Chapter 12
LDPC Codes

12.1 Background and Notation

LDPC codes are linear block codes whose parity-check matrix—as the name
implies—is sparse. These codes can be iteratively decoded using the sum prod-
uct [9] or equivalently the belief propagation [24] soft decision decoder. It has been
shown, for example by Chung et al. [3], that for long block lengths, the performance
of LDPC codes is close to the channel capacity. The theory of LDPC codes is related
to a branch of mathematics called graph theory. Some basic definitions used in graph
theory are briefly introduced as follows.

Definition 12.1 (Vertex, Edge, Adjacent and Incident) A graph, denotedby G(V, E),
consists of an ordered set of vertices and edges.

e (Vertex) A vertex is commonly drawn as a node or a dot. The set V(G) consists
of vertices of G(V, E) and if v is a vertex of G(V, E), itis denoted as v € V(G).
The number of vertices of V(G) is denoted by |V (G)].

e (Edge) An edge (u,v) connects two vertices u € V(G) and v € V(G) and it
is drawn as a line connecting vertices u# and v. The set E(G) contains pairs of
elements of V(G), i.e. {(u,v) |u,v € V(G)}.

e (Adjacent and Incident) If (#,v) € E(G), thenu € V(G) and v € V(G) are
adjacent or neighbouring vertices of G(V, E). Similarly, the vertices u and v are
incident with the edge (u, v).

Definition 12.2 (Degree) The degree of a vertex v € V(G) is the number of edges
that are incident with vertex v, i.e. the number of edges that are connected to vertex v.

Definition 12.3 (Bipartite or Tanner graph) Bipartite or Tanner graph G(V, E)
consists of two disjoint sets of vertices, say V,(G) and V,(G), such that V(G) =
V,(G) U V,(G), and every edge (v, p;) € E(G), such thatv; € V,(G) and p; €
V,(G) for some integers i and j.

© The Author(s) 2017 315
M. Tomlinson et al., Error-Correction Coding and Decoding,

Signals and Communication Technology,

DOI 10.1007/978-3-319-51103-0_12



316 12 LDPC Codes

An [n, k,d] LDPC code may be represented by a Tanner graph G(V, E). The
parity-check matrix H of the LDPC code consists of |V,(G)| = n — k rows and
[V,(G)| = n columns. The set of vertices V,(G) and V,(G) are called variable and
parity-check vertices, respectively. Figure 12.1 shows the parity check and the cor-
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Fig. 12.1 Representations of a [16, 4, 4] LDPC code
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responding Tanner graph of a [16, 4, 4] LDPC code. Let V,,(G) = (vo, Vi, ..., Vu—1)
and V,(G) = (po, p1, - - -, Pn—k—1); We can see that for each (v;, p;) € E(G), the
ith column and jthrowof H, H;; #0,for0 <i <n—1land0<j<n—k—1.

Definition 12.4 (Cycle) A cycleinagraph G(V, E) is a sequence of distinct vertices
that starts and ends in the same vertex. For bipartite graph G(V, E), exactly half of
these distinct vertices belong to V,(G) and the remaining half belong to V,(G).

Definition 12.5 (Girth and Local Girth) The girth of graph G(V, E) is the length
of the shortest cycle in the graph G(V, E). The local girth of a vertex v € V(G) is
the length of shortest cycle that passes through vertex v.

The performance of a typical iteratively decodable code (e.g. an LDPC or turbo
code) may be partitioned into three regions, namely erroneous, waterfall and error
floor regions, see Fig. 12.2. The erroneous region occurs at low E; /Ny values and
is indicated by the inability of the iterative decoder to correctly decode almost all
of the transmitted messages. As we increase the signal power, the error rate of the
iterative decoder decreases rapidly—resembling a waterfall. The E;/Ny value at
which the waterfall region starts is commonly known as the convergence threshold
in the literature. At higher E, /Ny values, the error rate starts to flatten—introducing
an error floor in the frame error rate (FER) curve.

In addition to this FER curve, the offset sphere packing lower bound and the
probability of error based on the union bound argument as described in Chap. 1 are
also plotted in Fig. 12.2. The sphere packing lower bound represents the region of
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Fig. 12.2 Waterfall and error regions of a typical LDPC code for the AWGN channel
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attainable performance of a coding system. The performance to the left of this lower
bound is not attainable, whereas that to the right may be achieved by some coding
and decoding arrangements. The other curve is the union bound of the probability of
error, which is dominated by the low Hamming weight codewords and the number of
codewords of these Hamming weights. The larger the minimum Hamming distance
of a code, the lower the union bound typically. For iteratively decodable codes which
are not designed to maximise the minimum Hamming distance, the union bound
intersects with the offset sphere packing lower bound at relatively low Ej,/ Ny values.

It may be seen that, with an ideal soft decision decoder, the performance of a
coding system would follow the sphere packing lower bound and at higher E,/Ny
values, the performance floors due to the limitation of the minimum Hamming weight
codewords. However, as depicted in Fig. 12.2, there is a relatively wide gap between
the union bound and the error floor of a typical iteratively decodable code. This
is an inherent behaviour of iteratively decodable codes and it is attributed to the
weakness of the iterative decoder. There are other error events, which are not caused
by the minimum Hamming weight codewords, that prevent the iterative decoder from
reaching the union bound.

In terms of the construction technique, we may divide LDPC codes into two
categories: random and algebraic LDPC codes. We may also classify LDPC codes
into two categories depending on the structure of the parity-check matrix, namely
regular and irregular codes—refer to Sect. 12.1.1 for the definition. Another attractive
construction method that has been shown to offer capacity-achieving performance
is non-binary construction.

12.1.1 Random Constructions

Gallager [8] introduced the (n, A, p) LDPC codes where n represents the block length
whilst the number of non-zeros per column and the number of non-zeros per row are
represented by A and p, respectively.

The short notation (A, p) is also commonly used to represent these LDPC codes.
The coderate of the Gallager (A, p) codes is given by

A
R=1-—.
I

An example of the parity-check matrix of a Gallager (A, p) LDPC code is shown
inFig.12.1a.Itisa[16, 4, 4] code with a A of 3 and a p of 4. The parity-check matrix
of the (A, p) Gallager codes always have a fixed number of non-zeros per column
and per row, and because of this property, this class of LDPC codes is termed regular
LDPC codes. The performance of the Gallager LDPC codes in the waterfall region
is not as satisfactory as that of turbo codes for the same block length and code rate.
Many efforts have been devoted to improve the performance of the LDPC codes and
one example that provides significant improvement is the introduction of the irregular
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LDPC codes by Luby et al. [18]. The irregular LDPC codes, as the name implies,
do not have a fixed number of non-zeros per column or per row and thus the level
of error protection varies over a codeword. The columns of a parity check matrix
that have a higher number of non-zeros provide stronger error protection than those
that have a lower number of non-zeros. Given an input block in iterative decoding,
errors in the coordinates of this block, whose columns of the parity-check matrix
have a larger number of non-zeros, will be corrected earlier, i.e. only a small number
of iterations are required. In the subsequent iterations, the corrected values in these
coordinates will then be utilised to correct errors in the remaining coordinates of the
block.

Definition 12.6 (Degree Sequences) The polynomial A; (x) = >, A;x' is called
the symbol or variable degree sequence, where A; is the fraction of vertices of degree
i. Similarly, A,(x) = >, pix' is the check degree sequence, where p; is the
fraction of vertices of degree i.

The degree sequences given in the above definition are usually known as vertex-
oriented degree sequences. Another representations are edge-oriented degree
sequences which consider the fraction of edges that are connected to a vertex of
certain degree. Irregular LDPC codes are defined by these degree sequences and it
is assumed that the degree sequences are vertex-oriented.

Example 12.1 An irregular LDPC code with the following degree sequences

As(x) = 0.5x% +0.26x + 0.17x° + 0.07x'°
Ap(x) = 0.80x'* +0.20x "

has 50, 26, 17 and 7% of the columns with 2, 3, 5 and 10 ones per column, respectively,
and 80 and 20% of the rows with 14 and 15 ones per row, respectively.

Various techniques have been proposed to design good degree distributions.
Richardson et al. [27] used density evolution to determine the convergence thresh-
old and to optimise the degree distributions. Chung et al. [4] simplified the density
evolution approach using Gaussian approximation. With the optimised degree dis-
tributions, Chung et al. [3] showed that the bit error rate performance of a long block
length (n = 107) irregular LDPC code was within 0.04 dB away from the capacity
limit for binary transmission over the AWGN channel, discussed in Chap. 1. This is
within 0.18 dB of Shannon’s limit [30]. The density evolution and Gaussian approxi-
mation methods, which make use of the concentration theorem [28], can only be used
to design the degree distributions for infinitely long LDPC codes. The concentration
theorem states that the performance of cycle-free LDPC codes can be characterised
by the average performance of the ensemble. The cycle-free assumption is only valid
for infinitely long LDPC codes and cycles are inevitable for finite block-length LDPC
codes. As may be expected, the performance of finite block-length LDPC codes with
degree distributions derived based on the concentration theorem differs considerably
from the ensemble performance. There are various techniques to design good finite
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block-length LDPC codes, for instance see [1, 2, 10, 33]. In particular, the work of
Hu et al. [10] with the introduction of the progressive edge-growth (PEG) algorithm
to construct both regular and irregular LDPC codes, that of Tian et al. [33] with
the introduction of extrinsic message degree and recently, that of Richter et al. [29]
which improves the original PEG algorithm by introducing some construction con-
straints to avoid certain cycles involving variable vertices of degree 3, have provided
significant contributions to the construction of practical LDPC codes as well as the
lowering of the inherent error floor of these codes.

