
Chapter 1
Bounds on Error-Correction Coding
Performance

1.1 Gallager’s Coding Theorem

The sphere packing bound by Shannon [18] provides a lower bound to the frame
error rate (FER) achievable by an (n, k, d) code but is not directly applicable to
binary codes. Gallager [4] presented his coding theorem for the average FER for
the ensemble of all random binary (n, k, d) codes. There are 2n possible binary
combinations for each codeword which in terms of the n-dimensional signal space
hypercube corresponds to one vertex taken from 2n possible vertices. There are
2k codewords, and therefore 2nk different possible random codes. The receiver is
considered to be composed of 2k matched filters, one for each codeword and a
decoder error occurs if any of the matched filter receivers has a larger output than
the matched filter receiver corresponding to the transmitted codeword. Consider this
matched filter receiver and another different matched filter receiver, and assume that
the two codewords differ in d bit positions. The Hamming distance between the two
codewords is d. The energy per transmitted bit is Es = k

n Eb, where Eb is the energy
per information bit. The noise variance per matched filtered received bit, σ 2 = N0

2 ,
where N0 is the single sided noise spectral density. In the absence of noise, the output
of the matched filter receiver for the transmitted codeword is n

√
Es and the output

of the other codeword matched filter receiver is (n − 2d)
√
Es . The noise voltage at

the output of the matched filter receiver for the transmitted codeword is denoted as
nc − n1, and the noise voltage at the output of the other matched filter receiver will
be nc + n1. The common noise voltage nc arises from correlation of the bits common
to both codewords with the received noise and the noise voltages −n1 and n1 arise,
respectively, from correlation of the other d bits with the received noise. A decoder
error occurs if

(n − 2d)
√
Es + nc + n1 > n

√
Es + nc − n1 (1.1)

that is, a decoder error occurs when 2n1 > 2d
√
Es .
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4 1 Bounds on Error-Correction Coding Performance

The average noise power associated with n1 is dσ 2 = d N0
2 and as the noise is

Gaussian distributed, the probability of decoder error, pd , is given by

pd = 1√
πdN0

∫ ∞

d
√
Es

e
−x2

dN0 dx (1.2)

This may be expressed in terms of the complementary error function (erfc)

erfc(y) = 2
1√
2π

∫ ∞

y
e

−x2

2 dx (1.3)

and

pd = 1

2
erfc

(√

d
k

n

Eb

N0

)

(1.4)

Each of the other 2k − 2 codewords may also cause a decoder error but the weight
distribution of the code Ci is usually unknown. However by averaging over all pos-
sible random codes, knowledge of the weight distribution of a particular code is not
required. The probability of two codewords of a randomly chosen code Ci , differing
in d bit positions, p(d|Ci ) is given by the binomial distribution

p(d|Ci ) =
(n
d

)

2n
, (1.5)

where
(a
b

) = a!
(a − b)!b! . A given linear code Ci cannot have codewords of arbitrary

weight, because the sum of a subset of codewords is also a codeword. However, for
non linear codes, pd may be averaged over all of the codes without this constraint.
Thus, we have

pC =
2n2k∑

i=1

p(d|Ci )p(Ci ) <
1

2n2k

n∑

d=0

2n2k∑

i=1

(n
d

)

2n+1
erfc

(√

d
k

n

Eb

N0

)

(1.6)

Rearranging the order of summation

pC <
1

2n2k

2n2k∑

i=1

n∑

d=0

(n
d

)

2n+1
erfc

(√

d
k

n

Eb

N0

)

(1.7)

and

pC <
1

2n+1

n∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.8)
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Remembering that any of the 2k − 1 matched filters may cause a decoder error, the
overall probability of decoder error averaged over all possible binary codes poverall, is

poverall = 1 − (1 − pC)2k−1 < 2k pC (1.9)

and

poverall <
2k

2n+1

n∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.10)

An analytic solution may be obtained by observing that 1
2 erfc(y) is upper bounded

by e−y2
and therefore,

poverall <
2k

2n

n∑

d=0

(
n

d

)
e−d k

n
Eb
N0 (1.11)

and as observed in [21],

(
1 + e− k

n
Eb
N0

)n
=

n∑

d=0

(
n

d

)
e−d k

n
Eb
N0 (1.12)

and

pC <
1

2n

(
1 + e− k

n
Eb
N0

)n
(1.13)

poverall <
2k

2n

(
1 + e− k

n
Eb
N0

)n
(1.14)

