
Chapter 8
Algebraic Geometry Codes

8.1 Introduction

In order tomeet channel capacity, as Shannon postulated, long error-correction codes
with large minimum distances need to be found. A large effort in research has been
dedicated to finding algebraic codes with good properties and efficient decoding
algorithms. Reed–Solomon (RS) codes are a product of this research and have over
the years found numerous applications, the most noteworthy being their implemen-
tation in satellite systems, compact discs, hard drives and modern, digitally based
communications. These codes are defined with non-binary alphabets and have the
maximum achievable minimum distance for codes of their lengths. A generalisation
of RS codes was introduced by Goppa using a unique construction of codes from
algebraic curves. This development led to active research in that area so that cur-
rently the complexity of encoding and decoding these codes has been reduced greatly
fromwhen they were first presented. These codes are algebraic geometry (AG) codes
and have much greater lengths than RS codes with the same alphabets. Furthermore
these codes can be improved if curves with desirable properties can be found. AG
codes have good properties and some families of these codes have been shown to be
asymptotically superior as they exceed the well-known Gilbert–Varshamov bound
[16] when the defining finite field Fq has size q ≥ 49 with q always a square.

8.2 Motivation for Studying AG Codes

Aside from their proven superior asymptotic performance when the field size q2 >

49, AG codes defined in much smaller fields have very good parameters. A closer
look at tables of best-known codes in [8, 15] shows that algebraic geometry codes
feature as the best-known linear codes for an appreciable range of code lengths for
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182 8 Algebraic Geometry Codes

different field sizes q. To demonstrate a comparison the parameters of AG codes
with shortened BCH codes in fields with small sizes and characteristic 2 is given.
AG codes of length n, dimension k have minimum distance d = n−k−g+1 where
g is called the genus . Notice that n − k + 1 is the distance of a maximum distance
(MDS) separable code. The genus g is then the Singleton defect s of an AG code.
The Singleton defect is simply the difference between the distance of a code and the
distance some hypothetical MDS code of the same length and dimension. Similarly
a BCH code is a code with length n, dimension k, and distance d = n − k − s + 1
where s is the Singleton defect and number of non-consecutive roots of the BCH
code.

Consider Table8.1,which compares the parameters ofAGcodes from three curves
with genera 3, 7, and 14 with shortened BCH codes with similar code rates. At high
rates, BCHcodes tend to have betterminimumdistances or smaller Singleton defects.
This is because the roots of the BCH code with high rates are usually cyclically
consecutive and thus contribute to the minimum distance. For rates close to half, AG
codes are better than BCH codes since the number of non-consecutive roots of the
BCHcode is increased as a result of conjugacy classes. TheAGcodes benefit from the
fact that their Singleton defect or genus remains fixed for all rates. As a consequence
AG codes significantly outperform BCH codes at lower rates. However, the genera
of curves with many points in small finite fields are usually large and as the length
of the AG codes increases in F8, the BCH codes beat AG codes in performance.
Tables8.2 and 8.3 show the comparison between AG and BCH codes in fields F16

and F32, respectively. With larger field sizes, curves with many points and small
genera can be used, and AG codes do much better than BCH codes. It is worth noting
that Tables8.1, 8.2 and 8.3 show codes in fields with size less than 49.

8.2.1 Bounds Relevant to Algebraic Geometry Codes

Bounds on the performance of codes that are relevant to AG codes are presented in
order to show the performance of these codes. Let Aq(n, d) represent the number of
codewords in the code space of a code C with length n, minimum distance d and
defined over a field of size q. Let the information rate be R = k/n and the relative
minimum distance be δ = d/n for 0 ≤ δ ≤ 1, then

αq(δ) = lim
n→∞

1

n
Aq(n, δn)

which represents the k/n such that there exists a code over a field of size q that has
d/n converging to δ [18]. The q-ary entropy function is given by

Hq(x) =
{
0, x = 0

x logq(q − 1) − x logq x − (1 − x) logq(1 − x), 0 < x ≤ θ
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Table 8.1 Comparison between BCH and AG codes in F8

Rate AG code in F23 Number of
points

Genus Shortened BCH
code in F23

BCH code in
F23

0.2500 [23, 5, 16] 24 3 [23, 5, 12] [63, 45, 12]
0.3333 [23, 7, 14] 24 3 [23, 7, 11] [63, 47, 11]
0.5000 [23, 11, 10] 24 3 [23, 10, 8] [63, 50, 8]
0.6667 [23, 15, 6] 24 3 [23, 14, 6] [63, 54, 6]
0.7500 [23, 17, 4] 24 3 [23, 16, 5] [63, 56, 5]
0.8500 [23, 19, 2] 24 3 [23, 18, 4] [63, 58, 4]
0.2500 [33, 8, 19] 34 7 [33, 7, 16] [63, 37, 16]
0.3333 [33, 11, 16] 34 7 [33, 11, 14] [63, 41, 14]
0.5000 [33, 16, 11] 34 7 [33, 15, 12] [63, 45, 12]
0.6667 [33, 22, 5] 34 7 [33, 22, 7] [63, 52, 7]
0.7500 [33, 24, 3] 34 7 [33, 24, 6] [63, 54, 6]
0.2500 [64, 16, 35] 65 14 [64, 16, 37] [63, 15, 37]
0.3333 [64, 21, 30] 65 14 [64, 20, 31] [63, 19, 31]
0.5000 [64, 32, 19] 65 14 [64, 31, 22] [63, 30, 22]
0.6667 [64, 42, 9] 65 14 [64, 42, 14] [63, 41, 14]
0.7500 [64, 48, 3] 65 14 [64, 48, 11] [63, 47, 11]

