
Chapter 2
Soft and Hard Decision Decoding
Performance

2.1 Introduction

This chapter is concerned with the performance of binary codes under maximum
likelihood soft decision decoding and maximum likelihood hard decision decoding.
Maximum likelihood decoding gives the best performance possible for a code and
is therefore used to assess the quality of the code. In practice, maximum likelihood
decoding of codes is computationally difficult, and as such, theoretical bounds on
the performance of codes are used instead. These bounds are in lower and upper
form and the expected performance of the code is within the region bounded by the
two. For hard decision decoding, lower and upper bounds on maximum likelihood
decoding are computed using information on the coset weight leader distribution.
For maximum likelihood soft decision decoding, the bounds are computed using the
weight distribution of the codes. The union bound is a simple and well-known bound
for the performance of codes under maximum likelihood soft decision decoding.
The union bound can be expressed as both an upper and lower bound. Using these
bounds, we see that as the SNR per bit becomes large the performance of the codes
can be completely determined by the lower bound. However, this is not the case with
the bounds on maximum likelihood hard decision decoding of codes. In general, soft
decision decoding has better performance than hard decision decoding and being
able to estimate the performance of codes under soft decision decoding is attractive.
Computation of the union bound requires the knowledge of the weight distribution of
the code. In Sect. 2.3.1, we use a binomial approximation for the weight distribution
of codes for which the actual computation of the weight distribution is prohibitive.
As a result, it possible to calculate within an acceptable degree of error the region in
which the performance of codes can be completely predicted.
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2.2 Hard Decision Performance

2.2.1 Complete and Bounded Distance Decoding

Hard decision decoding is concerned with decoding of the received sequence in
hamming space. Typically, the real-valued received sequence is quantised using a
threshold to a binary sequence. A bounded distance decoder is guaranteed to correct
all t errors or less, where t is called the packing radius and is given by:

t =
⌊
d − 1

2

⌋

and d is the minimum hamming distance of the code. Within a sphere centred
around a codeword in the hamming space of radius t there is no other codeword,
and the received sequence in this sphere is closest to the codeword. Beyond the
packing radius, some error patterns may be corrected. A complete decoder exhaus-
tively matches all codewords to the received sequence and selects the codeword with
minimum hamming distance. A complete decoder is also called a minimum dis-
tance decoder or maximum likelihood decoder. Thus, a complete decoder corrects
some patterns of error beyond the packing radius. The complexity of implementing
a complete decoder is known to be NP-complete [3]. Complete decoding can be
accomplished using a standard array. In order to discuss standard array decoding, we
first need to define cosets and coset leaders.

Definition 2.1 A coset of a code C is a set containing all the codewords of C
corrupted by a single sequence a ∈ F

n
q \ C ∪ {0}.

A coset of a binary code contains 2k sequences and there are 2n−k possible cosets.
Any sequence of minimum hamming weight in a coset can be chosen as a coset
leader. In order to use a standard array, the coset leaders of all the cosets of a code
must be known. We illustrate complete decoding with an example. Using a (7, 3)

dual Hamming code with the following generator matrix

G =
[

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

]

This code has codewords

C =

⎧⎪⎪⎨
⎪⎪⎩

0 0 0 0 0 0 0
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1
1 1 0 1 1 0 0
0 1 1 0 1 1 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

⎫⎪⎪⎬
⎪⎪⎭
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Coset Leaders

0000000 1000111 0101011 0011101 1101100 0110110 1011010 1110001

0000001 1000110 0101010 0011100 1101101 0110111 1011011 1110000
0000010 1000101 0101001 0011111 1101110 0110100 1011000 1110011
0000100 1000011 0101111 0011001 1101000 0110010 1011110 1110101
0001000 1001111 0100011 0010101 1100100 0111110 1010010 1111001
0010000 1010111 0111011 0001101 1111100 0111110 1001010 1100001
0100000 1100111 0001011 0111101 1001100 0010110 1111010 1010001
1000000 0000111 1101011 1011101 0101100 1110110 0011010 0110001