Traditionally, a cut-off rate R0 is defined after observing that

2k

2n

(
1 + e− k

n
Eb
N0

)n
= 2k

⎛

⎝1 + e− k
n

Eb
N0

2

⎞

⎠

n

(1.15)

with

2R0 = 2

1 + e− k
n

Eb
N0

(1.16)
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Fig. 1.1 Approximate and exact Gallager bounds for (128, 264), (256, 2128) and (512, 2256) non-
linear binary codes

then

poverall < 2k2−nR0 = 2k−nR0 = 2−n(R0− k
n ) (1.17)

This result may be interpreted as providing the number of information bits of the
code is less than the length of the code times the cut-off rate, then the probability
of decoder error will approach zero as the length of the code approaches infinity.
Alternatively, provided the rate of the code, k

n , is less than the cut-off rate, R0, then the
probability of decoder error will approach zero as the length of the code approaches
infinity. The cut-off rate R0, particularly in the period from the late 1950s to the 1970s
was used as a practical measure of the code rate of an achievable error-correction
system [11, 20–22]. However, plotting the exact expression for probability of decoder
error, Eq. (1.10), in comparison to the cut-off rate approximation Eq. (1.17), shows a
significant difference in performance, as shown in Fig. 1.1. The codes shown are the
(128, 264), (256, 2128) and (512, 2256) code ensembles of nonlinear, random binary
codes. It is recommended that the exact expression, Eq. (1.10) be evaluated unless
the code in question is a long code. As a consequence, in the following sections we
shall only use the exact Gallager bound.

Shown in Fig. 1.2 is the sphere packing lower bound, offset by the loss attributable
to binary transmission and the Gallager upper bound for the (128, 264), (256, 2128)

and (512, 2256) nonlinear binary codes. For each code, the exact Gallager upper
bound given by (1.10), is shown. One reason why Gallager’s bound is some way
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Fig. 1.2 Sphere packing and Gallager bounds for (128, 264), (256, 2128) and (512, 2256) nonlinear
binary codes

from the sphere packing lower bound as shown in Fig. 1.2 is that the bound is based
on the union bound and counts all error events as if these are independent. Except for
orthogonal codes, this produces increasing inaccuracy as the Eb

N0
is reduced. Equiva-

lently expressed, double counting is taking place since some codewords include the
support of other codewords. It is shown in the next section that for linear codes the
Gallager bound may be improved by considering the erasure correcting capability
of codes, viz. no (n, k) code can correct more than n − k erasures.

1.1.1 Linear Codes with a Binomial Weight Distribution

The weight enumerator polynomial of a code is defined as A(z) which is given by

A(z) =
n∑

i=0

Ai z
i (1.18)

For many good and exceptional, linear, binary codes including algebraic and quasi-
cyclic codes, the weight distributions of the codes closely approximates to a binomial
distribution where,
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A(z) = 1

2n−k

n∑

i=0

n!
(n − i)!i ! z

i (1.19)

with coefficients Ai given by

Ai = 1

2n−k

n!
(n − i)!i ! = 1

2n−k

(
n

i

)
. (1.20)

Tables of the best-known linear codes have been published from time to time [3, 10,
13, 16, 19] and a regularly updated database is maintained by Markus Grassl [5].
Remembering that for a linear code, the difference between any two codewords is
also a codeword, and hence the distribution of the Hamming distances between a
codeword and all other codewords is the same as the weight distribution of the code.
Accordingly, the overall probability of decoder error, for the same system as before
using a bank of 2k matched filters with each filter matched to a codeword is upper
bounded by

poverall <
1

2

n∑

d=0

Aderfc

(√

d
k

n

Eb

N0

)

(1.21)

For codes having a binomial weight distribution

poverall <
1

2

n∑

d=0

1

2n−k

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

(1.22)

which becomes

poverall <
2k

2n+1

n∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.23)

It will be noticed that this equation is identical to Eq. (1.10). This leads to the some-
what surprising conclusion that the decoder error probability performance of some
of the best-known, linear, binary codes is the same as the average performance of the
ensemble of all randomly chosen, binary nonlinear codes having the same values for
n and k. Moreover, some of the nonlinear codes must have better performance than
their average, and hence some nonlinear codes must be better than the best-known
linear codes.