12.1.2 Algebraic Constructions

In general, LDPC codes constructed algebraically have a regular structure in their
parity-check matrix. The algebraic LDPC codes offer many advantages over ran-
domly generated codes. Some of these advantages are

1. The important property such as the minimum Hamming distance can be easily
determined or in the worst case, lower and upper bounds may be mathematically
derived. These bounds are generally more accurate than estimates for random
codes.

2. The minimum Hamming distance of algebraic LDPC codes is typically higher
than that of random codes. Due to the higher minimum Hamming distance, alge-
braic codes are not that likely to suffer from an early error floor.

3. The existence of a known structure in algebraic codes usually offers an attractive
and simple encoding scheme. In the case of random codes, in order to carry
out encoding, a Gaussian elimination process has to be carried out in the first
place and the entire reduced echelon parity-check matrix has to be stored in
the memory. Algebraically constructed codes such as cyclic or quasi-cyclic codes
can be completely defined by polynomials. The encoding of cyclic or quasi-cyclic
codes may be simply achieved using a linear-feedback shift-register circuit and
the memory requirement is minimum. Various efficient techniques for encoding
random LDPC codes have been proposed, see Ping et al. [26] for example, but
none of these techniques simplifies the storage requirements. The simplicity of the
encoder and decoder structure has led to many algebraically constructed LDPC
codes being adopted as industry standards [5].

4. Cyclic LDPC codes have n low Hamming weight parity-check equations and
therefore, compared to random codes, these cyclic LDPC codes have k extra
equations for the iterative decoder to iterate with and this leads to improved
performance.

One of the earliest algebraic LDPC code constructions was introduced by
Margulis [21] using the Ramanujan graphs. Lucas et al. [19] showed that the
well-known different set cyclic (DSC) [36] and one-step majority-logic decodable
(OSMLD) [17] codes have good performance under iterative decoding. The iter-
ative soft decision decoder offers significant improvement over the conventional
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hard decision majority-logic decoder. Another class of algebraic codes is the class
of the Euclidean and projective geometry codes which are discussed in detail by
Kou et al. [16]. Other algebraic constructions include those that use combinatorial
techniques [13-15, 35].

It has been observed that in general, there is an inverse performance relationship
between the minimum Hamming distance of the code and the convergence of the
iterative decoder. Irregular codes converge well with iterative decoding, but the min-
imum Hamming distance is relatively poor. In contrast, algebraically constructed
LDPC codes, which have high minimum Hamming distance, tend not to converge
well with iterative decoding. Consequently, compared to the performance of irreg-
ular codes, algebraic LDPC codes may perform worse in the low SNR region and
perform better in the high SNR region. This is attributed to the early error floor of
the irregular codes. As will be shown later, for short block lengths (n < 350), cyclic
algebraic LDPC codes offer some of the best performance available.

12.1.3 Non-binary Constructions

LDPC codes may be easily extended so that the symbols take values from the finite-
field Fo» and Davey et al. [6] were the pioneers in this area. Given an LDPC code over
[F, with parity-check matrix H, we may construct an LDPC code over Fon form > 2
by simply replacing every non-zero element of H with any non-zero element of Fp» in
arandom or structured manner. Davey et al. [6] and Hu et al. [11] have shown that the
performance of LDPC codes can be improved by going beyond the binary field. The
non-binary LDPC codes have better convergence behaviour under iterative decod-
ing. Using some irregular non-binary LDPC codes, whose parity-check matrices are
derived by randomly replacing the non-zeros of the PEG-constructed irregular binary
LDPC codes, Hu et al. [11] demonstrated that an additional coding gain of 0.25 dB
was achieved. It may be regarded that the improved performance is attributable to the
improved graph structure in the non-binary arrangement. Consider a cycle of length
6 in the Tanner graph of a binary LDPC code, which is represented as the following
sequence of pairs of edges {(vo, po), (3, Po)s (v3, p2), (v4, p2), (v4, p1), (vo, p1)}.
If we replace the corresponding entries in the parity-check matrix with some non-
zeros over Fon for m > 2, provided that these six entries are not all the same, the
cycle length becomes longer than 6. According to McEliece et al. [22] and Etzion
et al. [7], the non-convergence of the iterative decoder is caused by the existence of
cycles in the Tanner graph representation of the code. Cycles, especially those of
short lengths, introduce correlations of reliability information exchanged in iterative
decoding. Since cycles are inevitable for finite block length codes, it is desirable to
have LDPC codes with large girth.

The non-binary LDPC codes also offer an attractive matching for higher order
modulation methods. The impact of increased complexity of the symbol-based iter-
ative decoder can be moderated as the reliability information from the component



322 12 LDPC Codes

codes may be efficiently evaluated using the frequency-domain dual-code decoder
based on the Fast Walsh-Hadamard transform [6].

12.2 Algebraic LDPC Codes

Based on idempotents and cyclotomic cosets, see Chap. 4, a class of cyclic codes that
is suitable for iterative decoding may be constructed. This class of cyclic codes falls
into the class of one-step majority-logic decodable (OSMLD) codes whose parity-
check polynomial is orthogonal on each bit position—implying the absence of a girth
of 4 in the underlying Tanner graph, and the corresponding parity-check matrix is
sparse, and thus can be used as LDPC codes.

Definition 12.7 (Binary Parity-Check Idempotent) Let .#4 < .4 and let the poly-
nomial u(x) € T (x) be defined by

u(x) = Z es(x) 12.1)

se M

where e, (x) is an idempotent. The polynomial u(x) is called a binary parity-check
idempotent.

The binary parity-check idempotent u(x) can be used to describe an [n, k] cyclic
code as discussed in Chap.4. Since GCD(u(x), x" — 1) = h(x), the polynomial
i(x) = x9Ny (x 1) and its n cyclic shifts (mod x" — 1) can be used to define
the parity-check matrix of a binary cyclic code. In general, wtg (z(x)) is much lower
than wty (h(x)), and therefore a low-density parity-check matrix can be derived from
u(x).

Let the parity-check polynomial #(x) = x“ + x™ + ... + x™ of weight t + 1.
Since the code defined by u(x) is cyclic, for each non-zero coefficient u; in u(x),
there are another ¢ parity-check polynomials of weight # + 1, which also have a
non-zero coefficient at position ;. Furthermore, consider the set of these r + 1
polynomials that have a non-zero coefficient at position i;, there is no more than
one polynomial in the set that have a non-zero at position i ; for some integer j. In
other words, if we count the number of times the positions 0, 1, ..., n — 1 appear
in the exponents of the aforementioned set of # + 1 polynomials, we shall find that
all positions except u; appear at most once. This set of # + 1 polynomials is said to
be orthogonal on position i;. The mathematical expression of this orthogonality is
given in the following definition and lemma.

Definition 12.8 (Difference Enumerator Polynomial) Let the polynomial f(x) €
T (x). The difference enumerator of f(x), denoted as Z( f(x)), is defined as

D(fx)=f @) f(x)=do+dix+-- +dpx", (12.2)
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where it is assumed that Z( f (x)) is a modulo x” — 1 polynomial with coefficients
taking values from R (real coefficients).

Lemma 12.1 Let d; for 0 < i < n — 1 denote the coefficients of 2(u(x)). If
d;i € {0,1}, foralli € {1,2,...,n — 1}, the parity-check polynomial derived from
u(x) is orthogonal on each position in the n-tuple. Consequently,

(i) the minimum distance of the resulting LDPC code is 1 + wty (u(x)), and
(ii) the underlying Tanner Graph has girth of at least 6.

Proof (i) [25, Theorem 10.1] Let a codeword ¢(x) = co+cix + - - +c,_1x" ! and
¢(x) € T (x). For each non-zero bit position c; of ¢(x), where j € {0,1,...,n —
1}, there are wty (u(x)) parity-check equations orthogonal to position c;. Each of
the parity-check equations must check another non-zero bit ¢;, where [ # j, so
that the equation is satisfied. Clearly, wty (c(x)) must equal to 1 + wty (u(x)) and
this is the minimum weight of all codewords.

(i) The direct consequence of having orthogonal parity-check equations is the
absence of cycles of length 4 in the Tanner Graphs. Leta, b and ¢, wherea < b < c,
be three distinct coordinates in an n-tuple, since d; € {0, 1} for 1 <i <n — 1, this
implies that b — a # ¢ — b. We know that g(b — a) (mod n) € {1,2,...,n — 1}
and thus, g(b —a) (mod n) = (c — b) for some integer g € {1,2,...,n—1}. If we
associate the integers a, b and ¢ with some variable vertices in the Tanner graph, a
cycle of length 6 is produced.

It can be deduced that the cyclic LDPC code with parity-check polynomial i (x)
is an OSMLD code if d; € {0, 1}, foralli € {1,2,...,n — 1} or a difference set
cyclic (DSC) code if d; = 1, foralli € {1,2,...,n — 1}, where d; is the coefficient
of Z(u(x)).

