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Abstract. NodeTrix representations are a popular way to visualize clus-
tered graphs; they represent clusters as adjacency matrices and inter-
cluster edges as curves connecting the matrix boundaries. We study the
complexity of constructing NodeTrix representations focusing on pla-
narity testing problems, and we show several NP-completeness results
and some polynomial-time algorithms.

1 Introduction and Overview

NodeTrix representations have been introduced by Henry et al. [17] in one of the
most cited papers of the InfoVis conference [1]. A NodeTrix representation is a
hybrid representation for the visualization of social networks where the node-link
paradigm is used to visualize the overall structure of the network, within which
adjacency matrices show communities.

Formally, a NodeTrix (NT for short) representation is defined as follows.
A flat clustered graph (V,E,C) is a graph (V, E) with a partition C of V into
sets V1,..., Vi, called clusters, that can be defined according to the application
needs. The word “flat” is used to underline that clusters are not arranged in
a multi-level hierarchy [10,13]. An edge (u,v) € E with u € V; and v € V} is
an intra-cluster edge if i = j and is an inter-cluster edge if i # j. In an NT
representation clusters Vi,...,V, are represented by non-overlapping symmet-
ric adjacency matrices Mq, ..., My, where M; is drawn in the plane so that its
boundary is a square @; with sides parallel to the coordinate axes. Thus, the
matrices My,..., My convey the information about the intra-cluster edges of
(V,E,C), while each inter-cluster edge (u,v) with v € V; and v € V; is repre-
sented by a curve connecting a point on @; with a point on (), where the point
on @Q; (on Q;) belongs to the column or to the row of M; (resp. of M;) associated
with u (resp. with v).

Several papers aimed at improving the readability of NT representations by
reducing the number of crossings between inter-cluster edges. For this purpose,
vertices can have duplicates in different matrices [16] or clusters can be computed
so to have dense intra-cluster graphs and a planar inter-cluster graph [9)].
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In this paper we study the problem of automatically constructing an NT
representation of a given flat clustered graph. This problem combines traditional
graph drawing issues, like the placement of a set of geometric objects in the
plane (here the squares Q1,...,Qx) and the routing of the graph edges (here
the inter-cluster edges), with a novel algorithmic challenge: To handle the degrees
of freedom given by the choice of the order for the rows and the columns of the
matrices and by the choice of the side of the matrices to which the inter-cluster
edges attach to. Indeed, the order of the rows and columns of a matrix M; is
arbitrary, as long as M; is symmetric; further, an inter-cluster edge incident to
M; can arbitrarily exit M; from four sides: left or right if it exits M; from its
associated row, or top or bottom if it exits M; from its associated column.

When working on a new model for graph representations, the very first step
is usually to study the complexity of testing if a graph admits a planar represen-
tation within that model. Hence, in Sect. 2 we deal with the problem of testing if
a flat clustered graph admits a planar NT representation. An NT representation
is planar if no inter-cluster edge e intersects any matrix M;, except possibly at
an end-point of e on Q;, and no two inter-cluster edges e and e’ cross each other,
except possibly at a common end-point. The NT PLANARITY problem asks if a
flat clustered graph admits a planar N'T representation.

Our findings show how tough the problem is (see Table 1). Namely, we show
that NT PLANARITY is NPP-complete even if the order of the rows and of the
columns of the matrices is fixed (i.e., it is part of the input), or if the exit sides of
the inter-cluster edges are fixed. It is easy to show that NT PLANARITY becomes
linear-time solvable if both the order and the sides are fixed. But this is probably
too restrictive for practical applications since all the degrees of freedom that are
representation-specific are lost.

Table 1. Complexity results for NT PLANARITY. The result marked { assumes that
the number of clusters is constant.

General model Monotone model

Free sides Fixed sides Free sides Fixed sides

Row/column | Free | NPC [Theorem 1] || NPC [Theorem 2] | NPC [Theorem 5] | INIPC [Theorem 6]
order

Fixed | NPC [Theorem 3] [Theorem 4] [Theorem 8]t [Theorem 7]

Motivated by such complexity results, in Sect. 3 we study a more constrained
model that is still useful for practical applications. A monotone NT represen-
tation is an N'T representation in which the matrices have prescribed positions
and the inter-cluster edges are represented by xy-monotone curves inside the
convex hull of their incident matrices. We require that this convex hull does
not intersect any other matrix. We study this model for two reasons. First, in
most of (although not in all) the available examples of NT representations the
inter-cluster edges are represented by xzy-monotone curves (see, e.g., NodeTrix
clips and prototype [2]). Second, we are interested in supporting a visualization
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system where the position of the matrices is decided by the user and the
inter-cluster edges are automatically drawn with “few” crossings. Therefore, the
crossings between inter-cluster edges not incident to a common matrix are some-
how unavoidable, as they depend on the positions of the matrices selected by
the users, and we are only interested in reducing the number of local crossings,
that are the crossings between pairs of edges incident to the same matrix.