A tighter upper bound than the Gallager bound may be obtained by considering
the erasure correcting capability of the code. It is shown in Chap. 14 that for the
erasure channel, given a probability of erasure, p, the probability of decoder error,
Pcode(p), is bounded by

http://dx.doi.org/10.1007/978-3-319-51103-0_14
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Pcode(p) <

n−k∑

s=dmin

s∑

j=dmin

A j
(n − j)! (n − s)!

(s − j)! ps(1 − p)(n−s)+
n∑

s=n−k+1

ps(1 − p)(n−s).

(1.24)

In Eq. (1.24), the first term depends upon the weight distribution of the code while
the second term is independent of the code. The basic principle in the above equation
is that an erasure decoder error is caused if an erasure pattern includes the support
of a codeword. Since no erasure pattern can be corrected if it contains more than
n − k errors, only codewords with weight less than or equal to n − k are involved.
Consequently, a much tighter bound is obtained than a bound based on the union
bound as there is less likelihood of double counting error events.

Considering the maximum likelihood decoder consisting of a bank of correlators,
a decoder error occurs if one correlator has a higher output than the correlator corre-
sponding to the correct codeword where the two codewords differ in s bit positions.
To the decoder, it makes no difference if the decoder error event is due to erasures,
from the erasure channel, or Gaussian noise from the AWGN channel; the outcome is
the same. For the erasure channel, the probability of this error event due to erasures,
Perasure(p) is

Perasure(p) = ps (1.25)

The probability of this error event due to noise, Pnoise

(
Eb

N0

)
is

Pnoise

(
Eb

N0

)
= 1

2
erfc

(√

s
k

n

Eb

N0

)

(1.26)

Equating Eqs. (1.25) to (1.26), for these probabilities gives a relationship between
the erasure probability, p and Eb

N0
and the Hamming distance, s.

ps = 1

2
erfc

(√

s
k

n

Eb

N0

)

(1.27)

For many codes, the erasure decoding performance is determined by a narrow range
of Hamming distances and the variation in Eb

N0
as a function of s is insignificant. This

is illustrated in Fig. 1.3 which shows the variation in Es
N0

as a function of s and p.
It is well known that the distance distribution for many linear, binary codes includ-

ing BCH codes, Goppa codes, self-dual codes [7, 8, 10, 14] approximates to a bino-
mial distribution. Accordingly,

A j ≈ n!
(n − j)! j ! 2n−k

. (1.28)
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Substituting this into Eq. (1.24) produces

Pcode(p) <

n−k∑

s=1

2s − 1

2n−k

(
n

s

)
ps(1 − p)(n−s) +

n∑

s=n−k+1

ps(1 − p)(n−s) (1.29)

With the assumption of a binomial weight distribution, an upper bound may be
determined for the erasure performance of any (n, k) code, and in turn, equating
Eq. (1.25) with Eq. (1.26) produces an upper bound for the AWGN channel. For
example, Fig. 1.4 shows an upper bound of the erasure decoding performance of a
(128, 64) code with a binomial weight distribution.

Using Eq. (1.27), the decoding performance may be expressed in terms of Eb
N0

and Fig. 1.5 shows the upper bound of the decoding performance of the same code
against Gaussian noise, as a function of Eb

N0
.

The comparison of the sphere packing bound and the Gallager bounds is shown
in Fig. 1.6. Also shown in Fig. 1.6 is the performance of the BCH (128, 64, 22) code
evaluated using the modified Dorsch decoder. It can be seen from Fig. 1.6 that the
erasure-based upper bound is very close to the sphere packing lower bound and
tighter than the Gallager bound.

Figure 1.7 gives the bounds for the (512, 256) and (256, 128) codes. It will be
noticed that the gap between the sphere packing bound and the erasure-based upper
bound increases with code length, but is tighter than the Gallager bound.
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1.1.2 Covering Radius of Codes

The covering radius of a code,cr if it is known, together with the weight spectrum of
the low-weight codewords may be used to tighten the Union bound upper bound on
decoder performance given by Eq. (1.23). The covering radius of a code is defined as
the minimum radius which when placed around each codeword includes all possible
qn vectors. Equivalently, the covering radius is the maximum number of hard decision
errors that are correctable by the code. For a perfect code, such as the Hamming codes,
the covering radius is equal to dmin−1