In order to arrive at either OSMLD or DSC codes, the following design conditions
are imposed on i (x) and therefore, u(x):

Condition 12.1 The idempotent u(x) must be chosen such that
wty (u(x)) (Wt (u(x)) — 1)) <n — L

Proof There are wty (u(x)) polynomials of weight wty (#(x)) that are orthogonal
on position j for some integer j. The number of distinct positions in this set of
polynomials is wty (u(x)) (Wtg (u(x)) — 1), and this number must be less than or
equal to the total number of distinct integers between 1 and n — 1.

Condition 12.2 Following Definition 12.8,let W = {i |d; =1, 1 <i <n — 1},
the cardinality of W must be equal to wty (u(x)) (wty (u(x)) — 1).

Proof The cyclic differences between the exponents of polynomial u(x) are given
by Z (u(x)) = z;:ol d;x', where the coefficient d; is the number of differences
and the exponent i is the difference. The polynomial u(x) and some of its cyclic
shifts are orthogonal on position 0 and this means that all of the cyclic differences
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between the exponents of u(x) (excluding zero) must be distinct, i.e. d; € {0, 1} for
1 <i # n — 1. Since the weight of u(x) excluding x%is wty (u(x)) — 1 and there
are wty (u(x)) cyclic shifts of u(x) that are orthogonal to x°, the number of distinct
exponents in the cyclic differences is wty (#(x)) (wty (u(x)) — 1) = W.

Condition 12.3 The exponents of u(x) must not contain a common factor of n,
otherwise a degenerate code, a repetition of a shorter cyclic code, is the result.

Proof If the exponents of u(x) contain a common factor of n, p with n = pr, then
factors of u(x) divide x” — 1 and form a cyclic code of length r. Every codeword of
the longer code is a repetition of the shorter cyclic code.

Condition 12.4 Following (12.1), unless wty (es(x)) = 2, the binary parity-check
idempotent e, (x) must not be self-reciprocal, i.e. e;(x) # ¢; (x7'), foralli € ./Z.

Proof The number of non-zero coefficients of Z(es(x)) is equal to

wtp (es(x)) (Wey (eg(x)) —1).

For a self-reciprocal case, e, (x)e (x’l) = ef (x) = es(x) with wtg (e (x)) non-zero
coefficients. Following Condition 12.1, the inequality

wtg (es(x)) (Wi (es(x) — 1) < wig(e;(x))

becomes equality if and only if wty (e;(x)) = 2.

Condition 12.5 Following (12.1), u(x) must not contain e, (x~'), for all i € .,
unless e, (x) is self-reciprocal.

Proof If u(x) contains e; (x‘l) for i € ., then 2(u(x)) will contain both
es(x)eg (x’l) and e, (x’l) es(x), hence, some of the coefficients of Z(es(x)),
d; # {0, 1} for some integer i.

Although the above conditions seem overly restrictive, they turn out to be helpful
in code construction. Codes may be designed in stage-by-stage by adding candidate
idempotents to u(x), checking the above conditions at each stage.

In order to encode the cyclic LDPC codes constructed, there is no need to deter-
mine g(x). With « defined as a primitive n'" root of unity, it follows from Lemma 4.4
that u(a’) € {0,1} for 0 < i < n — 1. Let I = (Jo, ji, .-, jn—k—1) be a set of
integers between 0 and n — 1, such that g(a/) = 0, for all j € J . Because u(x)
does not contain o/ as its roots, it follows that u(e/) = 1, for all je f. Inl,,
1 + u(a/) = 0 and the polynomial 1 + u(x) = e, (x), the generating idempotent of
the code may be used to generate the codewords as an alternative to g(x).

The number of information symbols of the cyclic LDPC codes can be determined
either from the number of roots of u(x) which are also roots of unity, i.e. n —
wty (U (z)), or from the degree of (u(x), x" — 1) = h(x).
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Example 12.2 Consider the design of a cyclic LDPC code of length 63. The cyclo-
tomic coset modulo 63 is given in Example 4.2. Let u(x) be defined by Co, i.e.
u(x) = eg(x) = x°(1 + x° + x?’). 2(u(x)) indicates that the parity-check matrix
defined by u(x) has no cycles of length 4; however, following Condition 12.3, it is
a degenerate code consisting of repetitions of codewords of length 7.

With u(x) = ep(x) = x3(1 + x% 4+ x20 4+ x2 4+ x30 4 x3), the resulting cyclic
code is a [63, 31, 6] LDPC code which is non-degenerate and its underlying Tanner
graph has girth of 6. This code can be further improved by adding e;; (x) to u(x).
Despite e, (x) being self-reciprocal, its weight is 2 satisfying Condition 12.4. Now,
u(x) = x2 A +x2 +x8 + 22+ x22 4+ xP 4+ x2 +x%7), and it is a [63, 37, 9] cyclic
LDPC code.

Based on the theory described above, an algorithm which exhaustively searches
for all non-degenerate cyclic LDPC codes of length n which have orthogonal parity-
check polynomials has been developed, and it is given in Algorithm 12.1.

Algorithm 12.1 CodeSearch(V, index)

Input:
index < an integer that is initialised to —1
V < a vector that is initialised to ¢
7 &= A excluding 0
Output:
CodesList contains set of cyclic codes which have orthogonal parity-check polynomial
TV
2: for (i=index+1;i < |.7|; i++) do

3: Tprev <T

4: it (Xy,er ICs | < /n, S; is the ™ element of ) then

5: Appendi to T

6: u(x) = Xy ey es, (%)

7: if (u(x) is non-degenerate) and (u(x) is orthogonal on each position (Lemma 12.1))

then

8: U(z) = MS (u(x))

9: k=n—wty (U(z))
10: ¢ < aln, k, 1+ wty(u(x))] cyclic code defined by u(x)
11: if (k> }) and (¢ ¢ CodeList) then

12: Add C to CodeList

13: end if

14: end if

15: CodeSearch(T, i)

16:  end if

17: T < Tprev

18: end for

Table 12.1 lists some example of codes obtained from Algorithm 12.1. Note that
all codes with code rate less than 0.25 are excluded from the table and codes of longer
lengths may also be constructed. We can also see that some of the codes in Table 12.1
have the same parameters as the Euclidean and projective geometry codes, which
have been shown by Jin et al. [16] to perform well under iterative decoding.
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Table 12.1 Examples of
2-cyclotomic coset-based
LDPC codes

12 LDPC Codes

[n, k,d] Cyclotomic cosets
(21,11, 6] C7, Cy
[63,37,9] C21,Co3
[93,47, 8] C3, C3

[73, 45, 10] Cy

[105, 53, 8] C7,Ci5

[219, 101, 12] C3, Cp3

[255, 135, 13] C1, Cio

[255, 175, 17] Ci,Cy

[273, 191, 18] C1, Co1, Cr17
[341, 205, 16] Cy, Css

[511, 199, 19] Cs, C37
[511,259, 13] C1, Carg

[819, 435, 13] Ci

[819, 447, 19] C1, G351
[1023, 661, 23] C1, Cs3, C341
[1023, 781, 33] C1, Cs3, C123, C341
[1057, 813, 34] Cs, Cy43, Cy51
[1387, 783, 28] C1, Crz
[1971, 1105, 21] C1, Ces7
[2047, 1167, 23] C1,Cxy

[2325, 1335, 28] C1, Cs7, C175
[2325, 1373, 30] C1, Cs2s, Cioss
[2359, 1347, 22] Cq

[3741, 2229, 29] C

[3813, 2087, 28]

C1, C369, C1271

[4095, 2767, 49]

C1, C41, Ca35, C733

[4095, 3367, 65]

C1, C41, Ca35, C273, Ca11, C733

[4161, 2827, 39]

C1, C307, Ci3g7

[4161, 3431, 66]

C1, Cass, C307, C357, Ci387

[4681, 2681, 31]

C1,Cs

[5461, 3781, 43]

C1, C77,Cs79

A key feature of the cyclotomic coset-based construction is the ability to increment
the minimum Hamming distance of a code by adding further weight from other
idempotents and so steadily decrease the sparseness of the resulting parity-check
matrix. Despite the construction method producing LDPC codes with no cycles of
length 4, itis important to remark that codes that have cycles of length 4 in their parity-
check matrices do not necessary have bad performance under iterative decoding, and
a similar finding has been demonstrated by Tang et al. [31]. It has been observed
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that there are many cyclotomic coset-based LDPC codes that have this property, and
the constraints in Algorithm 12.1 can be easily relaxed to allow the construction of
cyclic LDPC codes with girth 4.

12.2.1 Mattson—-Solomon Domain Construction of Binary
Cyclic LDPC Codes

The [n, k, d] cyclic LDPC codes presented in Sect. 4.4 are constructed using the sum
of idempotents, which are derived from the cyclotomic cosets modulo »n, to define
the parity-check matrix. A different insight into this construction technique may be
obtained by working in the Mattson—Solomon domain.