We say that an NT representation is locally planar if no two inter-cluster
edges incident to the same matrix cross. While testing if a flat clustered graph
admits a monotone NT locally planar representation is NP-complete even if the
sides are fixed (see Table 1), the problem becomes polynomial-time solvable in
the reasonable scenario in which the number of matrices is constant, the order
of the rows and columns is fixed, and the sides of the matrices to which the
inter-cluster edges attach is variable.

Conclusions and open problems are discussed in Sect.4 where NT PLA-
NARITY is related to graph drawing problems of theoretical interest.

Before proceeding to prove our results, we establish formal definitions and
notation. An NT representation consists of: (a) A row-column order o; for each
cluster V;, that is, a bijection o; : V; < {1,...,|V;|}. (b) A side assignment
s; for each inter-cluster edge incident to V;, that is, an injective mapping s; :
Uj»i Bij — {T,B,L, R}, where E; ; is the set of inter-cluster edges between the
clusters V; and V; (V; and V; are adjacent if E; j #0). (¢) A matriz M; for each
cluster V;, that is, a representation of V; as a symmetric adjacency matrix such
that: (i) the boundary of M; is a square @); with sides parallel to the coordinate
axes; let min,(Q;) be the minimum z-coordinate of a point on @Q;; min,(Q;),
max, (Q;), and max,(Q;) are defined analogously; (ii) the left-to-right order of
the columns and the top-to-bottom order of the rows in M; is o;; and (iii) every
two distinct matrices are disjoint; if V; has only one vertex, we often talk about
the matrix representing that vertex, rather than the matrix representing V;. (d)
An edge drawing for each inter-cluster edge e = (u,v) with u € V; and v € V},
that is, a representation of e as a Jordan curve between two points p, and p,
defined as follows. Let m¥ be the mid-point of the line segment that is the
intersection of the top side of @; with the column associated to u in M;; points
my, m{, and m;; are defined analogously. Then p,, coincides with m%, m{, m{,
or m¥ if s;(e) = T, s;(e) = B, s;(e) =L, or s;(e) = R, respectively. Point p, is
defined analogously. The full versi on of the paper [12] contains complete proofs.

2 Testing NodeTrix Planarity

In this section we study the time complexity of testing NODETRIX PLANARITY.

Theorem 1. NODETRIX PLANARITY is NPP-complete even if at most three clus-
ters contain more than one vertex.

Proof Sketch: Lemma 1 will prove that NT PLANARITY is in NPP. For the NP-
hardness we give a reduction from the NP-complete problem PARTITIONED 3-
PAGE Book EMBEDDING [7] that, given a graph (V, E = Ey U E3 U Ej), asks
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whether a total ordering O of V exists such that no two edges e and ¢’ in the same
set E; have alternating end-vertices in O. We construct an instance (V', E’,C’)
of NT PLANARITY from (V, E = E; U E; U E3) as follows; see Fig. 1.

The instance (V/, E',C’) has a cycle D composed of vertices u, tj-, Uy, b;,
and u?ﬂ where i =1,...,3and j =1,...,7 (each in a distinct cluster containing
that vertex only) and of inter-cluster edges called bounding edges. The instance
contains three “big” clusters V;” = V! U {x;, y;, w;, z;} with i = 1,2, 3, where V/
is in bijection with V; these are the only clusters with more than one vertex.
Any two vertices, one in V; and one in V, ;, that are in bijection (via a vertex in
V') are connected by an order-preserving edge. Further, the vertices z;, y;, w;, 2
of V/" are connected to the vertices in D via corner edges, and side-filling edges
connect u; with every vertex in VY, u, with every vertex in V4, and u} with every
vertex in V/. Finally, (V', E’,C") contains paths corresponding to the edges in
E; namely, for every e = (r,s) € E;, (V', E',C’) contains a cluster {u,} and two
equivalence edges (ul,,r}) and (ul,s}), where r; and s} are the vertices in V; in
bijection with r and s, respectively. The construction can be easily performed in
polynomial time. We now prove the equivalence between the two instances.

