ 84 · z44

A(S11)
B43

(z) =
(
1 + z88

)
+ 14 · z44

A(S43)
B43

(z) =
(
1 + z88

)
+ 2 · z44.

The weight distributions of B43 and their modular congruence are shown in
Table9.11.

Prime 59

We have P = [
1 23
23 58

]
and T = [

0 58
1 0

]
, P, T ∈ PSL2(59), and the permutations of

order 3, 5, 29 and 59 are generated by
[

0 1
58 1

]
,
[

0 1
58 25

]
,
[

0 1
58 3

]
and

[
0 1
58 57

]
, respectively.

In addition,

PSL2(59) = 22 · 3 · 5 · 29 · 59· = 102660

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B59
(z) =

(
1 + z120

)
+ 90 ·

(
z20 + z100

)
+ 2555 ·

(
z24 + z96

)
+

32700 ·
(
z28 + z92

)
+ 278865 ·

(
z32 + z88

)
+ 1721810 ·

(
z36 + z84

)
+

7807800 ·
(
z40 + z80

)
+ 26366160 ·

(
z44 + z76

)
+ 67152520 ·

(
z48 + z72

)
+

130171860 ·
(
z52 + z68

)
+ 193193715 ·

(
z56 + z64

)
+ 220285672 · z60



Weight Distributions of Quadratic Double-Circulant … 271

Ta
bl
e
9.
11

M
od
ul
ar

co
ng
ru
en
ce

w
ei
gh
td

is
tr
ib
ut
io
ns

of
B

43

i
A
i(
S 2

)
m
od

22
A
i(
S 3

)
m
od

3
A
i(
S 7

)
m
od

7
A
i(
S 1

1
)
m
od

11
A
i(
S 4

3
)
m
od

43
A
i(
H

)
m
od

39
73
2

n i
a

A
i

0
1

1
1

1
1

1
0

1

16
0

1
6

0
0

32
16
4

0
32
16
4

20
0

0
0

0
0

0
17
6

69
92
83
2

24
1

1
2

0
0

25
06
9

13
48
3

53
57
31
62
5

28
0

1
6

0
0

32
16
4

41
83
87

16
62
33
84
44
8

32
2

0
2

0
0

85
14

56
73
68
3

22
54
26
78
14
70

36
0

0
6

0
0

56
76

35
37
67
93

14
05
59
07
45
15
2

40
0

1
0

0
0

26
48
8

10
47
97
21
9

41
63
80
31
31
79
6

44
0

0
0

3
2

28
81
2

15
02
11
72
9

59
68
21
24
45
44
0

48
0

1
0

0
0

26
48
8

10
47
97
21
9

41
63
80
31
31
79
6

52
0

0
6

0
0

56
76

35
37
67
93

14
05
59
07
45
15
2

56
2

0
2

0
0

85
14

56
73
68
3

22
54
26
78
14
70

60
0

1
6

0
0

32
16
4

41
83
87

16
62
33
84
44
8

64
1

1
2

0
0

25
06
9

13
48
3

53
57
31
62
5

68
0

0
0

0
0

0
17
6

69
92
83
2

72
0

1
6

0
0

32
16
4

0
32
16
4

88
1

1
1

1
1

1
0

1

a n
i
=

A
i−

A
i(
H

)

39
73

2



272 9 Algebraic Quasi Cyclic Codes

A(G4)
B59

(z) =
(
1 + z120

)
+ 6 ·

(
z20 + z100

)
+ 19 ·

(
z24 + z96

)
+ 132 ·

(
z28 + z92

)
+

393 ·
(
z32 + z88

)
+ 878 ·

(
z36 + z84

)
+ 1848 ·

(
z40 + z80

)
+ 3312 ·

(
z44 + z76

)
+

5192 ·
(
z48 + z72

)
+ 7308 ·

(
z52 + z68

)
+ 8931 ·

(
z56 + z64

)
+ 9496 · z60

A(S3)
B59

(z) =
(
1 + z120

)
+ 285 ·

(
z24 + z96

)
+ 21280 ·

(
z36 + z84

)
+

239970 ·
(
z48 + z72

)
+ 525504 · z60

A(S5)
B59

(z) =
(
1 + z120

)
+ 12 ·

(
z20 + z100

)
+ 711 ·

(
z40 + z80

)
+ 2648 · z60

A(S29)
B59

(z) =
(
1 + z120

)
+ 4 ·

(
z32 + z88

)
+ 6 · z60

A(S59)
B59

(z) =
(
1 + z120

)
+ 2 · z60.