0000011 1000100 0101000 0011110 1101111 0110101 1011001 1110010
0000110 1000001 0101101 0011011 1101010 0110000 1011100 1110111
0001100 1001011 0100111 0010001 1100000 0111010 1010110 1111101
0011000 1011111 0110011 0000101 1110100 0101110 1000010 1101001
0001010 1001101 0100001 0010111 1100110 0111100 1010000 1111011
0010100 1010011 0111111 0001001 1111000 0100010 1001110 1100101
0010010 1010101 0111001 0001111 1111110 0100100 1001000 1100011
0001110 1001001 0100101 0010011 1100010 0111000 1010100 1111111

Fig. 2.1 Standard array for the (7, 3, 4) binary code

Complete decoding can be accomplished using standard array decoding. The example
code is decoded using standard array decoding as follows, The top row of the array
in Fig. 2.1 in bold contains the codewords of the (7, 3, 4) code.1 Subsequent rows
contain all the other cosets of the code with the array arranged so that the coset
leaders are in the first column. The decoder finds the received sequence on a row
in the array and then subtracts the coset leader corresponding to that row from it to
obtain a decoded sequence. The standard array is partitioned based on the weight of
the coset leaders. Received sequences on rows with coset leaders of weight less than
or equal to t = 3−1

2 = 1 are all corrected. Some received sequences on rows with
coset leaders with weight greater than t are also corrected. Examining the standard
array, it can be seen that the code can correct all single error sequences, some two
error sequences and one three error sequence. The coset weight Ci distribution is

C0 = 1

C1 = 7

C2 = 7

C3 = 1

The covering radius of the code is the weight of the largest coset leader (in this
example it is 3).

1It is worth noting that a code itself can be considered as a coset with the sequence a an all zero
sequence.
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2.2.2 The Performance of Codes on the Binary Symmetric
Channel

Consider a real-valued sequence received from a transmission through an AWGN
channel. If a demodulator makes hard decisions at the receiver, the channel may be
modelled as a binary symmetric channel. Assuming the probability of bit error for
the BSC is p, the probability of decoding error with a bounded distance decoder is
given by,

PBDD(e) = 1 −
t∑

i=0

Ci p
i (1 − p)n−i (2.1)

where Ci is the number of coset leaders with weight i . Ci known for 0 ≤ i ≤ t and
is given by,

Ci =
(
n

i

)
0 ≤ i ≤ t.

However, Ci , i > t need to be computed for individual codes. The probability of
error after full decoding is

PFull(e) = 1 −
n∑

i=0

Ci p
i (1 − p)n−i . (2.2)

Figure 2.2 shows the performance of the bounded distance decoder and the full
decoder for different codes. The bounds are computed using (2.1) and (2.2). As
expected, there is significant coding gain between unencoded and coded transmission
(bounded distance and full decoding) for all the cases. There is a small coding gain
between bounded distance and full decoders. This coding gain depends on the coset
leader weight distribution Ci for i > t of the individual codes. The balance between
complexity and performance for full and bounded distance decoders2 ensures that
the latter are preferred in practice. Observe that in Fig. 2.2 that the complete decoder
consistently outperforms the bounded distance decoder as the probability of error
decreases and Eb

N0
increases. We will see in Sect. 2.3 that a similar setup using soft

decision decoding in Euclidean space produces different results.

2.2.2.1 Bounds on Decoding on the BSC Channel

Suppose s is such that Cs is the maximum non-zero value for a code then s is the
covering radius of the code. If the covering radius s of a code is known and Ci , i > t
are not known, then the probability of error after decoding can be bounded by

2Bounded distance decoders usually have polynomial complexity, e.g. the Berlekamp Massey
decoder for BCH codes has complexity O(t2) [1].
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(b) BCH Code (63,39)

10-50
10-48
10-46
10-44
10-42
10-40
10-38
10-36
10-34
10-32
10-30
10-28
10-26
10-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22

FE
R

Eb/No

(128,100) Goppa Code Performance

Full Decoding
Bounded Distance Decoding

Unencoded (k=100)

(c) Goppa Code (128,100)

10-50
10-48
10-46
10-44
10-42
10-40
10-38
10-36
10-34
10-32
10-30
10-28
10-26
10-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100

 0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22

FE
R

Eb/No

(127,92) BCH Code Performance

Full Decoding
Bounded Distance Decoding

Unencoded (k=92)

(d) BCH Code (127,92)