Let n be a positive odd integer, 'o» be a splitting field for x” — 1 over [P, o be a
generator for F,n, and 7, (x) be a polynomial with maximum degree of n — 1 and
coefficients in [Fo» . Similar to Sect. 4.4, the notation of T’ (x) is used as an alternative to
T (x) and the variables x and z are used to distinguish the polynomials in the domain
and codomain. Let the decomposition of z” — 1 into irreducible polynomials over [,
be contained in a set F# = {f1(z), f2(2), ..., i@} ie. [[ <<, fi(z) = 2" — 1. For
each f;(z), there is a corresponding primitive idempotent, denoted as 6; (z), which
can be obtained by [20]

2@ =D f @)

0;(z) = 8(z" —1 12.3
() 70 +8(z" = 1) (12.3)

where f/(z) = d%fi(z), f{(z) € T(z) and the integer § is defined by

5 — 1 if deg(f;(z)) is odd,
|0 otherwise.

Let the decomposition of z” — 1 and its corresponding primitive idempotent be listed
as follows:

ui(x) 01(2) fi@)
ur(x) 62(z) fo(2)

uztx) 9;@ fz(.Z)-

Here u;(x), us(x), ..., u,(x) are the binary idempotents whose Mattson—Solomon
polynomials are 6, (z), 6>(z), .. ., 6,(z), respectively. Assume that . C {1,2,...,1},
let the binary polynomials u(x) = > ;e » i (x), f(2) = [lvicr fi(2), and 6(2) =
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Z\ﬁeﬂ 0;(z). It is apparent that, since u;(x) = MS~! (6:(2)), u(x) = MS™! 0(2)
and u(x) is an idempotent. !

Recall that u(x) is a low-weight binary idempotent whose reciprocal polynomial
can be used to define the parity-check matrix of a cyclic LDPC code. The number of
distinct n' roots of unity which are also roots of the idempotent «(x) determines the
dimension of the resulting LDPC code. In this section, the design of cyclic LDPC
codes is based on several important features of a code. These features, which are
listed as follows, may be easily gleaned from the Mattson—Solomon polynomial of
u(x) and the binary irreducible factors of z" — 1.

1. Weight of the idempotent u(x)
The weight of u(x) is the number of n roots of unity which are zeros of f(z).
Note that, f(a') = 0 if and only if §(a’) = 1 since an idempotent takes only the
values 0 and 1 over Fon. If u(x) is written as uo 4+ u; x +- - -+ up_1x" 1, following
(11.2), we have

u; =0@@) (mod?2) fori={0,1,....,n—1)}.

Therefore, u; = 1 precisely when f(a') = 0, giving wty (u(x)) as the degree of
the polynomial f(z).

2. Number of zeros of u(x)
Following (11.1), it is apparent that the number of zeros of u(x) which are roots
of unity, which is also the dimension of the code k, is

Number of zeros of u(x) =k =n — wty (6(2)) . (12.4)

3. Minimum Hamming distance bound

The lower bound of the minimum Hamming distance of a cyclic code, defined
by idempotent u(x), is given by its BCH bound, which is determined by the
number of consecutive powers of «, taken cyclically (mod ), which are roots
of the generating idempotent e, (x) = 1 + u(x). In the context of u(x), it is the
same as the number of consecutive powers of «, taken cyclically (mod n), which
are not roots of u(x). Therefore, it is the largest number of consecutive non-zero
coefficients in 6(z), taken cyclically (mod n).

The method of finding f;(z) is well established and using the above information,
a systematic search for idempotents of suitable weight may be developed. To be
efficient, the search procedure has to start with an increasing order of wty (1 (x)) and
this requires rearrangement of the set .% such that deg(f;(z)) < deg(f;i + 1(z)) for
all i. It is worth mentioning that it is not necessary to evaluate u(x) by taking the

ISince the Mattson-Solomon polynomial of a binary polynomial is an idempotent and vice-versa
[20], the Mattson—Solomon polynomial of a binary idempotent is also a binary idempotent.
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Mattson—Solomon polynomial of 6(z), for each f(z) obtained. It is more efficient to
obtain u(x) once the desired code criteria, listed above, are met.

For an exhaustive search, the complexity is of order & (2"@'). A search algorithm,
see Algorithm 12.2, has been developed and it reduces the complexity considerably by
targeting the search on the following key parameters. Note that this search algorithm,
which is constructed in the Mattson—Solomon domain, is not constrained to find
cyclic codes that have girth at least 6.

1. Sparseness of the parity-check matrix
A necessary condition for the absence of cycles of length 4 is given by the inequal-
ity wty (u(x)) (wtg(u(x)) — 1) < n — 1. Since wty (u(x)) = deg(f(z)), a rea-
sonable bound is

D deg(fi(2)) < /.

Vies

In practise, this limit is extended to enable the finding of good cyclic LDPC codes
which have girth of 4 in their underlying Tanner graph.

2. Code rate
The code rate is directly proportional to the number of roots of u(x). If R,
represents the minimum desired code rate, then it follows from (12.4) that we can
refine the search to consider the cases where

WtH(e(Z)) = (1 - Rmm)n .

3. Minimum Hamming distance

If the idempotent u(x) is orthogonal on each position, then the minimum Ham-
ming distance of the resulting code defined by u(x) is equal to 1 + wty (u(x)).
However, for cyclic codes with cycles of length 4, there is no direct method to
determine their minimum Hamming distance and the BCH bound provides a
lower bound to the minimum Hamming distance. Let d be the lowest desired
minimum Hamming distance and ry be the largest number of consecutive non-
zero coefficients, taken cyclically, of 6(z). If a cyclic code has ry of d, then its
minimum Hamming distance is at least 1 4-d. It follows that we can further refine
the search with the constraint

rg >d—1.

In comparison to the construction method described in Sect. 4.4, we can see that
the construction given in Sect.4.4 starts from the idempotent u(x), whereas this
section starts from the idempotent 6(z), which is the Mattson—Solomon polynomial
of u(x). Both construction methods are equivalent and the same cyclic LDPC codes
are produced.
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Algorithm 12.2 MSCodeSearch(V, index)

Input:
V & a vector initialised to ¢
index <= an integer initialised to —1
Rynin < minimum code rate of interest
d < lowest expected minimum distance
8 < small positive integer
F(z) < {fi(2)} Vi € I sorted in ascending order of the degree
Q) < bi(@}Viel

Output:
CodesList contains set of codes
. TV
2: for (i=index+1;i < |.7|; i++) do
3: Thew&=T
4: if (ZvjeT deg(fj(x)) + deg(f; (x)) < 4/n + §) then
5: Appendi to T
6: 0(z) < ZV_/ET 0;(2)
7: if (Wtg(0(2)) < (1 — Ryin)n and rg > d) then
8: u(x) =MS~! ()
9: if (u(x) is non-degenerate) then
10: ¢ < acyclic code defined by u(x)
11: if (¢ ¢ CodeList) then
12: Add C to CodeList
13: end if
14: end if
15: end if
16: MSCodeSearch(T, i)
17:  endif
18: T & Tprey
19: end for

Some good cyclic LDPC codes with cycles of length 4 found using Algorithm 12.2,
which may also be found using Algorithm 12.1, are tabulated in Table 12.2. A check
based on Lemma 12.1 may be easily incorporated in Step 12 of Algorithm 12.2 to
filter out cyclic codes whose Tanner graph has girth of 4.

Figure 12.3 demonstrates the FER performance of several cyclic LDPC codes
found by Algorithm 12.2. It is assumed that binary antipodal signalling is employed
and the iterative decoder uses the RVCM algorithm described by Papagiannis
et al. [23]. The FER performance is compared against the sphere packing lower
bound offset for binary transmission. We can see that the codes [127, 84, 10] and
[127, 99, 7], despite having cycles of length 4, are around 0.3 dB from the offset
sphere packing lower bound at 10~* FER. Figure 12.3¢c compares two LDPC codes
of block size 255 and dimension 175, an algebraic code obtained by Algorithm 12.2
and an irregular code constructed using the PEG algorithm [10]. It can be seen that,
in addition to having improved minimum Hamming distance, the cyclic LDPC code
is 0.4 dB superior to the irregular code, and compared to the offset sphere packing
lower bound, it is within 0.25 dB away at 10~* FER. The effect of the error floor
is apparent in the FER performance of the [341, 205, 6] irregular LDPC code, as
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Table 12.2 Several good cyclic LDPC codes with girth of 4

[n,k,d] u(x)
[51, 26, 10] T4 23 40 4+ x12  x17 4 x2  x27 63 30 4 x® 448
[63, 44, 8] T4 o 182l x 224 225 4 27 436 4 37 xR x5 4 x50 x5

[117,72,12] Lhx+x2+x a8 x4 x10 4 522 4 32 4 %4 4 139 4 404 4«88
[127’ 84, 10] 1+x+x2+x4+x8+x16+x32+x55+x59+x64+x91+x93+x109+x110+x118

[127,91, 10] 14+ x2 4 x10 4 18 4 x29 4 132 4 33 4% 4 x30 p x% 4 138 x5 4
74 476 4 78 4 86 4 (87 L (88 L (02 4 93 L 05