The weight distributions of B59 and their modular congruence are shown in
Table9.12.

Prime 67

We have P = [
1 20
20 66

]
and T = [

0 66
1 0

]
, P, T ∈ PSL2(67), and the permutations of

order 3, 11, 17 and 67 are generated by
[

0 1
66 1

]
,
[

0 1
66 17

]
,
[

0 1
66 4

]
and

[
0 1
66 65

]
, respectively.

In addition,

PSL2(67) = 22 · 3 · 11 · 17 · 67· = 150348

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B67
(z) = (

1 + z136
)+ 578 · (z24 + z112

)+ 14688 · (z28 + z108
)+

173247 · (z32 + z104
)+ 1480768 · (z36 + z100

)+ 9551297 · (z40 + z96
)+

46687712 · (z44 + z92
)+ 175068210 · (z48 + z88

)+ 509510400 ·
(
z52 + z84

)
+

1160576876 ·
(
z56 + z80

)
+ 2081112256 · (z60 + z76

)+ 2949597087 · (z64 + z72
)+

3312322944 · z68
A(G4)
B67

(z) = (
1 + z136

)+ 18 · (z24 + z112
)+ 88 · (z28 + z108

)+ 271 · (z32 + z104
)+

816 · (z36 + z100
)+ 2001 · (z40 + z96

)+ 4344 · (z44 + z92
)+

8386 · (z48 + z88
)+ 14144 ·

(
z52 + z84

)
+ 21260 ·

(
z56 + z80

)
+

28336 · (z60 + z76
)+ 33599 · (z64 + z72

)+ 35616 · z68
A(S3)
B67

(z) = (
1 + z136

)+ 66 · (z24 + z112
)+ 682 · (z28 + z108

)+ 3696 · (z32 + z104
)+

12390 · (z36 + z100
)+ 54747 · (z40 + z96

)+ 163680 · (z44 + z92
)+

318516 · (z48 + z88
)+ 753522 ·

(
z52 + z84

)
+ 1474704 ·

(
z56 + z80

)
+

1763454 · (z60 + z76
)+ 2339502 · (z64 + z72

)+ 3007296 · z68
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A(S11)
B67

(z) = (
1 + z136

)+ 6 · (z24 + z112
)+ 16 · (z36 + z100

)+ 6 · (z44 + z92
)+

9 · (z48 + z88
)+ 48 ·

(
z56 + z80

)
+ 84 · z68

A(S17)
B67

(z) = (
1 + z136

)+ 14 · z68

A(S67)
B67

(z) = (
1 + z136

)+ 2 · z68

The weight distributions of B67 and their modular congruence are shown in
Table9.13.

Prime 83

We have P = [
1 9
9 82

]
and T = [

0 82
1 0

]
, P, T ∈ PSL2(83), and the permutations of

order 3, 7, 41 and 83 are generated by
[

0 1
82 1

]
,
[

0 1
82 10

]
,
[

0 1
82 4

]
and

[
0 1
82 81

]
, respectively.