Fig. 2.2 BCH code BDD and full decoder performance, frame error rate (FER) against Eb
N0

Pe ≥ 1 −
[

t∑
i=0

(
n

i

)
pi (1 − p)n−i + ps(1 − p)n−s

]
(2.3)

≤ 1 −
[ t∑

i=0

(
n

i

)
pi (1 − p)n−i + Ws p

s(1 − p)n−s

]
(2.4)

assuming the code can correct t errors and

Ws = 2n−k −
t∑

i=0

(
n

i

)
.
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The lower bound assumes that there is a single coset leader of weight s, and hence
the term ps(1 − p)n−s while the upper bound assumes that all the coset leaders of
weight greater than t have weight equal to the covering radius s. For the lower bound
to hold, Ws ≥ 1. The lower bound can be further tightened by assuming that the
Ws − 1 cosets have weight of t + 1, t + 2, . . . until they can all be accounted for.3

2.3 Soft Decision Performance

The union bound for the probability of sequence error using maximum likelihood
soft decoding performance on binary codes with BPSK modulation in the AWGN
channel is given by [2],

Ps ≤ 1

2

n∑
j=1

A j erfc

(√
Eb

N0
Rj

)
(2.5)

where R is the code rate, A j is the number of codewords of weight j and Eb
N0

is the SNR
per bit. The union bound is obtained by assuming that events in which the received
sequence is closer in euclidean distance to a codeword of weight j are independent
as such the probability of error is the sum of all these events. A drawback to the
exact computation of the union bound is the fact that the weight distribution A j ,
0 ≤ j ≤ n of the code is required. Except for a small number of cases, the complete
weight distribution of many codes is not known due to complexity limitations. Since
A j = 0 for 1 ≤ j < d where d is the minimum distance of the code we can express
(2.5) as,

Ps ≤ 1

2

n∑
j=d

A j erfc

(√
Eb

N0
Rj

)
(2.6)

≤ 1

2
Ad erfc

(√
Eb

N0
Rd

)
+ 1

2

n∑
j=d+1

Aj erfc

(√
Eb

N0
Rj

)
(2.7)

A lower bound on the probability of error can be obtained if it is assumed that error
events occur only when the received sequence is closer in euclidean distance to
codewords at a distance d from the correct codeword.

Ps ≥ 1

2
Ad erfc

(√
Eb

N0
Rd

)
(2.8)

3This can be viewed as the code only has one term at the covering radius, and all other terms are at
t + 1.



2.3 Soft Decision Performance 31

where

1

2

n∑
j=d+1

A j erfc

(√
Eb

N0
Rj

)
= 0. (2.9)

As such,

1

2
Ad erfc

(√
Eb

N0
Rd

)
≤ Ps ≤ 1

2

n∑
j=d

Aj erfc

(√
Eb

N0
Rj

)
(2.10)

Therefore, the practical soft decision performance of a binary code lies between
the upper and lower Union bound. It will be instructive to observe the union bound
performance for actual codes using their computed weight distributions as the SNR
per bit Eb

N0
increases. By allowing Eb

N0
to become large (and Ps to decrease) simulations

for several codes suggest that at a certain intersection value of Eb
N0

the upper bound
equals the lower bound. Consider Figs. 2.3, 2.4 and 2.5 which show the frame error
rate against the SNR per bit for three types of codes. The upper bounds in the figures
are obtained using the complete weight distribution of the codes with Eq. (2.5). The
lower bounds are obtained using only the number of codewords of minimum weight
of the codes with Eq. (2.8). It can be observed that as Eb

N0
becomes large, the upper

bound meets and equals the lower bound. The significance of this observation is that
for Eb

N0
values above the point where the two bounds intersect the performance of

the codes under soft decision can be completely determined by the lower bound (or
the upper bound). In this region where the bounds agree, when errors occur they
do so because the received sequence is closer to codewords a distance d away from
the correct codeword. The actual performance of the codes before this region is
somewhere between the upper and lower bounds. As we have seen earlier, the two
bounds agree when the sum in (2.9) approaches 0. It may be useful to consider an
approximation of the complementary error function (erfc),

erfc(x) < e−x2

in which case the condition becomes

1

2

n∑
j=d+1

A j e− Eb
N0

Rj ≈ 0. (2.11)