[127,92’7] 1+X5 +x10+x20+x29 +x3l+x33 +x39 +X40 +X58 +x62+x66+
¥78 +x79 +X80 +X83 +x103 +x105 +x115 +xll6 +X121 +x124
[127,99,7] 1—|—x13+x16+x18+x22+x26+x39+x42+x45+x46+x49+x57+x65+x68+

x70+x78+x80+x90+x91 +x92+x96+x97+x102+x103+x105+x108+x111

1 0 0 Cyclic LDPC code  + Cyclic LOPC code ~ +
=z o e 7 Ot Spher Pacing Lo
] 1w
v i w
2 i 2
5] | T
o | [vq
5 1 s
] i' |
o )
IS | €
g i S
w i w
10% | i ] 10
051 15 2 25 3 35 4 45 5 55 051 15 2 25 3 35 4 45 5 55
Ep/N,, dB Ep/N,, dB
(a) [127,84,10] cyclic LDPC code (b) [127,99,7] cyclic LDPC code
1 0 ’ Cyclic LDPC code ~ +
& 107} i
v w i
2 107? 2 1
g g |
= 10° = i
e <] f i
w 10* i ' |
A 2 |
5 o 5 10°] i
w w f i
10® Y 106 L : ]
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 4.5
Ep/N,, dB Ep/N,, dB
(¢) [255,175,17] cyclic and [255,175,6] ir- (d) [341,205,16] cyclic and [341,205,6] ir-
regular PEG LDPC codes regular PEG LDPC codes

Fig. 12.3 FER performance of some binary cyclic LDPC codes

shown in Fig. 12.3d. The floor of this irregular code is largely attributed to minimum
Hamming distance error events. Whilst this irregular code, at low SNR region, has
better convergence than does the algebraic LDPC code of the same block length and
dimension, the benefit of having higher minimum Hamming distance is obvious as
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the SNR increases. The [341, 205, 16] cyclic LDPC code is approximately 0.8 dB
away from the offset sphere packing lower bound at 10~* FER.

It is clear that short block length (rn < 350) cyclic LDPC codes have outstanding
performance and the gap to the offset sphere packing lower bound is relatively close.
However, as the block length increases, the algebraic LDPC codes, although these
code have large minimum Hamming distance, have a convergence issue, and the
threshold to the waterfall region is at larger E,/Ny. The convergence problem arises
because as the minimum Hamming distance increases, the weight of the idempotent
u(x), which defines the parity-check matrix, also increases. In fact, if u(x) satisfies
Lemma 12.1, we know that wty (u(x)) = d — 1, where d is the minimum Hamming
distance of the code. Large values of wty (u(x)) result in a parity-check matrix that
is not as sparse as that of a good irregular LDPC code of the same block length and
dimension.

12.2.2 Non-Binary Extension of the Cyclotomic Coset-Based
LDPC Codes

The code construction technique for the cyclotomic coset-based binary cyclic LDPC
codes, which is discussed in Sect. 4.4, may be extended to non-binary fields. Similar
to the binary case, the non-binary construction produces the dual-code idempotent
which is used to define the parity-check matrix of the associated LDPC code.

Let m and m' be positive integers with m | m’, so that Fo» is a subfield of F,..
Let n be a positive odd integer and I, be the splitting field of x* — 1 over F,n, so
thatn|2" —1.Letr = 2™ —1)/n,l = 2™ —1)/(2" — 1), a be a generator for F,,,
and B be a generator of Fon, where B = o'. Let T, (x) be the set of polynomials of
degree at most n — 1 with coefficients in F,.. For the case of a = 1, we may denote
Ti(x) by T (x) for convenience.

The Mattson—Solomon polynomial and its corresponding inverse, (11.1) and
(11.2), respectively, may be redefined as

n—1

A@R) =MS (a(x)) = D a@ )z (12.5)
j=0
1 n—1
a(x) =MS~! (A(2)) = - ZA(a"")x" (12.6)

i=0

where a(x) € T, (x) and A(z) € T, (2).

Recall that a polynomial e(x) € T,,(x) is termed an idempotent if the property
e(x) = e(x)? (mod x" —1) is satisfied. Note that e(x) # e(x?) (mod x" —1) unless
m = 1. The following definition shows how to construct an idempotent for binary
and non-binary polynomials.
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Definition 12.9 (Cyclotomic Idempotent) Assume that .4 be a set as defined in
Sect.4.4,lets € .4 and let C, ; represent the (i 4+ 1)th element of Cy, the cyclotomic
coset of s (mod n). Assume that the polynomial e, (x) € T,,(x) is given by

es(x)= > ec,x, (12.7)

0=i<|Cy|-1

where |Cy| is the number of elements in C;. In order for e;(x) to be an idempotent,
its coefficients may be chosen in the following manner:

(i) ifm=1,ec,6 =1,
(i1) otherwise, ec,, is defined recursively as follows:

fori =0, ec,, € {L.B.p%.... "2},
fori > 0, ec,; = e%‘si—l'

We refer to the idempotent e, (x) as a cyclotomic idempotent.

Definition 12.10 (Parity-Check Idempotent) Let 4 < .4 and letu(x) € T, (x) be

u(x) = 2 es(x). (12.8)

seM
The polynomial u(x) is an idempotent and it is called a parity-check idempotent.

As in Sect. 4.4, the parity-check idempotent u(x) is used to define the Fo» cyclic
LDPC code over F,», which may be denoted by [, k, d]o». The parity-check matrix
consists of n cyclic shifts of x92@®)y (x~1). For the non-binary case, the minimum
Hamming distance d of the cyclic code is bounded by

do+1 < d <min (wtg(g(x)), wtp (1 + u(x))),

where dj is the maximum run of consecutive ones in U(z) = MS(u(x)), taken
cyclically mod n.

Based on the description given above, a procedure to construct a cyclic LDPC
code over Fy» is as follows.

1. For integers m and n, obtain the splitting field (IF,.) of x” — 1 over [Fo». Unless
the condition of m | m’ is satisfied, F,» cyclic LDPC code of length n cannot be
constructed.

2. Generate the cyclotomic cosets modulo 2" — 1 denoted as C’.

3. Derive a polynomial p(x) from C’ and let s € .4 be the smallest positive integer
such that |C| = m. The polynomial p(x) is the minimal polynomial of «*,

reo =[] (x+occévf). (12.9)

0<i<m
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Construct all elements of Fo» using p(x) as the primitive polynomial.

4. Let C be the cyclotomic cosets modulo n and let .4 be a set containing the
smallest number in each coset of C. Assume that there exists a non-empty set
A C A and following Definition 12.10 construct the parity-check idempotent
u(x). The coefficients of u(x) can be assigned following Definition 12.9.

5. Generate the parity-check matrix of ¢ using the n cyclic shifts of x9¢8® )y (x 1),

6. Compute r and [, and then take the Mattson—Solomon polynomial of u(x) to
produce U (z). Obtain the code dimension and the lower bound of the minimum
Hamming distance from U (z).

Example 12.3 Consider the construction of a n = 21 cyclic LDPC code over Fys.
The splitting field of x2! — 1 over Fys is Fp, and this implies that m = m’ = 6,
r=3and! = 1. Let C and C’ denote the cyclotomic cosets modulo n and o',
respectively. We know that |C}| = 6 and therefore the primitive polynomial p(x) has
roots of o/, forall j € C{,i.e. p(x) = 1 +x + x° By letting 1 + 8 + 8 = 0, all of
the elements of Fys can be defined. If u(x) is the parity-check idempotent generated
by the sum of the cyclotomic idempotents defined by Cy, where s € {# : 5,7, 9}
and ec, , for all s € .# be %, 1 and 1, respectively,

M(.X) =,323X5 +x7 —|—X9 +[346x10 +ﬂ43x13 +x14 +)C15 +ﬂ53x17 +X18
4 1358)(19 4 ,329)620

and its Mattson—Solomon polynomial U (z) indicates thatitisa[21, 15, > 5],s cyclic
code, whose binary image is a [126, 90, 8] linear code.

The following systematic search algorithm is based on summing each possible
combination of the cyclotomic idempotents to search for all possible o cyclic codes
of a given length. As in Algorithm 12.2, the search algorithm targets the following
key parameters:

1. Sparseness of the resulting parity-check matrix
Since the parity-check matrix is directly derived from u(x) which consists of the
sum of the cyclotomic idempotents, only low-weight cyclotomic idempotents are
of interest. Let W,,,, be the maximum wt g (u(x)); then the search algorithm will
only choose the cyclotomic idempotents whose sum has total weight less than or
equal to W,

2. High code rate
The number of roots of u(x) which are also roots of unity define the dimension
of the resulting LDPC code. Let the integer k,;,;,, be defined as the minimum code
dimension, and the cyclotomic idempotents that are of interest are those whose
Mattson—Solomon polynomial has at least k,,;, zeros.