In addition,

PSL2(83) = 22 · 3 · 7 · 41 · 83· = 285852

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B83
(z) =

(
1 + z168

)
+ 196 ·

(
z24 + z144

)
+ 1050 ·

(
z28 + z140

)
+

29232 ·
(
z32 + z136

)
+ 443156 ·

(
z36 + z132

)
+

4866477 ·
(
z40 + z128

)
+ 42512190 ·

(
z44 + z124

)
+

292033644 ·
(
z48 + z120

)
+ 1590338568 ·

(
z52 + z116

)
+

6952198884 ·
(
z56 + z112

)
+ 24612232106 ·

(
z60 + z108

)
+

71013075210 ·
(
z64 + z104

)
+ 167850453036 ·

(
z68 + z100

)
+

326369180312 ·
(
z72 + z96

)
+ 523672883454 ·

(
z76 + z92

)
+

694880243820 ·
(
z80 + z88

)
+ 763485528432 · z84

A(G4)
B83

(z) =
(
1 + z168

)
+ 4 ·

(
z24 + z144

)
+ 6 ·

(
z28 + z140

)
+

96 ·
(
z32 + z136

)
+ 532 ·

(
z36 + z132

)
+ 1437 ·

(
z40 + z128

)
+

3810 ·
(
z44 + z124

)
+ 10572 ·

(
z48 + z120

)
+ 24456 ·

(
z52 + z116

)
+

50244 ·
(
z56 + z112

)
+ 95030 ·

(
z60 + z108

)
+ 158874 ·

(
z64 + z104

)
+

241452 ·
(
z68 + z100

)
+ 337640 ·

(
z72 + z96

)
+ 425442 ·

(
z76 + z92

)
+

489708 ·
(
z80 + z88

)
+ 515696 · z84
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A(S3)
B83

(z) =
(
1 + z168

)
+ 63 ·

(
z24 + z144

)
+ 8568 ·

(
z36 + z132

)
+ 617085 ·

(
z48 + z120

)
+

11720352 ·
(
z60 + z108

)
+ 64866627 ·

(
z72 + z96

)
+ 114010064 · z84

A(S7)
B83

(z) =
(
1 + z168

)
+ 759 ·

(
z56 + z112

)
+ 2576 · z84

A(S41)
B83

(z) =
(
1 + z168

)
+ 4 ·

(
z44 + z124

)
+ 6 · z84

A(S83)
B83

(z) =
(
1 + z168

)
+ 2 · z84.

The weight distributions of B83 and their modular congruence are shown in
Table9.14.

Primes −3 Modulo 8

Prime 13

We have P = [
3 4
4 10

]
and T = [

0 12
1 0

]
, P, T ∈ PSL2(13), and the permutations of

order 3, 7 and 13 are generated by
[

0 1
12 1

]
,
[

0 1
12 3

]
and

[
0 1
12 11

]
, respectively. In addition,

PSL2(13) = 22 · 3 · 7 · 13· = 1092

and the weight enumerator polynomials of the invariant subcodes are

A
G0
2

B13
(z) =

(
1 + z28

)
+ 26 ·

(
z8 + z20

)
+ 32 ·

(
z10 + z18

)
+ 37 ·

(
z12 + z16

)
+ 64 · z14

AG4
B13

(z) =
(
1 + z28

)
+ 10 ·

(
z8 + z20

)
+ 8 ·

(
z10 + z18

)
+ 5 ·

(
z12 + z16

)
+ 16 · z14

AS3
B13

(z) =
(
1 + z28

)
+ 6 ·

(
z8 + z20

)
+ 10 ·

(
z10 + z18

)
+ 9 ·

(
z12 + z16

)
+ 12 · z14

AS7
B13

(z) =
(
1 + z28

)
+ 2 · z14

AS13
B13

(z) =
(
1 + z28

)
+ 2 · z14 .

The weight distributions of B13 and their modular congruence are shown in
Table9.15.

Prime 29

We have P = [
2 13
13 27

]
and T = [

0 28
1 0

]
, P, T ∈ PSL2(29), and the permutations of

order 3, 5, 7 and 29 are generated by
[

0 1
28 1

]
,
[

0 1
28 5

]
,
[

0 1
28 3

]
and

[
0 1
28 27

]
, respectively.