Table 8.2 Comparison between BCH and AG codes in F16

Rate AG code in F24 Number of
points

Genus Shortened BCH
code in F24

BCH code in
F24

0.2500 [23, 5, 18] 24 1 [23, 4, 11] [255, 236, 11]
0.3333 [23, 7, 16] 24 1 [23, 6, 10] [255, 238, 10]
0.5000 [23, 11, 12] 24 1 [23, 10, 8] [255, 242, 8]
0.6667 [23, 15, 8] 24 1 [23, 14, 6] [255, 246, 6]
0.7500 [23, 17, 6] 24 1 [23, 16, 5] [255, 248, 5]
0.8500 [23, 19, 4] 24 1 [23, 18, 4] [255, 250, 4]
0.2500 [64, 16, 43] 65 6 [64, 16, 27] [255, 207, 27]
0.3333 [64, 21, 38] 65 6 [64, 20, 25] [255, 211, 25]
0.5000 [64, 32, 27] 65 6 [64, 32, 19] [255, 223, 19]
0.6667 [64, 42, 17] 65 6 [64, 41, 13] [255, 232, 13]
0.7500 [64, 48, 11] 65 6 [64, 47, 10] [255, 238, 10]
0.8500 [64, 54, 5] 65 6 [64, 53, 7] [255, 244, 7]
0.2500 [126, 31, 76] 127 20 [126, 30, 57] [255, 159, 57]
0.3333 [126, 42, 65] 127 20 [126, 41, 48] [255, 170, 48]
0.5000 [126, 63, 44] 127 20 [126, 63, 37] [255, 192, 37]
0.6667 [126, 84, 23] 127 20 [126, 84, 24] [255, 213, 24]
0.7500 [126, 94, 13] 127 20 [126, 94, 19] [255, 223, 19]
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Table 8.3 Comparison between BCH and AG codes in F32

Rate AG code in F24 Number of
points

Genus Shortened BCH
code in F24

BCH code in F24

0.2500 [43, 10, 33] 44 1 [43, 10, 18] [1023, 990, 18]
0.3333 [43, 14, 29] 44 1 [43, 14, 16] [1023, 994, 16]
0.5000 [43, 21, 22] 44 1 [43, 20, 13] [1023, 1000, 13]
0.6667 [43, 28, 15] 44 1 [43, 28, 9] [1023, 1008, 9]
0.7500 [43, 32, 11] 44 1 [43, 32, 7] [1023, 1012, 7]
0.8500 [43, 36, 7] 44 1 [43, 36, 5] [1023, 1016, 5]
0.2500 [75, 18, 53] 76 5 [75, 18, 30] [1023, 966, 30]
0.3333 [75, 25, 46] 76 5 [75, 24, 27] [1023, 972, 27]
0.5000 [75, 37, 34] 76 5 [75, 36, 21] [1023, 984, 21]
0.6667 [75, 50, 21] 76 5 [75, 50, 14] [1023, 998, 14]
0.7500 [75, 56, 15] 76 5 [75, 56, 11] [1023, 1004, 11]
0.8500 [75, 63, 8] 76 5 [75, 62, 8] [1023, 1010, 8]
0.2500 [103, 25, 70] 104 9 [103, 25, 42] [1023, 945, 42]
0.3333 [103, 34, 61] 104 9 [103, 33, 38] [1023, 953, 38]
0.5000 [103, 51, 44] 104 9 [103, 50, 28] [1023, 970, 28]
0.6667 [103, 68, 27] 104 9 [103, 68, 19] [1023, 988, 19]
0.7500 [103, 77, 18] 104 9 [103, 76, 15] [1023, 996, 15]
0.8500 [103, 87, 8] 104 9 [103, 86, 10] [1023, 1006, 10]

The asymptotic Gilbert–Varshamov lower bound on αq(δ) is given by,

αq(δ) ≥ 1 − Hq(δ) for 0 ≤ δ ≤ θ

The Tsfasman–Vladut–Zink bound is a lower bound on αq(δ) and holds true for
certain families of AG codes, it is given by

αq(δ) ≥ 1 − δ − 1√
q − 1

where
√
q ∈ N/0

The supremacy of AG codes lies in the fact that the TVZ bound ensures that these
codes have better performance when q is a perfect square and q ≥ 49.

The Figs. 8.1, 8.2 and 8.3 show the R vs δ plot of these bounds for some range
of q.
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Fig. 8.1 Tsfasman–Vladut–Zink and Gilbert–Varshamov bound for q = 32
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Fig. 8.2 Tsfasman–Vladut–Zink and Gilbert–Varshamov bound for q = 64
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Fig. 8.3 Tsfasman–Vladut–Zink and Gilbert–Varshamov bound for q = 256

8.3 Curves and Planes

In this section, the notion of curves and planes are introduced. Definitions and discus-
sions are restricted to two-dimensional planes and all polynomials are assumed to be
defined with coefficients in the finite field Fq . The section draws from the following
sources [2, 12, 17, 18]. Let f (x, y) be a polynomial in the bivariate ring Fq [x, y].
Definition 8.1 (Curve) A curve is the set of points for which the polynomial f (x, y)
vanishes to zero.Mathematically, a curveX is associated with a polynomial f (x, y)
so that f (P) = {0|P ∈ X }.