3. High minimum Hamming distance
Let the integer d’ be the smallest value of the minimum Hamming distance of
the code. The sum of the cyclotomic idempotents should have at least d’ — 1
consecutive powers of 8 which are roots of unity but not roots of u(x).
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Table 12.3 Examples of [n, k, d]o» cyclic LDPC codes
g |kl u(x) d d; Comment
Fyp |[51,29] B2x3 + BxC 4+ B2 12 4 B2x 1T 4 B | >5 10 m=2,
ﬂx27 +ﬂx34 +,32X39 +ﬂx45 +,32X48 m/ — 8,
r=5and
1=385
[255, 175] BxT 4 B2xM 4 BxB 4 20 4 x| =17 | <20 |m=2,
ﬂx“2 +x123+ﬂ2x13] +x183 +x]89+ m’:8
ﬂx193—|—x219+x222+,82x224+x237+x246 r=1and
=85
[273, 191] B2xB + Bx3T 4 px*0 4 p2x74 + >18 | <20 |m=2,
ﬂx91 +/32x92 +’32x95 +}32x107 + m/ — 12’
x“7+ﬁx148+ﬂ2x155+,32x182+ r =15 and
ﬂx184 +/3x190 +x195 +ﬂx2|4 +x234 1 = 1365
Fy | [63,40] 1+ 8520+ BxB + 38+ 219+ | >6 10 m =3,
,32x26 +}36x36 +ﬂ4x38 +,3x41 +,84x52 m = 6,
r =1 and
1=9
[63,43] B2x + x4 pAxI8 4 21 4 =8  |<12 m=3,
ﬂ6x22 —|—ﬂ3x25 _|_x27 —|—f3x36 +ﬂ5x37 + m = 6,
x42 + ﬂ5x44 +x45 + /36)(50 +x54 r=1and
1=9
[91, 63] BOx + BOx2 4 B3x* 4 pOx8 4 px13 + | =8 <10 |m=3,
55x16+ﬂ5x23+ﬁ2x26+ﬂ3x32+/35x37+ m = 12’
ﬂ3x46+ﬂ4x52+,36x57+,36x64+,33x74 r = 45 and
1 =585
Fps | [85,48] 14 B12x20 4 g9x*2 4 pOx33 4 B35 4| >7 <12 |m=4,
ﬂ9x77 +ﬂ12x81 +ﬂ6x83 +ﬂ3x84 m = 8,
r =3 and
=17
Fys | [31,20] 14+ 8280 + 8720 + pPx 10 x4 | >7 12 m=S5,
x13+ﬁ]4x18+ﬂ19x20+x2'+x22+x26 m' :5’
r =1and
I=1
[31721] ﬂ23x5 +ﬂ29x9 _,’_ﬂlelO +ﬂx“ + 24 8 m = 5’
/34)613 +,327x18 +l330x20 +,316x21 + m = 5’
Bx? + pEx20 r=1and
I=1
Fys | [21,15] BBEx% 4+ x7 4+ x4 pHx10 4 pBx3 4 15 18 m=6,
x14 _|_x15 +/353x17 _|_x18+/358x19+ m’:6,
ﬂ29x20 r =3and

=1

TThe minimum Hamming distance of the binary image which has been determined using the improved Zimmermann

algorithm, Algorithm 5.1
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Following Definition 12.10 and the Mattson—Solomon polynomial

UR)=MS| > es(x)) = > E(2),

seM seM

it is possible to maximise the run of the consecutive ones in U(z) by varying the
coefficients of e;(x). It is therefore important that all possible non-zero values of
ec,, for all s € .# are included to guarantee that codes with the highest possible
minimum Hamming distance are found.

Table 12.3 outlines some examples of [n, k, d],» cyclic LDPC codes. The non-
binary algebraic LDPC codes in this table perform well under iterative decoding as
shown in Fig. 12.4 assuming binary antipodal signalling and the AWGN channel.
The RVCM algorithm is employed in the iterative decoder. The FER performance
of these non-binary codes is compared to the offset sphere packing lower bound in
Fig.12.4.

As mentioned in Sect. 12.1.2, there is an inverse relationship between the conver-
gence of the iterative decoder and the minimum Hamming distance of a code. The
algebraic LDPC codes, which have higher minimum Hamming distances compared
to irregular LDPC codes, do not converge well at long block lengths. It appears that
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Fig. 12.4 FER performance of some non-binary cyclic LDPC codes
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Fig. 12.5 FER performance of algebraic and irregular LDPC codes of rate 0.6924 and code length
5461 bits

the best convergence at long code lengths can only be realised by irregular LDPC
codes with good degree distributions. Figure 12.5 shows the performance of two
LDPC codes of block length 5461 bits and code rate 0.6924; one is an irregular code
constructed using the PEG algorithm and the other one is an algebraic code of mini-
mum Hamming distance 43 based on cyclotomic coset and idempotent construction
(see Table 12.1). These results are for the AWGN channel using binary antipodal
signalling with a belief propagation iterative decoder featuring 100 iterations. We
can see that at 107> FER, the irregular PEG code is superior by approximately 1.6 dB
compared to the algebraic cyclic LDPC code. However, for short code lengths, alge-

braic LDPC codes are superior. The codes have better performance and have simpler
encoders than ad hoc designed LDPC codes.

12.3 Irregular LDPC Codes from Progressive
Edge-Growth Construction

It is shown by Hu et al. [11] that LDPC codes obtained using the PEG construction
method can perform better than other types of randomly constructed LDPC codes.
The PEG algorithm adds edges to each vertex such that the local girth is maximised.
The PEG algorithm considers only the variable degree sequence, and the check degree
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Fig. 12.6 Effect of vertex degree ordering in PEG algorithm

sequence is maintained to be as uniform as possible. In this section, the results of
experimental constructions of irregular LDPC codes using the PEG algorithm are
presented. Analysis on the effects of the vertex degree ordering and degree sequences
have been carried out by means of computer simulations. All simulation results in
this section, unless otherwise stated, were obtained using binary antipodal signalling
with the belief propagation decoder using 100 iterations. Each simulation run was
terminated after the decoder had produced 100 erroneous frames.

Figure 12.6 shows the FER performance of various [2048, 1024] irregular LDPC
codes constructed using the PEG algorithm with different vertex degree orderings.
These LDPC codes have variable degree sequence A; (x) = 0.475x% + 0.280x> +
0.035x* 4+ 0.109x> + 0.101x'3. Let (vo, vi, ..., Vi, ..., va_1) be a set of variable
vertices of an LDPC code. Code 0 and Code 1 LDPC codes were constructed with

an increasing vertex degree ordering, i.e. deg(vg) < deg(vy) < --- < deg(v,—1),
whereas the remaining LDPC codes were constructed with random vertex degree
ordering.

Figure 12.6 clearly shows that, unless the degree of the variable vertices is assigned
in an increasing order, poor LDPC codes are obtained. In random degree ordering of
half rate codes, it is very likely to encounter the situation where, as the construction
approaches the end, there are some low-degree variable vertices that have no edge
connected to them. Since almost all of the variable vertices would have already had
edges connected to them, the low-degree variable vertices would not have many
choice of edges to connect in order to maximise the local girth. It has been observed
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that, in many cases, these low-degree variable vertices are connected to each other,
forming a cycle which involves all vertices, and the resulting LDPC codes often
have a low minimum Hamming distance. If d variable vertices are connected to each
other and a cycle of length 2d is formed, then the minimum Hamming distance of
the resulting code is d because the sum of these d columns in the corresponding
parity-check matrix H is 07 .

In contrast, for the alternative construction which starts from an increasing degree
of the variable vertices, edges are connected to the low-degree variable vertices
earlier in the process. Short cycles, which involve the low-degree variable vertices
and lead to low minimum Hamming distance, may be avoided by ensuring these low-
degree variable vertices have edges connected to the parity-check vertices which are
connected to high-degree variable vertices.

It can be expected that the PEG algorithm will almost certainly produce poor
LDPC codes if the degree of the variable vertices is assigned in descending order. It
is concluded that all PEG-based LDPC codes should be constructed with increasing
variable vertex degree ordering.

Figure 12.7 shows the effect of low-degree variable vertices, especially A, and
A3, on the FER performance of various [512, 256] PEG-constructed irregular LDPC
codes. Table 12.4 shows the variable degree sequences of the simulated irregular
codes. Figure 12.7 indicates that, with the fraction of high-degree variable vertices
kept constant, the low-degree variable vertices have influence over the convergence

10°

Frame Error Rate

| code24 -

1 15 2 2.5 3 3.5
Ey/N,, dB

Fig. 12.7 Effect of low-degree variable vertices
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Table 12.4 Variable degree sequences for codes in Fig. 12.7

Code %) A3 A4 As sv

Code 0 0.150 0.350 0.350 0.050 0.100
Code 1 0.200 0.325 0.325 0.050 0.100
Code 2 0.250 0.300 0.300 0.050 0.100
Code 3 0.300 0.275 0.275 0.050 0.100
Code 4 0.350 0.250 0.250 0.050 0.100
Code 5 0.400 0.225 0.225 0.050 0.100
Code 6 0.450 0.200 0.200 0.050 0.100
Code 7 0.500 0.175 0.175 0.050 0.100
Code 8 0.550 0.150 0.150 0.050 0.100
Code 10 0.150 0.700 0.000 0.050 0.100
Code 11 0.200 0.550 0.100 0.050 0.100
Code 12 0.250 0.400 0.200 0.050 0.100
Code 13 0.300 0.250 0.300 0.050 0.100
Code 14 0.350 0.100 0.400 0.050 0.100
Code 20 0.150 0.000 0.700 0.050 0.100
Code 21 0.200 0.100 0.550 0.050 0.100
Code 22 0.250 0.200 0.400 0.050 0.100
Code 23 0.300 0.300 0.250 0.050 0.100
Code 24 0.350 0.400 0.100 0.050 0.100

in the waterfall region. As the fraction of low-degree variable vertices is increased,
the FER in the low signal-to-noise ratio (SNR) region improves. On the other hand,
LDPC codes with a high fraction of low-degree variable vertices tend to have low
minimum Hamming distance and as expected, these codes exhibit early error floors.
This effect is clearly depicted by Code 7 and Code 8, which have the highest
fraction of low-degree variable vertices among all the codes in Fig. 12.7. Of all of
the codes, Code 6 and Code 24 appear to have the best performance.