In addition,

PSL2(29) = 22 · 3 · 5 · 7 · 29· = 12180
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Table 9.15 Modular congruence weight distributions of B13

i Ai (S2) Ai (S3) Ai (S7) Ai (S13) Ai (H ) ni a Ai

mod 22 mod 3 mod 7 mod 13 mod 1092

0 1 1 1 1 1 0 1

8 2 0 0 0 546 0 546

10 0 1 0 0 364 1 1456

12 1 0 0 0 273 3 3549

14 0 0 2 2 912 4 5280

16 1 0 0 0 273 3 3549

18 0 1 0 0 364 1 1456

20 2 0 0 0 546 0 546

28 1 1 1 1 1 0 1

ani = Ai−Ai (H )

1092

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B29
(z) =

(
1 + z60

)
+ 28 ·

(
z12 + z48

)
+ 112 ·

(
z14 + z46

)
+ 394 ·

(
z16 + z44

)
+

1024 ·
(
z18 + z42

)
+ 1708 ·

(
z20 + z40

)
+ 3136 ·

(
z22 + z38

)
+ 5516 ·

(
z24 + z36

)
+

7168 ·
(
z26 + z34

)
+ 8737 ·

(
z28 + z32

)
+ 9888 · z30

A
(G4)
B29

(z) =
(
1 + z60

)
+ 12 ·

(
z14 + z46

)
+ 30 ·

(
z16 + z44

)
+ 32 ·

(
z18 + z42

)
+

60 ·
(
z20 + z40

)
+ 48 ·

(
z22 + z38

)
+ 60 ·

(
z24 + z36

)
+ 96 ·

(
z26 + z34

)
+

105 ·
(
z28 + z32

)
+ 136 · z30

A
(S3)
B29

(z) =
(
1 + z60

)
+ 10 ·

(
z12 + z48

)
+ 70 ·

(
z18 + z42

)
+ 245 ·

(
z24 + z36

)
+ 372 · z30

A
(S5)
B29

(z) =
(
1 + z60

)
+ 15 ·

(
z20 + z40

)
+ 32 · z30

A
(S7)
B29

(z) =
(
1 + z60

)
+ 6 ·

(
z16 + z44

)
+ 2 ·

(
z18 + z42

)
+ 8 ·

(
z22 + z38

)
+ 8 ·

(
z24 + z36

)
+

1 ·
(
z28 + z32

)
+ 12 · z30

A
(S29)
B29

(z) =
(
1 + z60

)
+ 2 · z30.

The weight distributions of B29 and their modular congruence are shown in
Table9.16.

Prime 53

We have P = [
3 19
19 50

]
and T = [

0 52
1 0

]
, P, T ∈ PSL2(53), and the permutations of

order 3, 13 and53 are generated by
[

0 1
52 1

]
,
[

0 1
52 8

]
and

[
0 1
52 51

]
, respectively. In addition,

PSL2(53) = 22 · 33 · 13 · 53· = 74412
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Table 9.16 Modular congruence weight distributions of B29

i Ai (S2) Ai (S3) Ai (S5) Ai (S7) Ai (S29) Ai (H ) ni a Ai

mod 22 mod 3 mod 5 mod 7 mod 29 mod 12180

0 1 1 1 1 1 1 0 1

12 0 1 0 0 0 4060 0 4060

14 0 0 0 0 0 0 2 24360

16 2 0 0 6 0 2610 24 294930

18 0 1 0 2 0 11020 141 1728400

20 0 0 0 0 0 0 637 7758660

22 0 0 0 1 0 3480 2162 26336640

24 0 2 0 1 0 11600 5533 67403540

26 0 0 0 0 0 0 10668 129936240

28 1 0 0 1 0 6525 15843 192974265

30 0 0 2 5 2 8412 18129 220819632

32 1 0 0 1 0 6525 15843 192974265

34 0 0 0 0 0 0 10668 129936240

36 0 2 0 1 0 11600 5533 67403540

38 0 0 0 1 0 3480 2162 26336640

40 0 0 0 0 0 0 637 7758660

42 0 1 0 2 0 11020 141 1728400

44 2 0 0 6 0 2610 24 294930

46 0 0 0 0 0 0 2 24360

48 0 1 0 0 0 4060 0 4060

60 1 1 1 1 1 1 0 1

ani = Ai−Ai (H )