A curve is a subset of a plane. There are two main types of planes; the affine plane
and the projective plane. These planes are multidimensional, however, we restrict
our discussion to two-dimensional planes only.

Definition 8.2 (Affine Plane) A two-dimensional affine plane denoted by A2(Fq) is
a set of points,

A
2(Fq) = {(α, β) : α, β ∈ Fq} (8.1)

which has cardinality q2.

A curve X is called an affine curve ifX ⊂ A
2(Fq).

Definition 8.3 (Projective Plane) A two-dimensional projective plane P2(Fq) is the
algebraic closure of A2 and is defined as the set of equivalence points,
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P
2(Fq) = {(α : β : 1) : α, β ∈ Fq}

⋃
{(α : 1 : 0) : α ∈ Fq}

⋃
{(1 : 0 : 0)}.

A curveX is said to lie in the projective plane ifX ⊂ P
2(Fq). The points in the

projective plane are called equivalence points since for any point P ∈ P
2(Fq),

if f (x0, y0, z0) = 0, then f (αx0, αy0, αz0) = 0 α ∈ F
∗
q , P = (x0 : y0 : z0)

because f (x, y, z) is homogeneous. The colons in the notation of a projective point
(x : y : z) represents this equivalence property.

The affine polynomial f (x, y) is in two variables, in order to define a projective
polynomial in three variables, homogenisation is used,

f (x, y, z) = zd f

(
x

z
,
y

z

)
d = Degree of f (x, y)

which turns f (x, y) into a homogeneous1 polynomial in three variables. An
n-dimensional projective polynomial has n + 1 variables. The affine space A2(Fq)

is a subset of P2(Fq) and is given by,

A
2(Fq) = {(α : β : 1) : α, β ∈ Fq} ⊂ P

2(Fq).

A projective curve can then be defined as a set of points,

X = {P : f (P) = 0, P ∈ P
2(Fq)}.

Definition 8.4 (Point at Infinity) A point on a projective curve X that coincides
with any of the points of P2(Fq) of the form,

{(α : 1 : 0) : α ∈ Fq} ∪ {(1 : 0 : 0)}

i.e. points (x0 : y0 : z0) for which z0 = 0 is called a point at infinity.

A third plane, called the bicyclic plane [1], is a subset of the A2(Fq) and consists
of points,

{(α, β) : α, β ∈ Fq \ {0}}.

This plane was defined so as to adapt the Fourier transform to AG codes since the
inverse Fourier transform is undefined for zero coordinates.

Example 8.1 Consider the two-dimensional affine planeA2(F4). Following the def-
inition of A2(F4) we have,

1Each term in the polynomial has degree equal to d.
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(0, 0) (0, 1) (1, 0) (1, 1)
(1, α) (α, 1) (1, α2) (α2, 1)
(α2, α) (α, α2) (0, α2) (0, α)

(α2, 0) (α, 0) (α2, α2) (α, α)

whereα is the primitive element of the finite fieldF4. The two-dimensional projective
plane P2(F4) is given by,

Affine Points Points at Infinity
(0 : 0 : 1) (0 : 1 : 1) (1 : 0 : 1) (1 : 1 : 1) (0 : 1 : 0) (1 : 0 : 0)
(1 : α : 1) (α : 1 : 1) (1 : α2 : 1) (α2 : 1 : 1) (α : 1 : 0)
(α2 : α : 1) (α : α2 : 1) (0 : α2 : 1) (0 : α : 1) (α2 : 1 : 0)
(α2 : 0 : 1) (α : 0 : 1) (α2 : α2 : 1) (α : α : 1) (1 : 1 : 0)

Definition 8.5 (Irreducible Curve) A curve associated with a polynomial f (x, y, z)
that cannot be reduced or factorised is called irreducible.

Definition 8.6 (Singular Point) A point on a curve is singular if its evaluation on all
partial derivatives of the defining polynomial with respect to each indeterminate is
zero.

Suppose fx , fy , and fz denote partial derivatives of f (x, y, z) with respect to x ,
y, and z respectively. A point P ∈ X is singular if,

∂ f (x, y, z)

∂x
= fx ,

∂ f (x, y, z)

∂y
= fy,

∂ f (x, y, z)

∂z
= fz

fx (P) = fy(P) = fz(P) = 0.

Definition 8.7 (Smooth Curve) A curveX is nonsingular or smooth does not con-
tain any singular points.

To obtain AG codes, it is required that the defining curve is both irreducible and
smooth.

Definition 8.8 (Genus) The genus of a curve can be seen as a measure of how many
bends a curve has on its plane. The genus of a smooth curve defined by f (x, y, z) is
given by the Plücker formula,

g = (d − 1)(d − 2)

2
, d = Degree of f (x, y, z)

The genus plays an important role in determining the quality of AG codes. It is
desirable for curves that define AG codes to have small genera.
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Example 8.2 Consider the Hermitian curve in F4 defined as,

f (x, y) = x3 + y2 + y affine

f (x, y, z) = x3 + y2z + yz2 projective via homogenisation

It is straightforward to verify that the curve is irreducible. The curve has the following
projective points,

(0 : 0 : 1) (0 : 1 : 1) (α : α : 1) (α : α2 : 1)
(α2 : α : 1) (α2 : α2 : 1) (1 : α : 1) (1 : α2 : 1) (0 : 1 : 0)

Notice the curve has a single point at infinity P∞ = (0 : 1 : 0). One can easily check
that the curve has no singular points and is thus smooth.