Figure 12.8 demonstrates the effect of high-degree variable vertices on the FER
performance. These codes are rate 3/4 irregular LDPC codes of length 1024 bits
with the same degree sequences, apart from their maximum variable vertex degree.
One group has maximum degree of 8 and the other group has maximum degree of
12. From Fig. 12.8, it is clear that the LDPC codes with maximum variable vertex
degree of 12 converge better under iterative decoding than those codes with maximum
variable vertex degree of 8.

In a similar manner to Fig. 12.7, the effect of having various low-degree variable
vertices is also demonstrated in Fig. 12.9. In this case, the LDPC codes are constructed
to have the advantageous linear-time encoding complexity, where the parity symbols
are commonly described as having a zigzag pattern [26]. In this case, A; and A, of
these LDPC codes are fixed and the effect of varying A3, A4 and A5 is investigated.
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Table 12.5 Variable degree sequences of LDPC codes in Fig. 12.9

Code A A2 A3 A4 As A2

Code 0 0.000625 0.249375 0.644375 0.105625
Code 1 0.000625 0.249375 0.420000 0.224375 0.105625
Code 2 0.000625 0.249375 0.195000 0.449375 0.105625
Code 3 0.000625 0.249375 0.420000 0.224375 0.105625
Code 4 0.000625 0.249375 0.195000 0.449375 0.105625

Code 5 0.000625 0.249375 0.420000 0.111875 0.111875 0.106250
Code 6 0.000625 0.249375 0.195000 0.224375 0.224375 0.106250

Code 7 0.000625 0.249375 0.420000 0.224375 0.105625
Code 8 0.000625 0.249375 0.195000 0.449375 0.105625
Code 9 0.000625 0.249375 0.449375 0.195000 | 0.105625

Code 10 | 0.000625 0.249375 0.449375 0.097500 | 0.097500 |0.105625
Code 11 0.000625 0.249375 0.449375 0.044375 0.150000 | 0.106250
Code 12 | 0.000625 0.249375 0.495000 0.150000 | 0.105000
Code 13 | 0.000625 0.249375 0.495000 | 0.075000 | 0.075000 | 0.105000
Code 14 | 0.000625 0.249375 0.495000 | 0.037500 |0.111875 0.105625
Code 15 | 0.000625 0.249375 0.570000 0.075000 | 0.105000
Code 16 | 0.000625 0.249375 0.570000 | 0.037500 | 0.037500 | 0.105000
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Fig. 12.10 Effect of varying high-degree variable vertices
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The variable degree sequences of the LDPC codes under investigation, which are
rate 3/4 codes of length 1600 bits, are depicted in Table 12.5. The results show that,
as in the previous cases, these low-degree variable vertices contribute to the waterfall
region of the FER curve. The contribution of A; is more significant than that of A;
and this may be observed by comparing the FER curves of Code 1 with either Code
3 or Code 4, which has A3 of 0.0. We can also see that Code 0, which has the most
variable vertices of low degree, exhibits a high error floor.

In contrast to Fig. 12.9, Fig. 12.10 shows the effect of varying high-degree variable
vertices. The LDPC codes considered here all have the same code rate and code length
as those in Fig. 12.9 and their variable degree sequences are shown in Table 12.6. The
results show that

e The contribution of the high-degree variable vertices is in the high SNR region.
Consider Code 10 to Code 33, those LDPC codes that have larger A, tend to
be more resilient to errors in the high SNR region than those with smaller 1;,. At
E,/N, = 3.0dB, Code 10, Code 11 and Code 12 are inferior to Code 13 and
similarly, Code 23 and Code 33 have the best performance in their group.

e Large values of maximum variable vertex degree may not always lead to improved
FER performance. For example, Code 5 and Code 6 do not perform as well as
Code 4 at E;,/ N, = 3.0 dB. This may be explained as follows. As the maximum
variable vertex degree is increased, some of the variable vertices have many edges
connected to them, in the other words the corresponding symbols are checked
by many parity-check equations. This increases the chances of having unreliable
information from some of these equations during iterative decoding. In addition, a
larger maximum variable vertex degree also increases the number of short cycles
in the underlying Tanner graph of the code. It was concluded also by McEliece
et al. [22] and by Etzion et al. [7] that short cycles lead to negative contributions
preventing the convergence of the iterative decoder.

12.4 Quasi-cyclic LDPC Codes and Protographs

Despite irregular LDPC codes having lower error rates than their regular counter-
parts, Luby et al. [18], the extra complexity of the encoder and decoder hardware
structure, has made this class of LDPC codes unattractive from an industry point
of view. In order to encode an irregular code which has a parity-check matrix H,
Gaussian elimination has to be done to transform this matrix into reduced echelon
form. Irregular LDPC codes, as shown in Sect.12.3, may also be constructed by
constraining the n — k low-degree variable vertices of the Tanner graph to form a
zigzag pattern, as pointed out by Ping et al. [26]. Translating these n — k variable
vertices of the Tanner graph into matrix form, we have
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H,=| :: . (12.10)

The matrix H , is non-singular and the columns of this matrix may be used as the
coordinates of the parity-check bits of an LDPC code.

The use of zigzag parity checks does simplify the derivation of the encoder as the
Gaussian elimination process is no longer necessary and encoding, assuming that

H=[H,H,
Vo Vi Vi—2 Vi—1 Vi Vik+1 « -« Vp—2 Vn—1
Uo,0 uoi ... Uok—2 uor—1 |1
ui,0 uig ... Upg—2 urg—1 |1 1
= 9
Up k2,0 Un—k—2,1 +++ Un—k—2k—2 Un—k—2,k—1 1
Up—k—1,0 Up—k—1,1 -+ Un—k—1k—2 Un—k—1 k-1 1

can be performed by calculating parity-check bits as follows:

k—1
Ve = Zvjuoqj (mod 2)
Jj=0
k—1
vi=vioi+ D Vil (mod2)  fork+1<i<n-—1.
j=0

Nevertheless, zigzag parity bit checks do not lead to a significant reduction in encoder
storage space as the matrix H, still needs to be stored. It is necessary to introduce
additional structure in H,, such as using a quasi-cyclic property, to reduce signifi-
cantly the storage requirements of the encoder.

12.4.1 Quasi-cyclic LDPC Codes

Quasi-cyclic codes have the property that each codeword is a m-sized cyclic shift
of another codeword, where m is an integer. With this property simple feedback
shift registers may be used for the encoder. This type of code is known as circulant
codes defined by circulant polynomials and depending on the polynomials can have
significant mathematical structure as described in Chap.9. A circulant matrix is a
square matrix where each row is a cyclic shift of the previous row and the first row
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is the cyclic shift of the last row. In addition, each column is also a cyclic shift of the
previous column and the column weight is equal to the row weight.

A circulant matrix is defined by a polynomial r(x). If »(x) has degree <m, the
corresponding circulant matrix is an m x m square matrix. Let R be a circulant matrix
defined by r(x), then M is of the form

r(x) (mod x™ —1)
xr(x) (mod x™ —1)

x'r(x) (rriod X" —1) (12.11)

_xm_lr(x) (mod x™ —1) |

where the polynomial in each row can be represented by an m-dimensional vector,
which contains the coefficients of the corresponding polynomial. A quasi-cyclic code
can be built from the concatenation of circulant matrices to define the generator or
parity-check matrix.

Example 12.4 A quasi-cyclic code with defining polynomials r;(x) = 1 + x 4 x3
and 5 (x) = 14x2+4x>, where both polynomials have degree less than the maximum
degree of 6, produces a parity-check matrix in the following form:

[1101000/10100107]
0110100/0101001
0011010{1010100

0001101
1000110
0100011

11010001

0101010
0010101
1001010

0100101 |

Definition 12.11 (Permutation Matrix) A permutation matrix is a type of circulant
matrix where each row or column has weight of 1. A permutation matrix, which is
denoted by P,, ;, has r(x) = x/ (mod x™ — 1) as the defining polynomial and it
satisfies the property that P,zn, j = I, where I, is an m x m identity matrix.

Due to the sparseness of the permutation matrix, these are usually used to construct
quasi-cyclic LDPC codes. The resulting LDPC codes produce a parity-check matrix
in the following form:

Pm,ouo PWLOUJ . Pm«OO.r—l
Pm,OLU Pm,OH v PWl,Ol,:fl

H = . o _ (12.12)
Pmsos—l.[) Pmsosfl.] s meO.&fl.l*l



12.4 Quasi-cyclic LDPC Codes and Protographs 347

From (12.12), we can see that there exists a s X ¢ matrix, denoted by O, in H.
This matrix is called an offset matrix and it represents the exponent of r(x) in each
permutation matrix, i.e.