2 . For the [2m − 1, 2m − m − 1, 3] Hamming
codes, the covering radius is equal to 1 and for the (23, 12, 7) Golay code the covering
radius is equal to 3. As a corollary, for any received vector in Euclidean space, there
is always a codeword within a Euclidean distance of cr + 0.5. It follows that the
summation in Eq. (1.23) may be limited to codewords of weight 2cr + 1 to produce

poverall <
2k

2n+1

2cr+1∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.30)

1.1.3 Usefulness of Bounds

The usefulness of bounds may be realised from Fig. 1.8 which shows the performance
of optimised codes and decoders all (512, 256) codes for a turbo code, LDPC code
and a concatenated code.

1.2 Bounds on the Construction of Error-Correcting Codes

A code (linear or nonlinear),C , defined in a finite field of size q can be described with
its length n, number of codewords1 M and minimum distance d. We use (n, M, d)q to
denote these four important parameters of a code. Given any number of codes defined
in a field of size q with the same length n and distance d, the code with the maximum
number of codewords M is the most desirable. Equivalently, one may choose to fix
n, M and q and maximise d or fix M , d and q and maximise n. As a result, it is of
interest in coding theory to determine the maximum number of codewords possible
of any code defined in a field of size q, with minimum distance d and length n. This
number is denoted by Aq(n, d). Bounds on Aq(n, d) are indicators to the maximum
performance achievable from any code with parameters (n, M, d)q . As a result,
these bounds are especially useful when one constructs good error-correcting codes.
The tables in [5] contain the best-known upper and lower bounds on Aq(n, d) for
linear codes. The tables in [9] contain bounds on A2(n, d) for nonlinear binary codes.

1Where the code dimension k = logq M .
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Fig. 1.8 Comparison of sphere packing, Gallager and erasure-based bounds to the performance
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Lower bounds on Aq(n, d) tend to be code specific; however, there are several generic
upper bounds. As an example, consider the best-known upper and lower bounds on
A2(128, d) obtained from the tables in [5]. These are shown in Fig. 1.9 for the range
1 ≤ d ≤ 128. Optimal codes of length n = 128 are codes whose lower and upper
bounds on A2(128, d) coincide. The two curves coincide when k is small and d is
large or vice versa. The gap between the upper and lower bounds that exists for other
values of k and d suggests that one can construct good codes with a larger number of
codewords and improve the lower bounds. An additional observation is that extended
BCH codes count as some of the known codes with the most number of codewords.

It is often useful to see the performance of codes as their code lengths become
arbitrarily large. We define the information rate

αq(δ) = lim
n→∞

logq(Aq(n, δn))

n
, (1.31)

where δ = d
n is called the relative distance. Since the dimension of the code is defined

as k = logq(Aq(n, δn)), then a bound on the information rate αq(δ) is a bound on k
n ,

as n → ∞.
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1.2.1 Upper Bounds

1.2.1.1 Sphere Packing (Hamming) Bound

Let Vq(n, t) represent the number of vectors in each sphere then,

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i . (1.32)

Theorem 1.1 (Sphere Packing Bound)Themaximumnumberof codewords Aq (n, d)

is upper bounded by,

Aq(n, d) ≤ qn

t∑

i=0

(
n

i

)
(q − 1)i

Proof A code C is a subset of a vector space GF(q)n . Each codeword of C has only
those vectors GF(q)n but not in C lying at a hamming distance t = ⌊

d−1
2

⌋
from it

since codewords are spaced at least d places apart. In other words, no codewords lie
in a sphere of radius t around any codeword of C . As such, for counting purposes,
these spheres can represent individual codewords. The Hamming bound counts the
number of such non-overlapping spheres in the vector space GF(q)n .



16 1 Bounds on Error-Correction Coding Performance

Codes that meet this bound are called perfect codes. In order to state the asymptotic
sphere packing bound, we first define the qary entropy function, Hq(x), for the values
0 ≤ x ≤ r ,

Hq(x) =
{

0 if x = 0

x logq(q − 1) − x logq x − (1 − x) logq(1 − x) if 0 < x ≤ r

(1.33)

Theorem 1.2 (Asymptotic Sphere Packing Bound) The information rate of a code
αq(δ) is upper bounded by,

αq(δ) ≤ 1 − Hq

(
δ

2

)

for the range 0 < δ ≤ 1 − q−1.