8.3.1 Important Theorems and Concepts

The length of an AG code is utmost the number of points on the defining curve. Since
it is desirable to obtain codes that are as long as possible, it is desirable to know what
the maximum number of points attainable from a curve, given a genus is.

Theorem 8.1 (Hasse–Weil with Serre’s Improvement [2]) The Hasse–Weil theorem
with Serre’s improvement says that the number of rational points2 of an irreducible
curve, n, with genus g in Fq is upper bounded by,

n ≤ q + 1 + g�2√q�.

Curves that meet this bound are called maximal curves. The Hermitian curves
are examples of maximal curves. Bezout’s theorem is an important theorem, and is
used to determine the minimum distance of algebraic geometry codes. It describes
the size of the set which is the intersection of two curves in the projective plane.

Theorem 8.2 (Bezout’s Theorem [2]) Any two curves Xa and Xb with degrees of
their associated polynomials as m and n respectively, have utmost m × n common
roots in the projective plane counted with multiplicity.

Definition 8.9 (Divisor) A divisor on a curve X is a formal sum associated with
the points of the curve.

D =
∑
P∈X

np P

where np are integers.

2A rational point is a point of degree one. See Sect. 8.4 for the definition of the degree of point on
a curve.
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A zero divisor is one that has np = 0 for all P ∈ X . A divisor is called effective
if it is not a zero divisor. The support of a divisor is a subset ofX for which np 
= 0.
The degree of a divisor is given as,

deg(D) =
∑
P∈X

np deg(P)

For simplicity, it is assumed that the degree of points P ∈ X , i.e. deg(P) is 1
(points of higher degree are discussed in Sect. 8.4). Addition of two divisors D1 =∑

P∈X np P and D2 = ∑
P∈X ń p P is so defined,

D1 + D2 =
∑
P∈X

(np + ń p)P.

Divisors are simply book-keeping structures that store information on points of a
curve. Below is an example the intersection divisor of two curves.

Example 8.3 Consider the Hermitian curve in F4 defined as,

f1(x, y, z) = x3 + y2z + yz2

with points given in Example 8.2 and the curve defined by

f2(x, y, z) = x

with points

(0 : 0 : 1) (0 : 1 : 1) (0 : α : 1) (0 : α2 : 1) (0 : 1 : 0)

These two curves intersect at 3 points below all with multiplicity 1,

(0 : 0 : 1) (0 : 1 : 0) (0 : 1 : 1).

Alternatively, this may be represented using a divisor D,

D = (0 : 0 : 1) + (0 : 1 : 0) + (0 : 1 : 1)

with np the multiplicity, equal to 1 for all the points. Notice that the two curves meet
at exactly deg( f1)deg( f2) = 3 points in agreement with Bezout’s theorem.

For rational functions with denominators, points in divisor with np < 0 are poles.
For example, D = P1 − 2P2 will denote an intersection divisor of two curves that
have one zero P1 and pole P2 with multiplicity two in common. Below is the formal
definition of the field of fractions of a curve X .

Definition 8.10 (Field of fractions) The field of fractions Fq(X ) of a curve X
defined by a polynomial f (x, y, z) contains all rational functions of the form
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g(x, y, z)

h(x, y, z)

with the restriction that g(x, y, z) and h(x, y, z) are homogeneous polynomials that
have the same degree and are not divisible by f (x, y, z).

A subset (Riemann–Roch space) of the field of fractions of X meeting certain
conditions are evaluated at points of the curveX to form codewords of an AG code.
Thus, there is a one-to-one mapping between rational functions in this subset and
codewords of an AG code. The Riemann–Roch theorem defines this subset and gives
a lower bound on the dimension of AG codes. The definition of a Riemann–Roch
space is given.

Definition 8.11 (Riemann–Roch Space) The Riemann–Roch space associated with
a divisor D is given by,

L(D) = {t ∈ Fq(X )|(t) + D ≥ 0} ∪ 0

whereFq(X ) is the field of fractions and (t) is the intersection divisor3 of the rational
function t and the curve X .

Essentially, the Riemann–Roch space associated with a divisor D is a set of
functions of the form t from the field of fractions Fq(X ) such that the divisor sum
(t) + D has no poles, i.e. (t) + D ≥ 0.

The rational functions in L(D) are functions from the field of fractions Fq(X )

that must have poles only in the zeros (positive terms) contained in the divisor D,
each pole occurring with utmost the multiplicity defined in the divisor D and most
have zeros only in the poles (negative terms) contained in the divisor D, each zero
occurring with at least the multiplicity defined in the divisor D.

Example 8.4 Suppose a hypothetical curve X has points of degree one,

X = {P1, P2, P3, P4}

We choose a divisor D = 2P1 − 5P2 with degree −3, and define a Riemann–Roch
space L(D). If we randomly select three functions t1, t2, and t3 from the field of
fractions Fq(X ) such that they have divisors,

(t1) = −3P1 + 5P2 + 4P4 (t2) = 2P1 + 4P2 (t3) = −P1 + 8P2 + P3.

t1 /∈ L(D) since (t1) + D = −P1 + 4P4 contains negative terms or poles. Also,
t2 /∈ L(D) since (t2) + D = 4P1 − P2 contains negative terms. However, t3 ∈ L(D)

since (t3)+D = P1+3P2+P3 contains no negative terms. Any function t ∈ Fq(X )

is also in L(D) if it has a pole at P1 with multiplicity at most 2 (with no other poles
in common withX ) and a zero at P2 with multiplicity at least 5.