For the direction (=), consider a total order O of V' which solves instance
(V. E). An order o, of V/ is constructed from O via the bijection between V/
and V; then define an order o; of V" as x4, y;, 0}, w;, z;. Embed D in the plane
and embed each matrix M; representing V;” inside D with row-column order o;.
The corner, order-preserving, and side-filling edges are routed inside D so that
their end-vertices are not assigned to the top side of M;; for example, the side-
filling edges incident to u; (to uj) are assigned to the left (resp. bottom) side
of M, and the order-preserving edges incident to V7 are assigned to the right
side of My; the order-preserving edges can be routed without crossings since o
and o}, coincide (via the bijection of V' and V}/,; with V). Finally, each path
(ri,ul,s) corresponding to an edge (r, s) € E; is incident to the top side of M;;
no two of these paths have alternating end-vertices since o} coincides with O (via
the bijection between V; and V') and since no two edges in E; have alternating
end-vertices in O. This results in a planar NT representation of (V' E' C’).

The direction («<=) is more involved. Consider a planar NT representation
I of (V',E',C’"). First, the matrices representing clusters not in D induce a
connected part of I', hence they are all on the same side of D, say they are
all inside D. Second, the boundary @; of M; and the corner edges incident to
it subdivide the interior of D into five regions, namely one containing M;, and
four incident to the sides of @;. All the vertices in V; are incident to each of
the latter four regions; this is proved by arguing that the first two and the last
two vertices in the row-column order o; of M; are among {z;,y;, w;, z; }, and by
arguing about how the corner edges are incident to the sides of ;. Third, the
side-filling edges incident to a same vertex in D “fill” one of such regions and so
do the order-preserving edges connecting M; with M; ;1 (or with M;_1). Hence,
all the equivalence edges are incident to the same side of @);. Finally, the order-
preserving edges between vertices in V; and in VJ/,; are in the region shared by
M; and M 1; these regions are gray in Fig. 1. This implies that o} and o}, are
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Fig. 1. (a) An instance (V, E = E; U E; U E3) of PARTITIONED 3-PAGE BOOK EMBED-
DING and (b) the corresponding instance (V', E',C’) of NT PLANARITY.

either the same or the reverse of each other, via the bijection with the vertices
in V. Hence, we define an order O of V' according to the bijection with the order
o} of V/; then no two edges in E1, in Fs, or in E3 have alternating end-vertices,
as otherwise the corresponding paths would cross in I a
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Fig. 2. Illustration for Theorem 2.

Theorem 2. NODETRIX PLANARITY WITH FIXED SIDE is NIP-complete even
for instances with two clusters.

Proof Sketch: Lemma 1 will prove that NT PLANARITY WITH FIXED SIDE is in
NP. For the NP-hardness we give a reduction from BETWEENNESS [18], whose
input is a set of items {ai1,...as} and a collection of ¢ ordered triples 7; =
(ap,,ac;,aq;). The goal is to find a total order of the items such that, for each 7; =
(abj s ey adj>, item a., is between ap, and aq;. We construct the corresponding
instance of NT PLANARITY WITH FIXED SIDE by defining a flat clustered graph
(V,E,C = {V1,V,}) and side assignments s; and so as follows; refer to Fig. 2.
Cluster Vi (V2) contains t vertices for each a; plus two vertices v, and vg (plus
two vertices u, and ug and 2t vertices t;; and t;o for j = 1,...,t). Let M,
and My be matrices representing V) and Vs, respectively; also, let e, = (Uq, Vo)
(ep = (ug,vg)) be assigned to the right (left) side of M7 and to the left (right)
side of My. We associate to each element a; a (2t + 1)-vertex path 7; that starts
at ug, and repeatedly leaves the bottom side of M,, enters the bottom side of
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M, leaves the top side of M7, and enters the top side of Ms; this routing of
m; can be prescribed by s; and s;. Further, for every even j, the left-to-right
order of the columns associated to the j-th vertices of paths my,..., 7, in M;
is the same. This allows us to introduce five inter-cluster edges for each triple
7j = (ay,, ac;, aq,), all connecting the right side of M; with the left side of M.
These edges connect the j-th vertex in m,; to t;1, the j-th vertex in m., to tj
and Z;2, and the j-th vertex in 7y, to tj2. These five edges can be drawn without
crossings if and only if the row associated to the j-th vertex in 7., is between the
rows associated to the j-th vertices in m,; and mg,. This establishes the desired
correspondence with the BETWEENNESS problem. O