Clearly, the sum approximates to zero if each term in the sum also approximates to

zero. It is safe to assume that the term A j erfc
(√

Eb
N0

Rj
)

decreases as j increases

since erfc
(√

Eb
N0

Rj
)

reduces exponentially with j and A j increases in a binomial

(in most cases). The size of the gap between the lower and upper bounds is also
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(b) Extended BCH Code (128,64)
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(c) Extended BCH Code (128,85)
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Fig. 2.3 Extended BCH code lower and upper union bound performance, frame error rate (FER)
against Eb

N0

determined by these terms. Each term A j e− Eb
N0

Rj becomes small if one or both of the
following conditions are met,

(a) Some of the A j , j > d are zero. This is common in low rate binary codes with
a small number of codewords.

(b) The product Eb
N0
R j for j > d becomes very large.

Observing Fig. 2.3, 2.4 and 2.5, it can be seen that at small values of Eb
N0

and for low

rate codes for which R = k
n is small have some A j = 0, j > d and as such the gaps
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Fig. 2.4 BCH code lower and upper union bound performance, frame error rate (FER) against Eb
N0

between the upper and lower bounds are small. As an example consider the low rate
(127, 22, 47) BCH code in Fig. 2.4a which has,

A j = 0 j ∈ {49 . . . 54} ∪ {57 . . . 62} ∪ {65 . . . 70} ∪ {73 . . . 78} ∪ {81 . . . 126}.

For the high rate codes, R is large so that the product Eb
N0
R j becomes very large

therefore the gaps between the upper and lower bounds are small.
Figure 2.6 compares bounded distance decoding and full decoding with maximum

likelihood soft decision decoding of the (63, 39) and (63, 36) BCH codes. It can be
seen from the figure that whilst the probability of error for maximum likelihood
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(a) Reed–Muller Code(128,29)
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(b) Reed–Muller Code (128,99)
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(c) Reed–Muller Code (256,37)
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(d) Reed–Muller Code (256,163)

Fig. 2.5 Reed–Muller code lower and upper union bound performance, frame error rate (FER)
against Eb

N0

hard decision decoding is smaller than that of bounded distance decoding for all the
values of Eb

N0
, the upper bound on the probability of error for maximum likelihood

soft decision decoding agrees with the lower bound from certain values of Eb
N0

. This
suggests that for soft decision decoding, the probability of error can be accurately
determined by the lower union bound from a certain value of Eb

N0
. Computing the lower

union bound from (2.10) requires only the knowledge of the minimum distance of
the code d and the multiplicity of the minimum weight terms Ad . In practice, Ad is
much easier to obtain than the complete weight distribution of the code.
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Fig. 2.6 BCH code: Bounded distance, full and maximum likelihood soft decoding

2.3.1 Performance Assuming a Binomial Weight Distribution

Evaluating the performance of long codes with many codewords using the union
upper bound is difficult since one needs to compute the complete weight distribution
of the codes. For many good linear binary codes, the weight distributions of the codes
closely approximates to a binomial distribution. Computing the weight distribution

of a binary code is known to be NP-complete [3]. Let
(

Eb
N0

)
δ

be defined as,
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Fig. 2.7 Union bounds using binomial and actual weight distributions (WD) for best known codes

1

2
Ad erfc

(√
Eb

N0
Rd

) ∣∣∣∣
Eb
N0

=
(

Eb
N0

)
δ

≈ 1

2

n∑
j=d

Aj erfc

(√
Eb

N0
Rj

) ∣∣∣∣
Eb
N0

=
(

Eb
N0

)
δ

. (2.12)

Hence,
(

Eb
N0

)
δ

is the SNR per bit at which the difference between upper and lower

union bound for the code is very small. It is worth noting that equality is only possible

when Eb
N0

approaches infinity in (2.12) since lim
x→∞erfc(x) = 0. To find

(
Eb
N0

)
δ

for a

binary code (n, k, d) we simply assume a binomial weight distribution for the code
so that,