3An intersection divisor is a divisor that contains information on the points of intersection of two
curves.
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The Riemann–Roch space is a vector space (with rational functions as elements)
thus, a set of basis functions. The size of this set is the dimension of the space.

Theorem 8.3 (Riemann Roch Theorem [2]) LetX be a curve with genus g and D
any divisor with degree (D) > 2g − 2, then the dimension of the Riemann–Roch
space associated with D, denoted by l(D) is,

l(D) = degree(D) − g + 1

Algebraic geometry codes are the image of an evaluation map of a Riemann–Roch
space associated with a divisor D so that

L(D) → F
n
q

t → (t (P1), t (P2), . . . , t (Pn))

where X = {P1, P2, . . . , Pn, Px } is a smooth irreducible projective curve of genus
g defined over Fq . The divisor D must have no points in common with a divisor T
associated withX , i.e. it has support disjoint from T . For example, if the divisor T
is of the form

T = P1 + P2 + · · · + Pn

then, D = mPx .
Codes defined by the divisors T and D = mPx are called one-point AG codes

(since the divisor D has a support containing only one point), and AG codes are
predominantly defined as so since the parameters of such codes are easily deter-
mined [10].

8.3.2 Construction of AG Codes

The following steps are necessary in order to construct a generator matrix of an AG
code,

1. Find the points of a smooth irreducible curve and its genus.
2. Choose divisors D and T = P1 + · · · + Pn . From the Riemann–Roch theo-

rem determine the dimension of the Riemann–Roch space L(D) associated with
divisor D. This dimension l(D) is the dimension of the AG code.

3. Find k = l(D) linearly independent rational functions from L(D). These form
the basis functions of L(D).

4. Evaluate all k basis functions on the points in the support of T to form the k rows
of a generator matrix of the AG code.
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Example 8.5 Consider again the Hermitian curve defined in F4 as,

f (x, y, z) = x3 + y2z + yz2

1. In Example 8.2 this curve was shown to have 8 affine points and one point at
infinity. The genus of this curve is given by the Plücker formula,

g = (r − 1)(r − 2)

2
= 1

where r = 3 is the degree of f (x, y, z).
2. Let D = 5P∞ where P∞ = (0 : 1 : 0) and T be the sum of all 8 affine points.

The dimension of the Riemann–Roch space is then given by,

l(5P∞) = 5 − 1 + 1 = 5

thus, the AG code has dimension k = 5.
3. The basis functions for the space L(5P∞) are

{t1, . . . , tk} =
{
1,

x

z
,
x2

z2
,
y

z
,
xy

z2

}

By examining the basis, it is clear that t1 = 1 has no poles, thus, (t1) + D has
no poles also. Basis functions with denominator z have (ti ) = S − P∞, where S
is a divisor of the numerator. Thus, (ti ) + D has no poles. Basis functions with
denominator z2 have (t j ) = S − 2P∞, where S is a divisor of the numerator.
Thus, (t j ) + D also has no poles.

4. The generator matrix of the Hermitian code defined with divisor D = 5P∞ is
thus,

G =
⎡
⎢⎣
t1(P1) · · · t1(Pn)

...
. . .

...

tk(P1) · · · tk(Pn)

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0 α2 α2 1
0 1 0 0 0 α2 α 0
0 0 1 0 0 α 1 α

0 0 0 1 0 α 0 α2

0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎦

Example 8.6 Consider the curve defined in F8 as,

f (x, y, z) = x
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1. This curve is a straight line and has 8 affine points of the form (0 : β : 1) and one
point at infinity (0 : 1 : 0). The curve is both irreducible and smooth. The genus
of this curve is given by the Plücker formula,

g = (r − 1)(r − 2)

2
= 0

where r = 1 is the degree of f (x, y, z). Clearly, the genus is zero since the curve
is straight line and has no bends.

2. Let D = 5P∞, where P∞ = (0 : 1 : 0) and T be the sum of all 8 affine points.
The dimension of the Riemann–Roch space is then given by,

l(5P∞) = 5 − 0 + 1 = 6

thus, the AG code has dimension k = 6.
3. The basis functions for the space L(5P∞) are

{t1, . . . , tk} =
{
1,

y

z
,
y2

z2
,
y3

z3
,
y4

z4
,
y5

z5

}

By examining the basis, it is clear that t1 = 1 has no poles, thus, (t1) + D has
no poles also. Basis functions with denominator z have (t1) = S − P∞ where
S = (0 : 0 : 1) is a divisor of the numerator. The denominator polynomial
z evaluates to zero at the point at infinity P∞ of the divisor D, thus, (t1) + D
has no poles. Basis functions with denominator z2 have (t2) = S − 2P∞ where
S = 2 × (0 : 0 : 1) is a divisor of the numerator. The denominator polynomial
z2 evaluates to zero at the point at infinity P∞ of the divisor D with multiplicity
2, thus, (t2) + D has no poles. Basis functions with denominator z3 have (t3) =
S − 3P∞ where S = 3× (0 : 0 : 1) is a divisor of the numerator. Thus, (t3) + D
also has no poles. And so on.