Let G = (V,E,C) be a flat clustered graph with a given row-column order o;,
for each V; € C. We say that G is NT planar with fized order if it admits a NT
planar representation I" where, for each V; € C, each vertex v € V; is associated
with the o;(v)-th row and column of the matrix M; representing V; in I

Theorem 3. NODETRIX PLANARITY WITH FIXED ORDER is NP-complete
even if at most one cluster contains more than one vertex.

Proof Sketch: The membership in NP will be proved in Lemma 1. For the NP-
hardness, we give a reduction from the 4-coloring problem for circle graphs [20].
We construct in polynomial time [19] a representation (P, O) of G, where P is
a linear sequence of distinct points on a circle and O is a set of chords between
points in P such that: (i) each chord ¢ € O corresponds to a vertex n € N
and (ii) two chords ¢/,¢” € O intersect if and only if (n’,n”) € A, where n'/
and n” are the vertices in N corresponding to ¢’ and ¢, respectively. Starting
from (P, O) we construct an instance (V, E,C) of NODETRIX PLANARITY WITH
FIXED ORDER as follows (refer to Fig.3). The instance (V, E,C) contains: (i)
a cycle D composed of vertices vy, vj,., Vi, Vbr, vy, and vy (each in a distinct
cluster containing that vertex only) and of bounding edges; (ii) a cluster Vi
containing a vertex v; for each point p; € P, plus vertices v, and v,; (iii) corner
edges connecting vy, vy,., Vg, Vbr, Uy, and vy, with either v, or v,,; and (iv) for
every chord ¢ = (p;,p;) € O, a path corresponding to ¢ composed of a cluster

Fig. 3. (a) An intersection representation (P, O) of a circle graph G = (N, A). (b)
Instance (V, E,C) of NODETRIX PLANARITY corresponding to (P, O).eps
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{v.} and of two chord edges (v;,v.) and (v, v;). Let the row-column order o, of
Vi be v, P,v,. We now prove the equivalence between the instances.

(=) Suppose that the chords of (P, O) can be assigned colors 1,2,3,4 so
that no two chords with the same color cross. Embed D in the plane and embed
the matrix M, representing V, inside D with row-column order o,. Route the
corner edges inside D, subdividing the region inside D and outside M, into four
regions, each incident to a distinct side of M. Arbitrarily color these four regions
with colors 1,2, 3,4; embed a path (v;, v, v;) inside a region if the chord (p;, p;)
corresponding to (v;, v, v;) has the color of the region. Then only paths in the
same region might intersect, however if they do then they correspond to chords
with the same color that cross in (P, 0), given that the order of the vertices in
04 is the same as the order of the corresponding points in P.

(<=) Suppose that (V, E,C) has a planar NT representation I with row-
column order o, for the matrix M, representing V,. Since v, and v, are the
first and last vertex in o, the corner edges subdivide the region inside D and
outside M, into four regions, each incident to a distinct side of M,, which we
arbitrarily color 1,2, 3,4. By the planarity of I", each path (v;,v¢,v;) is in one of
such regions; then we color each chord (p;, p;) with the color of the region path
(vs,ve,v5) is embedded into. If two chords with the same color cross in (P, O),
then the corresponding paths cross in I, as the order of the vertices in o, is the
same as the order of the corresponding points in P. a

Let G = (V,E,C) be a flat clustered graph with a given row-column order o;
and side assignment s;, for each V; € C. Then G is NT planar with fixed order
and fized side if it is simultaneously planar with fixed order and with fixed side.

Theorem 4. NODETRIX PLANARITY WITH FIXED ORDER AND FIXED SIDE
can be solved in linear time.

Proof Sketch: Consider the graph G’ obtained from an instance G = (V, E,C)
by collapsing each cluster V; into a vertex v;. Instance G is NT planar with fixed
order and fixed side if and only if G’ is planar with the additional constraint
that the clockwise order of the edges incident to each vertex wv; is compatible
with the order of the rows of the matrix representing V; and the side assignment
for each inter-cluster edge incident to V;. We obtain an instance of constrained
planarity that can be tested in linear time with known techniques [15]. O

We conclude the section with the following lemma.