1.2.1.2 Plotkin Bound

Theorem 1.3 (Plotkin Bound) Provided d > θn, where θ = 1 − q−1, then,

Aq(n, d) ≤
⌊

d

d − θn

⌋

Proof Let S = ∑
d(x, y) for all codewords x, y ∈ C , and x �= y, and d(x, y) denotes

the hamming distance between codewords x and y. Assume that all the codewords
of C are arranged in an M × n matrix D. Since d(x, y) ≥ d,

S ≥ M !
(M − 2)!d = M(M − 1)d. (1.34)

Let ni,α be the number of times an element α in the defining field of the code GF(q)

occurs in the i th column of the matrix D. Then,
∑

α∈GF(q)

ni,α = M . For each ni,α there

are M − ni,α entries of the matrix D in column i that have elements other than α.
These entries are a hamming distance 1 from the ni,α entries and there are n possible
columns. Thus,

S = n
n∑

i=1

∑

α∈GF(q)

ni,α(M − ni,α)

= nM2 −
n∑

i=1

∑

α∈GF(q)

n2
i,α. (1.35)



1.2 Bounds on the Construction of Error-Correcting Codes 17

From the Cauchy–Schwartz inequality,

⎛

⎝
∑

α∈GF(q)

ni,α

⎞

⎠

2

≤ q
∑

α∈GF(q)

n2
i,α. (1.36)

Equation (1.35) becomes,

S ≤ nM2 −
n∑

i=1

q−1

⎛

⎝
∑

α∈GF(q)

ni,α

⎞

⎠

2

(1.37)

Let θ = 1 − q−1,

S ≤ nM2 −
n∑

i=1

q−1

⎛

⎝
∑

α∈GF(q)

ni,α

⎞

⎠

2

≤ nM2 − q−1nM2

≤ nθM2. (1.38)

Thus from (1.34) and (1.38) we have,

M(M − 1)d ≤ S ≤ nθM2 (1.39)

M ≤
⌊

d

d − θn

⌋
(1.40)

and clearly d > θn.

Corollary 1.1 (Asymptotic Plotkin Bound) The asymptotic Plotkin bound is given
by,

αq(δ) = 0 if θ ≤ δ ≤ 1

αq(δ) ≤ 1 − δ

θ
if 0 ≤ δ ≤ θ.

1.2.1.3 Singleton Bound

Theorem 1.4 (Singleton Bound) The maximum number of codewords Aq(n, d) is
upper bounded by,

Aq(n, d) ≤ qn−d+1.
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Codes that meet this bound with equality, i.e. d = n − k + 1, are called maxi-
mum distance separable codes (MDS). The asymptotic Singleton bound is given
Theorem 1.5.

Theorem 1.5 (Asymptotic Singleton Bound) The information rate αq(δ) is upper
bounded by,

αq(n, δ) ≤ 1 − δ.

The asymptotic Singleton bound does not depend on the field size q and is a straight
line with a negative slope in a plot of αq(δ) against δ for every field.

1.2.1.4 Elias Bound

Another upper bound is the Elias bound [17]. This bound was discovered by P. Elias
but was never published by the author. We only state the bound here as the proof is
beyond the scope of this text. For a complete treatment see [6, 10].

Theorem 1.6 (Elias Bound) A code C of length n with codewords having weight at
most w, w < θn with θ = 1 − q−1 has,

d ≤ Mw

M − 1

(
2 − w

θn

)

Theorem 1.7 (Asymptotic Elias Bound) The information rate αq(δ) is upper
bounded by,

αq(δ) ≤ 1 − Hq(θ − √
θ(θ − δ))

provided 0 < δ < θ where θ = 1 − q−1.

1.2.1.5 MRRW Bounds

The McEliece–Rodemich–Rumsey–Welch (MRRW) bounds are asymptotic bounds
obtained using linear programming.

Theorem 1.8 (Asymptotic MRRW Bound I) Provided 0 < r < θ , θ = 1 − q−1

then,

αq(δ) ≤ Hq

(
1

q
(q − 1 − (q − 2)δ − 2

√
δ(1 − δ)(q − 1))

)

The second MRRW bound applies to the case when q = 2.

Theorem 1.9 (MRRW Bound II) Provided 0 < δ < 1
2 and q = 2 then,

α2(δ) ≤ min
0≤u≤1−2δ

{1 + g(u2) − g(u2 + 2δu + 2δ)}
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where

g(x) = H2

(
1 − √

1 − x

2

)

.