4. The generator matrix of the code defined with divisor D = 5P∞ is thus,

G =
⎡
⎢⎣
t1(P1) · · · t1(Pn)

...
. . .

...

tk(P1) · · · tk(Pn)

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 α α2 α3 α4 α5 α6 1
0 α2 α4 α6 α α3 α5 1
0 α3 α6 α2 α5 α α4 1
0 α4 α α5 α2 α6 α3 1
0 α5 α3 α α6 α4 α2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Clearly, this is a generator matrix of an extended Reed–Solomon code with para-
meters [3, 6, 8]8.
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Theorem 8.4 (From [2]) The minimum distance of an AG code is given by,

d ≥ n − degree(D)

Thus, the Hermitian code defined by D = 5P∞ is a [8, 5, 3]4 code. The dual of an
AG code has parameters [17],

Dimension, k⊥ = n − degree(D) + g − 1

Distance, d⊥ ≥ degree(D) − 2g + 2

8.4 Generalised AG Codes

Algebraic geometry codes and codes obtained from them feature prominently in the
databases of best-known codes [8, 15] for an appreciable range of code lengths for
different field sizes q. Generalised algebraic geometry codes were first presented
by Niederreiter et al. [21], Xing et al. [13]. A subsequent paper by Ozbudak and
Stichtenoth [14] shed more light on the construction. AG codes as defined by Goppa
utilised places of degree one or rational places. Generalised AG codes however were
constructed by Xing et al. using places of higher degree (including places of degree
one). In [20], the authors presented a method of constructing generalised AG codes
which uses a concatenation concept. The paper showed that best-known codes were
obtainable via this construction. In [4] it was shown that the method can be effective
in constructing new codes and the authors presented 59 codes in finite fields F4, F8

and F9 better than the codes in [8]. In [11], the authors presented a construction
method based on [20] that uses a subfield image concept and obtained new binary
codes as a result. In [19] the authors presented some new curves as well as 129 new
codes in F8 and F9.

8.4.1 Concept of Places of Higher Degree

Recall from Chap.8 that a two-dimensional affine space A2(Fq) is given by the set
of points

{(α, β) : α, β ∈ Fq}

while its projective closure P2(Fq) is given by the set of equivalence points

{{(α : β : 1)} ∪ {(α : 1 : 0)} ∪ {(1 : 0 : 0)} : α, β ∈ Fq}.

Given a homogeneous polynomial F(x, y, z), a curveX /Fq defined in P2(Fq) is a
set of distinct points
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X /Fq = {T ∈ P
2(Fq) : F(T ) = 0}

Let Fq� be an extension of the field Fq , the Frobenius automorphism is given as

φq,� : Fq� → Fq�

φq,�(β) = βq β ∈ Fq�

and its action on a projective point (x : y : z) in Fq� is

φq,�((x : y : z)) = (xq : yq : zq).

Definition 8.12 (Place of Degree from [18]) A place of degree � is a set of � points
of a curve defined in the extension field Fq� denoted by {T0, T1, . . . , T�−1} where
each Ti = φi

q,l(T0). Places of degree one are called rational places.

Example 8.7 Consider the curve in F4 defined as,

F(x, y, z) = x

The curve has the following projective rational points (points of degree 1),

(0 : 0 : 1) (0 : 1 : 1) (0 : α : 1) (0 : α2 : 1)
(0 : 1 : 0)

where α is the primitive polynomial of F4. The curve has the following places of
degree 2,

{(0 : β : 1), (0 : β4 : 1)} {(0 : β2 : 1), (0 : β8 : 1)}
{(0 : β3 : 1), (0 : β12 : 1)} {(0 : β6 : 1), (0 : β9 : 1)}
{(0 : β7 : 1), (0 : β13 : 1)} {(0 : β11 : 1), (0 : β14 : 1)}

where β is the primitive element of F16.

8.4.2 Generalised Construction

This section gives details of the construction of generalised AG codes as described
in [21]. Two maps that are useful in the construction of generalised AG codes are
now described. Observe that Fq is a subfield of Fq� for all � ≥ 2. It is then possible
to map Fq� to an �-dimensional vector space with elements from Fq using a suitable
basis. The map π� is defined as such,
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π� : Fq� → F
�
q

π�(β) = (c1 c2 . . . c�) β ∈ Fq� , ci ∈ Fq .

Suppose (γ1, γ2, . . . , γ�) forms a suitable basis of the vector space F�
q , then β =

c1γ1 + c2γ2 + · · · + c�γ�. Finally, the map σ�,n is used to represent an encoding map
from an �-dimensional message space in Fq to an n-dimensional code space,

σ�,n : F�
q → F

n
q

with � ≤ n.
A description of generalisedAGcodes as presented in [4, 13, 21] is nowpresented.

Let F = F(x, y, z) be a homogeneous polynomial defined in Fq . Let g be the genus
of a smooth irreducible curve X /Fq corresponding to the polynomial F. Also, let
P1, P2, . . . , Pr be r distinct places of X /Fq and ki = deg(Pi ) (deg is degree of).
W is a divisor of the curve X /Fq such that

W = P1 + P2 + · · · + Pr

and another divisor G such that the two do not intersect.4 Specifically, the divisor
G = m(Q − R) where deg(Q) = deg(R) + 1 for arbitrary5 divisors Q and R. As
mentioned earlier, associated with the divisor G is a Riemann–Roch space L (G)

with m = deg(G)) an integer, m ≥ 0. From the Riemann–Roch theorem (Theorem
8.3) it is known that the dimension of L (G) is given by l(G) and

l(G) ≥ m − g + 1.