Lemma 1. NODETRIX PLANARITY, NODETRIX PLANARITY WITH FIXED
SIDE, and NODETRIX PLANARITY WITH FIXED ORDER are in NP.

Proof Sketch: The number of distinct row-column orders and side assignments
for an instance (V, E,C) is a function of |V| + |E|. The statement follows from
Theorem 4. O
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3 Monotone NodeTrix Representations

Let G = (V,E,C) be a flat clustered graph and + be a square assignment for G
that maps each cluster in C to an axis-aligned square in the plane. A curve is
x-monotone (resp. y-monotone) if no two of its points have the same projection
on the z-axis (resp. on the y-axis) and is xy-monotone if it is either a horizontal
or a vertical segment or it is both z- and y-monotone. A monotone NT repre-
sentation I' of (G,~) is a NT representation such that: (i) all the inter-cluster
edges are represented by zy-monotone curves; (ii) the boundary of the matrix
M; representing cluster V; € C is Q; = v(V;); (iii) for each pair of adjacent clus-
ters V; and V;, with ¢ # j, the convex hull of @; and @; does not intersect any
other Q, with k # 4, j — we call this convex hull the pipe of Q; and Q;; and (iv)
all the inter-cluster edges between vertices in V; and vertices in V; lie inside the
pipe of @; and @;. In a monotone NT representation I" of G let x;(I") denote
the number of edge crossings between pairs of inter-cluster edges incident to V;.
Let x(I") = Zle Xi(I"); we say that I" is locally planarif x(I") = 0 and no inter-
cluster edge intersects any matrix except at its incidence points. The notions of
fixed order and fized side easily extend to monotone NT representations.

We study the complexity of testing if a flat clustered graph with fixed square
assignment admits a monotone locally-planar NT representation, a problem
which we call MONOTONE NT LOCAL PLANARITY (MNTLP). The next two
theorems show the NP-hardness of MNTLP and of its variant with fixed side.

Theorem 5. MNTLP is NP-complete.
Theorem 6. MNTLP wiTH FIXED SIDE is NP-complete.

Since the instances of MNTLP used in the proof of Theorem 5 are planar when-
ever they are locally planar, testing the existence of a planar monotone NT
representation with fixed square assignment is also NP-complete. Further, the
instances of NT PLANARITY used in the proof of Theorem 1 can be drawn pla-
narly with straight-line (i.e., monotone) edges, whenever they are planar. Hence,
testing whether a flat clustered graph admits a monotone planar NT represen-
tation — without square assignment — is NP-complete.

Consider now a flat clustered graph G = (V,E,C) and a monotone NT
representation I' of G with fixed square assignment -y. Consider two clusters
Vo, Vo € C and let Q, = v(V,) and Qp = v(V4). Since Q, and @y are dis-
joint, there exists either a vertical or a horizontal line separating them. Sup-
pose that the former holds, the other case being analogous. Also suppose that
maxy(Qq) < ming (Qp) and max,(Q,) > max,(Qs), the other cases being anal-
ogous up to reflections of the Cartesian axes (refer to Fig.4). Also, consider an
inter-cluster edge e = (u,v) € E, ;. Depending on the relative positions of Q,
and @Qp in I', not all the possible combinations of side assignments for e might
be allowed, as described in the following property.

Property 1. Let y, and y, be the y-coordinate of points mj and m/, respectively.
The following three arrangements are possible for @, and @ in I'.
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Fig. 4. Possible arrangements of squares @, and Q. Thick red segments represent sides
of Qo and Qp edge (u,v) cannot be assigned to. Red curves show further forbidden
side assignment pairs for edge (u,v).eps (Color figure online)

Arrangement 1: max,(Qp) < mingy(Q,). Then sy(e) # B and all other four side
assignments (s,(€) = R, sp(e) = T), (sa(€) = R, sp(e) = L), (sa(e) = B, sp(e) =
T), and (s,(e) = B, sp(e) = L) are allowed for e.

Arrangement 2: min,(Qp) < min,(Q,) < max,(Qs). Then s,(e) # B; also,
pair (sq(e) = B, sp(e) = T) is not allowed, while pair (s,(e) = R,sp(e) = L) is
allowed. The remaining two possible pairs (s,(e) = R, sp(e) = T) and (s,(e) =
B, sp(e) = L) are or are not allowed, depending on y, and y,. In particular, if
Yu < maxy(Qp), then (sq(e) = R,sp(e) = T) is not allow+ed, otherwise it is;
also, if y, > min, (Q,), then (s,(e) = B, sp(e) = L) is not allowed, otherwise it is.