The MRRW bounds are the best-known upper bound on the information rate for the
binary case. The MRRW-II bound is better than the MRRW-I bound when δ is small
and q = 2. An in depth treatment and proofs of the bounds can be found in [12].

1.2.2 Lower Bounds

1.2.2.1 Gilbert–Varshamov Bound

Theorem 1.10 (Gilbert–Varshamov Bound) The maximum number of codewords
Aq(n, d) is lower bounded by,

Aq(n, d) ≥ qn

Vq(n, d − 1)
= qn

d−1∑

i=0

(
n

i

)
(q − 1)i

.

Proof We know that Vq(n, d − 1) represents the volume of a sphere centred on a
codeword of C of radius d − 1. Suppose C has Aq(n, d) codewords. Every vector
v ∈ F

n
q lies within a sphere of volume Vq(n, d − 1) centred at a codeword of C as

such, ∣
∣
∣
∣
∣
∣

Aq (n,d)⋃

i=1

Si

∣
∣
∣
∣
∣
∣
= |Fn

q |,

where Si is a set containing all vectors in a sphere of radius d − 1 centred on a
codeword ofC . The spheres Si are not mutually disjoint. If we assume Si are mutually
disjoint then,

Aq(n, d)Vq(n, d − 1) ≥ |Fn
q |.

Theorem 1.11 The information rate of a code is lower bounded by,

αq(δ) ≥ 1 − Hq(δ)

for 0 ≤ δ ≤ θ , θ = 1 − q−1.

Figures 1.10 and 1.11 show the asymptotic upper and lower bounds for the cases
where q = 2 and q = 32, respectively. Figure 1.11 shows that the MRRW bounds
are the best-known upper bounds when q = 2. Observe that the Plotkin bound is the
best upper bound for the case when q = 32.
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Table 1.1 Ranges for codes Finite field Range

F2 1 ≤ k ≤ n ≤ 256

F3 1 ≤ k ≤ n ≤ 243

F4 1 ≤ k ≤ n ≤ 256

F5 1 ≤ k ≤ n ≤ 130

F7 1 ≤ k ≤ n ≤ 100

F8 1 ≤ k ≤ n ≤ 130

F9 1 ≤ k ≤ n ≤ 130

1.2.3 Lower Bounds from Code Tables

Tables of best-known codes are maintained such that if a code defined in a field q
is constructed with an evaluated and verifiable minimum Hamming distance d that
exceeds a previously best-known code with the same length n and dimension, the
dimension of the new code is a lower bound on Aq(n, d). The first catalogue of best-
known codes was presented by Calabi and Myrvaagnes [2] containing binary codes
of length n and dimension k in the range 1 ≤ k ≤ n ≤ 24. Brouwer and Verhoeff [1]
subsequently presented a comprehensive update to the tables which included codes
with finite fields up to size 9 with the ranges for k and n.

At present, Grassl [5] maintains a significantly updated version of the tables in [1].
The tables now contain codes with k and n in ranges from Table 1.1. Finally, Schimd
and Shurer [15] provide an online database for optimal parameters of (t,m, s)-
nets, (t, s)-sequences, orthogonal arrays, linear codes and ordered orthogonal arrays.
These are relatively new tables and give the best-known codes up to finite fields of size
256. The search for codes whose dimension exceeds the best-known lower bounds
on Aq(n, d) is an active area of research with the research community constantly
finding improvements.

1.3 Summary

In this chapter we discussed the theoretical performance of binary codes for the
additive white Gaussian noise (AWGN) channel. In particular the usefulness of Gal-
lager’s coding theorem for binary codes was explored. By assuming a binomial
weight distribution for linear codes, it was shown that the decoder error probability
performance of some of the best, known linear, binary codes is the same as the aver-
age performance of the ensemble of all randomly chosen, binary nonlinear codes
having the same length and dimension. Assuming a binomial weight distribution, an
upper bound was determined for the erasure performance of any code, and it was
shown that this can be translated into an upper bound for code performance in the
AWGN channel. Different theoretical bounds on the construction of error-correction
codes were discussed. For the purpose of constructing good error-correcting codes,
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theoretical upper bounds provide fundamental limits beyond which no improvement
is possible.
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