Also, associated with each Pi is a q-ary code Ci with parameters [ni , ki =
deg(Pi ), di ]q with the restriction that di ≤ ki . Let

{ f1, f2, .., fk : fl ∈ L (G)}

denote a set of k linearly independent elements ofL (G) that formabasis.Agenerator
matrix for a generalised AG code is given as such,

M =

⎡
⎢⎢⎢⎣

σk1,n1(πk1( f1(P1))) · · · · · · σkr ,nr (πkr ( f1(Pr )))
σk1,n1(πk1( f2(P1))) · · · · · · σkr ,nr (πkr ( f2(Pr )))

...
. . .

...

σk1,n1(πk1( fk(P1))) · · · · · · σkr ,nr (πkr ( fk(Pr )))

⎤
⎥⎥⎥⎦

4This is consistent with the definition of AG codes. The two divisors should have no points in
common.
5These are randomly chosen places such that the difference between their degrees is 1 and G does
not intersect W .
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where fl(Pi ) is an evaluation of a polynomial and basis element fl at a place Pi , πki
is a mapping from Fqki to Fq and σki ,ni is the encoding of a message vector in F

ki
q

to a code vector in F
ni
q . This is a 3 step process. The place Pi is first evaluated at fl

resulting in an element of Fki
q . The result is then mapped to a vector of length ki in the

subfield Fq . Finally, this vector is encoded with code with parameters [ni , ki , di ]q .
It is desirable to choose the maximum possible minimum distance for all codes

Ci so that di = ki [21]. The same code is used in the map σki ,ni for all points of the
same degree ki , i.e. the code C j has parameters [n j , j, d j ]q for a place of degree j .
Let A j be an integer denoting the number of places of degree j and Bj be an integer
such that 0 ≤ Bj ≤ A j .

If t is the maximum degree of any place Pi that is chosen in the construction, then
the generalised AG code is represented as a

C1(k; t; B1, B2, . . . , Bt ; d1, d2, . . . , dt ).

Let [n, k, d]q represent a linear code in Fq with length n, dimension k, and minimum
distance d, then a generalised AG code is given by the parameters [21],

k = l(G) ≥ m − g + 1

n =
r∑

i=1

ni =
t∑

j=1

Bjn j

d ≥
r∑

i=1

di − g − k + 1 =
t∑

j=1

Bjd j − g − k + 1.

Below are two examples showing the construction of generalised AG codes.

Example 8.8 Let F(x, y, z) = x3 + xyz + xz2 + y2z [21] be a polynomial in F2.
The curveX /F2 has genus g = 1 and A1 = 4 places of degree 1 and A2 = 2 places
of degree 2.

Table8.4 gives the places of X /F2 up degree 2. The field F22 is defined by a
primitive polynomial s2 + s + 1 with α as its primitive element. Points

R = (1 : a3 + a2 : 1)

as a place of degree 4 and

Q = (1 : b4 + b3 + b2 : 1)

as a place of degree 5 are also chosen arbitrarily while a and b are primitive elements
of F24 (defined by the polynomial s4 + s3 + s2 + s + 1) and F25 (defined by the
polynomial s5 + s2 + 1),g respectively. The divisor W is

W = P1 + · · · + P6.
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Table 8.4 Places of X /F2 # Pi deg(Pi )

P1 (0 : 1 : 0) 1

P2 (0 : 0 : 1) 1

P3 (1 : 0 : 1) 1

P4 (1 : 1 : 1) 1

P5 {(α : 1 : 1), (α2 :
1 : 1)}

2

P6 {(α : α + 1 :
1), (α2 : α : 1)}

2

The basis of the Riemann–Roch space L (2D) with D = Q − R and m = 2 is
obtained with computer algebra software MAGMA [3] as,

f1 = (x7 + x3 + x)/(x10 + x4 + 1)y

+ (x10 + x9 + x7 + x6 + x5 + x + 1)/(x10 + x4 + 1)

f2 = (x8 + x7 + x4 + x3 + x + 1)/(x10 + x4 + 1)y

+ (x8 + x4 + x2)/(x10 + x4 + 1)

For the map σki ,ni the codes; c1 a [1, 1, 1]2 cyclic code for places of degree 1 and
c2 a [3, 2, 2]2 cyclic code places of degree 2 are used. For the map π2 which applies
to places of degree 2, a polynomial basis [γ1, γ2] = [1, α] is used. Only the first
point in the place Pi for deg(Pi ) = 2 in the evaluation of f1 and f2 at Pi is utilised.
The generator matrix M of the resulting [10, 2, 6]2 generalised AG code over F2 is,

M =
[
1 1 0 1 0 1 1 0 1 1
0 0 1 1 1 1 0 1 0 1

]

Example 8.9 Consider again the polynomial

F(x, y, z) = x3 + xyz + xz2 + y2z

with coefficients fromF2 whose curve (with genus equal to 1) has places up to degree
2 as in Table8.4. An element f of the Riemann–Roch space defined by the divisor
G = (R − Q) with

Q = (a : a3 + a2 : 1)

and
R = (b : b4 + b3 + b2 + b + 1 : 1)

where a and b primitive elements of F24 and F25 (since the curve has no place of
degree 3) respectively, is given by,
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f = (x3x + x2z2 + z4)y/(x5 + x3z2 + z5)