12180

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B53
(z) = (

1 + z108
)+ 234 · (z20 + z88

)+ 1768 · (z22 + z86
)+ 5655 · (z24 + z84

)+
16328 · (z26 + z82

)+ 47335 · (z28 + z80
)+ 127896 · (z30 + z78

)+
316043 · (z32 + z76

)+ 705848 · (z34 + z74
)+ 1442883 · (z36 + z72

)+
2728336 · (z38 + z70

)+ 4786873 · (z40 + z68
)+ 7768488 · (z42 + z66

)+
11636144 · (z44 + z64

)+ 16175848 · (z46 + z62
)+ 20897565 · (z48 + z60

)+
25055576 ·

(
z50 + z58

)
+ 27976131 ·

(
z52 + z56

)
+ 29057552 · z54

A(G4)
B53

(z) = (
1 + z108

)+ 12 · (z20 + z88
)+ 12 · (z22 + z86

)+ 77 · (z24 + z84
)+

108 · (z26 + z82
)+ 243 · (z28 + z80

)+ 296 · (z30 + z78
)+ 543 · (z32 + z76

)+
612 · (z34 + z74

)+ 1127 · (z36 + z72
)+ 1440 · (z38 + z70

)+ 2037 · (z40 + z68
)+

2636 · (z42 + z66
)+ 3180 · (z44 + z64

)+ 3672 · (z46 + z62
)+ 4289 · (z48 + z60

)+
4836 ·

(
z50 + z58

)
+ 4875 ·

(
z52 + z56

)
+ 5544 · z54
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Table 9.17 Modular congruence weight distributions of B53

i Ai (S2) Ai (S3) Ai (S13) Ai (S53) Ai (H ) ni a Ai

mod 22 mod 33 mod 13 mod 53 mod 74412

0 1 1 1 1 1 0 1

20 2 0 0 0 37206 3 260442

22 0 0 0 0 0 78 5804136

24 3 18 0 0 43407 1000 74455407

26 0 0 0 0 0 10034 746650008

28 3 0 6 0 64395 91060 6776021115

30 0 18 2 0 64872 658342 48988609776

32 3 0 0 0 18603 3981207 296249593887

34 0 0 0 0 0 20237958 1505946930696

36 3 6 0 0 26871 86771673 6456853758147

38 0 0 0 0 0 315441840 23472658198080

40 1 0 8 0 67257 976699540 72678166237737

42 0 0 8 0 11448 2584166840 192293022909528

44 0 0 0 0 0 5859307669 436002802265628

46 0 0 0 0 0 11412955404 849260837522448

48 1 9 0 0 31005 19133084721 1423731100290057

50 0 0 0 0 0 27645086470 2057126174405640

52 3 0 1 0 1431 34462554487 2564427604488075

54 0 5 12 2 55652 37087868793 2759782492680368

56 3 0 1 0 1431 34462554487 2564427604488075

58 0 0 0 0 0 27645086470 2057126174405640

60 1 9 0 0 31005 19133084721 1423731100290057

62 0 0 0 0 0 11412955404 849260837522448

64 0 0 0 0 0 5859307669 436002802265628

66 0 0 8 0 11448 2584166840 192293022909528

68 1 0 8 0 67257 976699540 72678166237737

70 0 0 0 0 0 315441840 23472658198080

72 3 6 0 0 26871 86771673 6456853758147

74 0 0 0 0 0 20237958 1505946930696

76 3 0 0 0 18603 3981207 296249593887

78 0 18 2 0 64872 658342 48988609776

80 3 0 6 0 64395 91060 6776021115

82 0 0 0 0 0 10034 746650008

84 3 18 0 0 43407 1000 74455407

86 0 0 0 0 0 78 5804136

88 2 0 0 0 37206 3 260442

108 1 1 1 1 1 0 1

ani = Ai−Ai (H )