Ai = 2k

2n

(
n

i

)
(2.13)
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Fig. 2.8 Union bounds using binomial and actual weight distributions (WD) for the (255, 120, 40)
best known code

and compute an Eb
N0

value that satisfies (2.12). It must be noted that
(

Eb
N0

)
δ

obtained

using this approach is only an estimate. The accuracy of
(

Eb
N0

)
δ

depends on how

closely the weight distribution of the code approximates to a binomial and how small
the difference between the upper and lower union bounds Pupper − Plower is. Consider
Fig. 2.7 that show the upper and lower union bounds using binomial weight distrib-
utions and the actual weight distributions of the codes. From Fig. 2.7a, it can be seen
that for the low rate code (127, 30, 37) the performance of the code using the binomial
approximation of the weight distribution does not agree with the performance using
the actual weight distribution at low values of Eb

N0
. Interestingly Fig. 2.7b–d show

that as the rate of the codes increases the actual weight distribution of the codes
approximates to a binomial. The difference in the performance of the codes using
the binomial approximation and actual weight distribution decreases as Eb

N0
increases.

Figure 2.8 shows the performance of the (255, 120, 40) using a binomial weight dis-

tribution. An estimate for
(

Eb
N0

)
δ

from the figure is 5.2 dB. Thus for Eb
N0

≥ 5.2 dB, we

can estimate the performance of the (255, 120, 40) code under maximum likelihood
soft decision decoding in the AWGN channel using the lower union bound.
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Fig. 2.9 Performance of self-dual codes
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2.3.2 Performance of Self-dual Codes

A self-dual code C has the property that it is its own dual such that,

C = C ⊥.

Self-dual codes are always half rate with parameters (n, 1
2n, d). These codes are

known to meet the Gilbert–Varshamov bound and some of the best known codes are
self-dual codes. Self-dual codes form a subclass of formally self-dual codes which
have the property that,

W (C ) = W (C ⊥).

where W (C ) means the weight distribution of C . The weight distribution of certain
types of formally self-dual codes can be computed without enumerating all the code-
words of the code. For this reason, these codes can readily be used for analytical
purposes. The fact that self-dual codes have the same code rate and good properties
makes them ideal for performance evaluation of codes of varying length. Consider
Fig. 2.9 which shows the performance of binary self-dual (and formally self-dual)
codes of different lengths using the upper and lower union bounds with actual weight
distributions, bounded distance decoding and unencoded transmission. Figure 2.10
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Fig. 2.10 Coding gain against code length for self-dual codes at FER 10−10 and 10−20
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shows the coding gain of the self-dual codes at frame error rates (FER) 10−10 and
10−20 for soft decision decoding (SDD) and bounded distance decoding (BDD). The
coding gain represents the difference in dB between the SDD/BDD performance and
unencoded transmission. The coding gain is a measure of the power saving obtainable
from a coded system relative to an unencoded system in dB at a certain probability
of error. The SDD performance of codes with length 168, 136 and 128 at FER 10−10

are obtained from the union upper bound because the upper and lower bound do
not agree at this FER. Thus, the coding gain for these cases is a lower bound. It is
instructive to note that the difference between the coding gain for SDD and BDD at
the two values of FER increases as the length of the code increases. At FER of 10−20

SDD gives 3.36 dB coding gain over BDD for the code of length 168 and 2.70 dB
for the code of length 24. At a FER of 10−10, SDD gives 3.70 dB coding gain over
BDD for the code of length 168 and 2.44 dB for the code of length 24.

2.4 Summary

In this chapter, we discussed the performance of codes under hard and soft deci-
sion decoding. For hard decision decoding, the performance of codes in the binary
symmetric channel was discussed and numerically evaluated results for the bounded
distance decoder compared to the full decoder were presented for a range of codes
whose coset leader weight distribution is known. It was shown that as the SNR per
information bit increases there is still an observable difference between bounded
distance and full decoders. A lower and upper bound for decoding in the BSC was
also given for cases where the covering radius of the code is known. For soft decision
decoding, the performance of a wide range of specific codes was evaluated numer-
ically using the union bounds. The upper and lower union bounds were shown to
converge for all codes as the SNR per information bit increases. It was apparent that
for surprisingly low values of Eb

N0
the performance of a linear code can be predicted

by only using knowledge of the multiplicity of codewords of minimum weight. It
was also shown for those codes whose weight distribution is difficult to compute, a
binomial weight distribution can be used instead.
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