+ (x5 + x4z + x3z2 + z3x2 + xz4 + z5)/(x5 + x3z2 + z5)

Evaluating f at all the 5 places Pi from the Table8.4 and using the map πdeg(Pi ) that
maps all evaluations to F2 results in,

[
f (Pi ) |deg(Pi )=1︷ ︸︸ ︷
1 | 1 | 0 | 1| 1 | α2︸ ︷︷ ︸

f (Pi ) |deg(Pi )=2

]

This forms the code [6, 1, 5]4.6 In F2 this becomes,

[ 1 | 1 | 0 | 1 | 1 0︸︷︷︸
1

| 1 1︸︷︷︸
α2

]

which forms the code [8, 1, 5]2. Short auxiliary codes [1, 1, 1]2 to encode
f (Pi ) |deg(Pi )=1 and [3, 2, 2]2 to encode f (Pi ) |deg(Pi )=2 are used. The resulting
codeword of a generalised AG code is,

[ 1 | 1 | 0 | 1 | 1 0 1 | 1 1 0 ].

This forms the code [10, 1, 7]2.
Three polynomials and their associated curves are used to obtain codes in F16 better
than the best-known codes in [15]. The three polynomials are given in Table8.5,
while Table8.6 gives a summary of the properties of their associated curves (with
t = 4). w is the primitive element of F16. The number of places of degree j , A j , is
determined by computer algebra system MAGMA [3]. The best-known linear codes
from [15] over F16 with j = d j for 1 ≤ j ≤ 4 are

[1, 1, 1]16 [3, 2, 2]16 [5, 3, 3]16 [7, 4, 4]16
which correspond to C1, C2, C3 and C4, respectively. Since t = 4 for all the codes
in this paper and

[d1, d2, d3, d4] = [1, 2, 3, 4]

The representation C1(k; t; B1, B2, . . . , Bt ; d1, d2, . . . , dt ) is shortened as such,

C1(k; t; B1, B2, . . . , Bt ; d1, d2, . . . , dt ) ≡ C1(k; B1, B2, . . . , Bt ).

Tables8.7 to 8.9 show improved codes from generalised AG codes with better
minimum distance than codes in [15]. It is also worth noting that codes of the form

6From Bezout’s dmin = n − m = n − k − g + 1.
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Table 8.5 Polynomials in F16

F1 = x5 + y4z + yz4

F2 = x16 + x4y15 + x4 + xy15 + w4y15 + w4

F3 = x28 + wx20 + x18 + w10x17 + w10x15 + w4x14 + w3x13 + w3x12 + wx11 + x10 +
w11x9 + w12x8 + w14x7 + w13x6y2 + w9x6y + w6x6 + w2x5y2 + w13x5y + w14x5 +
w14x4y4 + w7x4y2 + w6x4y + w9x4 + w8x3y4 + w11x3y + w4x3 + w11x2y4 + w11x2y2 +
wx2y + w5x2 + w8xy4 + w6xy2 + w9xy + w11y8 + y4 + w2y2 + w3y

Table 8.6 Properties of Xi/F16

Curve Genus A1 A2 A3 A4 Reference

X1 6 65 0 1600 15600

X2 40 225 0 904 16920 [5]

X3 13 97 16 1376 15840 [6] via [9]

Table 8.7 New codes from X1/F16

Codes k Range Description #

[70, k, d ≥ 63 − k]16 10 ≤ k ≤ 50 C1(k; [65, 0, 1, 0]) 41

Table 8.8 New codes from X2/F16

Code k Range Description #

[232, k, 190 − k] 102 ≥ k ≥ 129 C1(k; [225, 0, 0, 1]) 28

[230, k, 189 − k] 100 ≥ k ≥ 129 C1(k; [225, 0, 1, 0]) 30

[235, k, 192 − k] 105 ≥ k ≥ 121 C1(k; [225, 0, 2, 0]) 17

C1(k; N , 0, 0, 0) are simply Goppa codes (defined with only rational points). The
symbol # in the Tables8.7 to 8.9 denotes the number of new codes from each gen-
eralised AG code C1(k; B1, B2, . . . , Bt ). The tables in [7] contain curves known to
have the most number of rational points for a given genus. The curve X2/F16 is
defined by the well-known Hermitian polynomial [5].

Table 8.9 New codes from X3/F16

Codes k Range Description #

[102, k, 88 − k] 8 ≤ k ≤ 66 C(k; [97, 0, 1, 0]) 59

[103, k, 89 − k] 8 ≤ k ≤ 68 C(k; [97, 2, 0, 0]) 61

[106, k, 91 − k] k = 8 C(k; [97, 3, 0, 0]) 1
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8.5 Summary

Algebraic geometry codes are codes obtained from curves. First, the motivation for
studying these codes was given. From an asymptotic point of view, some families
of AG codes have superior performance than the previous best known bound on the
performance of linear codes, the Gilbert–Varshamov bound. For codes of moderate
length, AG codes have better minimum distances than their main competitors, non-
binary BCH codes with the same rate defined in the same finite fields. Theorems and
definitions as a precursor to AG codes was given. Key theorems are Bezout’s and
Riemann–Roch. Examples using the well-known Hermitian code in a finite field of
cardinality 4 were then discussed. The concept of place of higher degrees of curves
was presented. This notion was used in the construction of generalised AG codes.
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