Ooo Op1 ... Og;-1

O10 O11 ... O141
0= . . . .

Os5-1,0 Os-1,1 - Os_1,41

where0 < O; ; <m—1,for0 <i <s—1and0 < j < ¢t—1.The permutation matrix
P, ; has m rows and m columns, and since the matrix H contains s and ¢ of these
matrices per row and column, respectively, the resulting code is a [mt, m(t — s), d]
quasi-cyclic LDPC code over [F,.

In general, some of the permutation matrices P; ; in (12.12) may be zero matrices.
In this case, the resulting quasi-cyclic LDPC code is irregular and O; ; for which
P; ; = O may be ignored. If none of the permutation matrices in (12.12) is a zero
matrix, the quasi-cyclic LDPC code defined by (12.12) is a (s, t) regular LDPC code.

12.4.2 Construction of Quasi-cyclic Codes
Using a Protograph

A protograph is a miniature prototype Tanner graph of arbitrary size, which can be
used to construct a larger Tanner graph by means of replicate and permute operations
as discussed by Thorpe [32]. A protograph may also be considered as an [#/, k] linear
code & of small block length and dimension. A longer code may be obtained by
expanding code & by an integer factor Q so that the resulting code has parameter
[n =n'Q, k = k' Q] over the same field. A simplest way to expand code & and also
to impose structure in the resulting code is by replacing a non-zero element of the
parity-check matrix of code &2 with a Q x Q permutation matrix, and a zero element
with a Q x Q zero matrix. As a consequence, the resulting code has a quasi-cyclic
structure. The procedure is described in detail in the following example.

Example 12.5 Consider a code &2 = [4, 2] over [F, as a protograph. The parity-
check matrix of code & is given by

Vo V1 V2 V3
co/ 1 101/ (12.13)
C1 0111

H =

Let the expansion factor Q = 5, the expanded code, which is a [20, 10] code, has a
parity-check matrix given by
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V4 Vs5Ve V7 Vg
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V9 V10 V11VI2V13 V14 V15V16V17 V18 V19

1
1

1

1

c 1
c3 1 1 1

cs 1 1 1
6 1 1 1
c7 1 1 1

co 1 1 1
(12.14)

where the zero elements have been omitted. This protograph construction may also
be described using the Tanner graph representation as shown in Fig. 12.11.

Initially, the Tanner graph of code & is replicated Q times. The edges of these
replicated Tanner graphs are then permuted. The edges may be permuted in many
ways and in this particular example, we want the permutation to produce a code which
has quasi-cyclic structure. The edges shown in bold in Fig. 12.11 or equivalently the
non-zeros shown in bold in (12.14) represent the code £2.

The minimum Hamming distance of code &2 is 2 and this may be seen from its
parity-check matrix, (12.13), where the summation of two column vectors, those of
vy and v3, produces a zero vector. Since, in the expansion, only identity matrices are

Vo U1 V2 U3
Tanner graph
of code P
Cp c)
Replicate @ =5 times
Vg U1 V2 U3 Vg Uy Vg Uy vg Vg U1 V11 V12 V13 V14 V15 V16 V17 V18 V19
Q replicas of
the above
Tanner graph
o 1 Co C3 Ca Cr Cg cr cg Co
Permute the edges
Vg U1 V2 U3 Vg Uy Vg Uy vg Vg U1 V11 V12 V13 V14 V15 V16 V17 V18 V19
Tanner graph
of the

expanded code

Fig. 12.11 Code construction using a protograph
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employed, the expanded code will have the same minimum Hamming distance as the
protograph code. This is obvious from (12.14) where the summation of two column
vectors, those of vs and vs, produces a zero vector. In order to avoid the expanded
code having low minimum Hamming distance, permutation matrices may be used
instead and the parity-check matrix of the expanded code is given by (12.15).

YoVi V2 V3 V4 V5V6 V7 V8 V9 VioVI1VI2VI3 V14 V15 V16 V17VI8 V19
o 1 1 1
1 1 1 1

c3|l 1 1

c 1 1 1

c7 1 1 1

cg 1 1 1
c9 1 1 1

(12.15)

The code defined by this parity-check matrix has minimum Hamming distance of 3.
In addition, the cycle structure of the protograph is also preserved in the expanded
code if only identity matrices are used for expansion. Since the protograph is such a
small code, the variable vertex degree distribution required to design a good target
code, which has much larger size than a protograph does, in general, causes many
inevitable short cycles in the protograph. Using appropriate permutation matrices in
the expansion, these short cycles may be avoided in the expanded code.

In the following, we describe a construction of a long quasi-cyclic LDPC code for
application in satellite communications. The standard for digital video broadcasting
(DVB), which is commonly known as DVB-S2, makes use of a concatenation of
LDPC and BCH codes to protect the video stream. The parity-check matrices of
DVB-S2 LDPC codes contain a zigzag matrix for the n — k parity coordinates and
quasi-cyclic matrices on the remaining k coordinates. In the literature, the code with
this structure is commonly known as the irregular repeat accumulate (IRA) code [12].

The code construction described below, using a protograph and greedy PEG
expansion, is aimed at improving the performance compared to the rate 3/4 DVB-S2
LDPC code of block length 64800 bits. Let the [64800, 48600] LDPC code that we
will construct be denoted by %). A protograph code, which has parameter [540, 405],
is constructed using the PEG algorithm with a good variable vertex degree distribu-
tions obtained from Urbanke [34],

Ay, (x) = 0.00185185x + 0.248148x% 4-0.55x> 4 0.0592593x°
for zigzag matrix
+0.0925926x® + 0.00555556x "% + 0.00185185x "> + 0.0166667x"°
+0.00185185x%* +0.00185185x2® + 0.0203704x%.
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The constructed [540, 405] protograph code has a parity-check matrix H' = [H, |
H',)] where H', is a 135 x 135 zigzag matrix, see (12.10), and H, is an irregular
matrix satisfying A, (x) above. In order to construct a [64800, 48600] LDPC code
%1, we need to expand the protograph code by a factor of Q = 120. In expanding
the protograph code, we apply the greedy approach to construct the offset matrix
O in order to obtain a Tanner graph for the [64800, 48600] LDPC code %), which
has local girth maximised. This greedy approach examines all offset values, from
0to Q — 1, and picks an offset that results in highest girth or if there is more than
one choice, one of these is randomly chosen. A 16200 x 48600 matrix H, can be
easily constructed by replacing a non-zero element at coordinate (i, j) in H,, with a
permutation matrix Py o, ;. The resulting LDPC code % has a parity-check matrix
givenby H = [H,, | Hp]; where, as before, H , is given by (12.10).
In comparison, the rate 3/4 LDPC code of block length 64800 bits specified in the

DVB-S2 standard takes a lower Q value, Q = 45. The protograph is a [1440, 1080]
code which has the following variable vertex degree distributions

Ay, (x) = 0.000694x + 0.249306x2 4+ 0.666667x> + 0.083333x 2.

for zigzag matrix

For convenience, we denote the DVB-S2 LDPC code by %5.
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Fig. 12.12 FER performance of the DVB-S2 and the designed [64800, 48600] LDPC codes
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Figure 12.12 compares the FER performance of 4} and %, using the belief propa-
gation decoder with 100 iterations. Binary antipodal signalling and AWGN channel
are assumed. Note that, although the outer concatenation of BCH code is not used,
there is still no sign of an error floor at FER as low as 107% which means that the
BCH code is no longer required. It may be seen from Fig. 12.12 that the designed
LDPC code, which at 10~ FER performs approximately 0.35 dB away from the
sphere packing lower bound offset for binary transmission loss, is 0.1 dB better than
the DVB-S2 code.

12.5 Summary

The application of cyclotomic cosets, idempotents and Mattson—Solomon polynomi-
als has been shown to produce many binary cyclic LDPC codes whose parity-check
equations are orthogonal in each position. Whilst some of these excellent cyclic codes
have the same parameters as the known class of finite geometry codes, other codes
are new. A key feature of this construction technique is the incremental approach
to the minimum Hamming distance and the sparseness of the resulting parity-check
matrix of the code. Binary cyclic LDPC codes may also be constructed by consid-
ering idempotents in the Mattson—Solomon domain. This approach has provided a
different insight into the cyclotomic coset-based construction. It has also been shown
that, for short algebraic LDPC codes, the myths of codes which have cycles of length
4 in their Tanner graph do not converge well with iterative decoding is not necessarily
true. It has been demonstrated that the cyclotomic coset-based construction can be
easily extended to produce good non-binary algebraic LDPC codes.

Good irregular LDPC codes may be constructed using the progressive edge-
growth algorithm. This algorithm adds edges to the variable and check vertices in
a way that maximises the local girth. Many code results have been presented show-
ing the effects of choosing different degree distributions. Guidelines are given for
designing the best codes.

Methods of producing structured LDPC codes, such as those which have quasi-
cyclic structure, have been described. These are of interest to industry due to the
simplification of the encoder and decoder. An example of such a construction to
produce a (64800, 48600) LDPC code, using a protograph, has been presented along
with performance results using iterative decoding. Better results are obtained with
this code than the (64800, 48600) LDPC code used in the DVB-S2 standard.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.
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