74412
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Table 9.18 Modular congruence weight distributions of B61

i Ai (S2) Ai (S3) Ai (S5) Ai (S31) Ai (S61) Ai (H ) ni
a Ai

mod 22 mod 3 mod 5 mod 31 mod 61 mod 113460

0 1 1 1 1 1 1 0 1

20 0 0 3 0 0 90768 0 90768

22 0 1 0 0 0 75640 4 529480

24 2 2 0 0 0 94550 95 10873250

26 0 2 4 0 0 83204 1508 171180884

28 2 2 3 0 0 71858 19029 2159102198

30 0 0 1 0 0 68076 199795 22668808776

32 0 1 0 0 0 75640 1759003 199576556020

34 0 0 3 0 0 90768 13123969 1489045613508

36 2 0 3 0 0 34038 83433715 9466389337938

38 0 1 1 0 0 30256 454337550 51549138453256

40 0 2 0 0 0 37820 2128953815 241551099887720

42 0 0 3 0 0 90768 8619600220 977979841051968

44 0 0 2 0 0 22692 30259781792 3433274842143012

46 0 2 1 0 0 105896 92387524246 10482288501057056

48 0 2 0 0 0 37820 245957173186 27906300869721380

50 0 2 0 0 0 37820 572226179533 64924782329852000

52 0 2 1 0 0 105896 1165598694540 132248827882614296

54 0 2 3 0 0 15128 2081950370302 236218089014480048

56 0 2 2 0 0 60512 3264875882211 370432817595720572

58 0 2 2 0 0 60512 4499326496930 510493584341738312

60 1 2 1 0 0 20801 5452574159887 618649064180799821

62 0 2 1 2 2 102116 5813004046431 659543439108163376

64 1 2 1 0 0 20801 5452574159887 618649064180799821

66 0 2 2 0 0 60512 4499326496930 510493584341738312

68 0 2 2 0 0 60512 3264875882211 370432817595720572

70 0 2 3 0 0 15128 2081950370302 236218089014480048

72 0 2 1 0 0 105896 1165598694540 132248827882614296

74 0 2 0 0 0 37820 572226179533 64924782329852000

76 0 2 0 0 0 37820 245957173186 27906300869721380

78 0 2 1 0 0 105896 92387524246 10482288501057056

80 0 0 2 0 0 22692 30259781792 3433274842143012

82 0 0 3 0 0 90768 8619600220 977979841051968

84 0 2 0 0 0 37820 2128953815 241551099887720

86 0 1 1 0 0 30256 454337550 51549138453256

(continued)
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Table 9.18 (continued)

i Ai (S2) Ai (S3) Ai (S5) Ai (S31) Ai (S61) Ai (H ) ni
a Ai

mod 22 mod 3 mod 5 mod 31 mod 61 mod 113460

88 2 0 3 0 0 34038 83433715 9466389337938

90 0 0 3 0 0 90768 13123969 1489045613508

92 0 1 0 0 0 75640 1759003 199576556020

94 0 0 1 0 0 68076 199795 22668808776

96 2 2 3 0 0 71858 19029 2159102198

98 0 2 4 0 0 83204 1508 171180884

100 2 2 0 0 0 94550 95 10873250

102 0 1 0 0 0 75640 4 529480

104 0 0 3 0 0 90768 0 90768

124 1 1 1 1 1 1 0 1

ani = Ai−Ai (H )

113460

A(S3)
B53

(z) = (
1 + z108

)+ 234 · (z24 + z84
)+ 1962 · (z30 + z78

)+ 9672 · (z36 + z72
)+

28728 · (z42 + z66
)+ 55629 · (z48 + z60

)+ 69692 · z54
A(S13)
B53

(z) = (
1 + z108

)+ 6 · (z28 + z80
)+ 2 · (z30 + z78

)+ 8 · (z40 + z68
)+

8 · (z42 + z66
)+ 1 ·

(
z52 + z56

)
+ 12 · z54

A(S53)
B53

(z) = (
1 + z108

)+ 2 · z54.

The weight distributions of B53 and their modular congruence are shown in
Table9.17.

Prime 61

We have P = [
2 19
19 59

]
and T = [

0 60
1 0

]
, P, T ∈ PSL2(61), and the permutations of

order 3, 5, 31 and 61 are generated by
[

0 1
60 1

]
,
[

0 1
60 17

]
,
[

0 1
60 5

]
and

[
0 1
60 59

]
, respectively.

In addition,

PSL2(61) = 22 · 3 · 5 · 31 · 61· = 113460

and the weight enumerator polynomials of the invariant subcodes are
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A
(G0

2)

B61
=
(
1 + z124

)
+ 208 ·

(
z20 + z104

)
+ 400 ·

(
z22 + z102

)
+ 1930 ·

(
z24 + z100

)
+

8180 ·
(
z26 + z98

)
+ 26430 ·

(
z28 + z96

)
+ 84936 ·

(
z30 + z94

)
+

253572 ·
(
z32 + z92

)
+ 696468 ·

(
z34 + z90

)
+ 1725330 ·

(
z36 + z88

)
+

3972240 ·
(
z38 + z86

)
+ 8585008 ·

(
z40 + z84

)
+ 17159632 ·

(
z42 + z82

)
+

31929532 ·
(
z44 + z80

)
+ 55569120 ·

(
z46 + z78

)
+ 90336940 ·

(
z48 + z76

)
+

137329552 ·
(
z50 + z74

)
+ 195328240 ·

(
z52 + z72

)
+ 260435936 ·

(
z54 + z70

)
+

325698420 ·
(
z56 + z68

)
+ 381677080 ·

(
z58 + z66

)
+ 419856213 ·

(
z60 + z64

)
+

433616560 · z62
A

(G4)
B61

=
(
1 + z124

)
+ 12 ·

(
z20 + z104

)
+ 12 ·

(
z22 + z102

)
+ 36 ·

(
z24 + z100

)
+

40 ·
(
z26 + z98

)
+ 140 ·

(
z28 + z96

)
+ 176 ·

(
z30 + z94

)
+ 498 ·

(
z32 + z92

)
+

576 ·
(
z34 + z90

)
+ 1340 ·

(
z36 + z88

)
+ 1580 ·

(
z38 + z86

)
+ 2660 ·

(
z40 + z84

)
+

3432 ·
(
z42 + z82

)
+ 4932 ·

(
z44 + z80

)
+ 6368 ·

(
z46 + z78

)
+ 8820 ·

(
z48 + z76

)
+

10424 ·
(
z50 + z74

)
+ 12752 ·

(
z52 + z72

)
+ 14536 ·

(
z54 + z70

)
+ 15840 ·

(
z56 + z68

)
+

18296 ·
(
z58 + z66

)
+ 18505 ·

(
z60 + z64

)
+ 20192 · z62

A
(S3)
B61

=
(
1 + z124

)
+ 30 ·

(
z20 + z104

)
+ 10 ·

(
z22 + z102

)
+ 50 ·

(
z24 + z100

)
+

200 ·
(
z26 + z98

)
+ 620 ·

(
z28 + z96

)
+ 960 ·

(
z30 + z94

)
+

2416 ·
(
z32 + z92

)
+ 4992 ·

(
z34 + z90

)
+ 6945 ·

(
z36 + z88

)
+

15340 ·
(
z38 + z86

)
+ 25085 ·

(
z40 + z84

)
+ 34920 ·

(
z42 + z82

)
+

68700 ·
(
z44 + z80

)
+ 87548 ·

(
z46 + z78

)
+ 104513 ·

(
z48 + z76

)
+

177800 ·
(
z50 + z74

)
+ 201440 ·

(
z52 + z72

)
+ 225290 ·

(
z54 + z70

)
+

322070 ·
(
z56 + z68

)
+ 301640 ·

(
z58 + z66

)
+ 316706 ·

(
z60 + z64

)
+

399752 · z62

A
(S5)
B61

=
(
1 + z124

)
+ 3 ·

(
z20 + z104

)
+ 24 ·

(
z26 + z98

)
+ 48 ·

(
z28 + z96

)
+

6 ·
(
z30 + z94

)
+ 150 ·

(
z32 + z92

)
+ 8 ·

(
z34 + z90

)
+ 168 ·

(
z36 + z88

)
+

96 ·
(
z38 + z86

)
+ 75 ·

(
z40 + z84

)
+ 468 ·

(
z42 + z82

)
+ 132 ·

(
z44 + z80

)
+

656 ·
(
z46 + z78

)
+ 680 ·

(
z48 + z76

)
+ 300 ·

(
z50 + z74

)
+ 1386 ·

(
z52 + z72

)
+

198 ·
(
z54 + z70

)
+ 1152 ·

(
z56 + z68

)
+ 1272 ·

(
z58 + z66

)
+ 301 ·

(
z60 + z64

)
+

2136 · z62
A

(S31)
B61

=
(
1 + z124

)
+ 2 · z62

A
(S61)
B61

=
(
1 + z124

)
+ 2 · z62
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The weight distributions of B61 and their modular congruence are shown in
Table9.18.

Weight Distributions of Quadratic Residues Codes for Primes
151 and 167

See Tables9.19 and 9.20

Table 9.19 Weight distributions of QR and extended QR codes of prime 151

i Ai of [152, 76, 20] code Ai of [151, 76, 19] code
0 1 1

19 0 3775

20 28690 24915

23 0 113250

24 717250 604000

27 0 30256625

28 164250250 133993625

31 0 8292705580

32 39390351505 31097645925

35 0 1302257122605

36 5498418962110 4196161839505

39 0 113402818847850

40 430930711621830 317527892773980

43 0 5706949034630250

44 19714914846904500 14007965812274250

47 0 171469716029462700

48 542987434093298550 371517718063835850

51 0 3155019195317144883

52 9222363801696269658 6067344606379124775

55 0 36274321608490644595

56 98458872937331749615 62184551328841105020

59 0 264765917968736096775

60 670740325520798111830 405974407552062015055

63 0 1241968201959417159800

64 2949674479653615754525 1707706277694198594725

67 0 3778485133479463579225

68 8446025592483506824150 4667540459004043244925

71 0 7503425412744902320620

72 15840564760239238232420 8337139347494335911800

75 0 9763682329503348632684

76 19527364659006697265368 9763682329503348632684
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Table 9.20 Weight distributions of QR and extended QR codes of prime 167

i Ai of [168, 84, 24] code Ai of [167, 84, 23] code
0 1 1

23 0 110888

24 776216 665328

27 0 3021698

28 18130188 15108490

31 0 1057206192

32 5550332508 4493126316

35 0 268132007628

36 1251282702264 983150694636

39 0 39540857275985

40 166071600559137 126530743283152

43 0 3417107288264670

44 13047136918828740 9630029630564070

47 0 179728155397349776

48 629048543890724216 449320388493374440

51 0 5907921405841809432

52 19087130695796615088 13179209289954805656

55 0 124033230083117023704

56 372099690249351071112 248066460166234047408

59 0 1692604114105553659010

60 4739291519495550245228 3046687405389996586218

63 0 15228066033367763990128

64 39973673337590380474086 24745607304222616483958

67 0 91353417175290660468884

68 225696677727188690570184 134343260551898030101300

71 0 368674760966511746549004

72 860241108921860741947676 491566347955348995398672

75 0 1007629118755817710057646

76 2227390683565491780127428 1219761564809674070069782

79 0 1873856945935044844028880

80 3935099586463594172460648 2061242640528549328431768

83 0 2377873706297857672084688

84 4755747412595715344169376 2377873706297857672084688
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