Arrangement 3: ming,(Q,) < min,(Qp). Then s,(e) # B; also, pair (s.(e) =
R, $p(€) = L) is allowed. The remaining two possible pairs (sq(e) = R, sp(€) = T)
and (s,(e) = R, sp(e) = B) are or are not allowed, depending on y,,. In particular,
if y, < max,(Qs), then (sq,(e) =R, sp(e) = T) is not allowed, otherwise it is, and
if y, > min, (@), then (s.(e) = R, sp(€e) = B) is not allowed, otherwise it is.

Note that if an edge e can be drawn as an zy-monotone curve not crossing
any matrix then it can also be drawn as a straight-line segment not crossing any
matrix, since the pipe of @), and @ does not intersect any matrix other than
M, and M,. The next lemma extends this observation by arguing that the xy-
monotonicity constraint can be replaced by a straight-line requirement also for
what concerns crossings between inter-cluster edges incident to the same matrix.

Lemma 2. An instance (G = (V,E,C),~v) of MNTLP wiTH FIXED ORDER
AND FIXED SIDE is locally planar if and only if it admits a locally planar
monotone NT representation where all the inter-cluster edges are drawn as
straight-line segments.

In contrast to the negative results of Theorems5 and 6, we show that
MNTLP wiTH FIXED ORDER AND FIXED SIDE is solvable in polynomial time.

Theorem 7. MNTLP wITH FIXED ORDER AND FIXED SIDE can be solved in
polynomial time.

Proof: We check whether every edge can be represented as an xy-monotone curve
by Property 1. Further, we check whether all pairs of inter-cluster edges incident
to the same cluster admit a non-crossing straight-line drawing by Lemma2. O
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The remaining piece of the complexity puzzle for MNTLP is the setting with
fixed row-column order and free side assignment. Although we are not able to
establish the complexity of the corresponding decision problem, we show that
testing MNTLP with fixed order is polynomial-time solvable if the number of
clusters is constant. In order to do that, we show how to transform instances of
our problem into instances of 2-SAT.

Assuming the hypotheses stated before Property 1 about the relative position
of Q, and Qy, we say that an inter-cluster edge e = (u € V,,v € V},) is S-drawn
in I if: (i) Q. and @} are arranged as in Arrangement 1 of Property 1 and either
(sa(e) =R, sp(e) = L) or (s,(e) = B, sp(e) = T); or (ii) Q, and Qp are arranged as
in Arrangement 2 of Property 1 and it holds that (a) (s.(e) = R, sp(e) = L), (b)
Yo > max, (@), and (¢) y, < miny(Qq). Note that if @, and @, are arranged
as in Arrangement 3 of Property 1, then e is not S-drawn in I', by definition.
The representation of an S-drawn edge is an S-drawing. We have the following.

Lemma 3. Let (G = (V,E,C = {V4,Vp}),7,0) be an instance of MNTLP
WITH FIXED ORDER. Consider the following two cases: an inter-cluster edge
e* € E has a given S-drawing I'. (Case 1), or no inter-cluster edge in E has an
S-drawing (Case 2). Both in Case 1 and in Case 2, we can construct in O(|E|?)
time a 2-SAT formula ¢(a,b,I.) and ¢(a,b), respectively, with length O(|E|?)
that is satisfiable if and only if (G,~,0) admits a locally planar monotone NT
representation with fixed order satisfying the constraint of the corresponding case.

Proof Sketch: If Q, = v(V4,) and Qp = (V) are not disjoint, no NT represen-
tation of G exists, hence the statement is trivially true. Otherwise, there exists
either a vertical or a horizontal line separating them. Suppose that the former
holds and that max,(Q,) < min,(Qs) and max,(Q,) > max,(Qy), the other
cases being analogous. Suppose that an inter-cluster edge e* is required to have
a drawing I, as in Case 1. By the definition of an S-drawn edge, if @, and @
are arranged as in Arrangement 3 of Property 1, the required NT representation
does not exist, thus the statement trivially holds. Hence, we can assume that @,
and @y are arranged as in Arrangement 1 or 2 of Property 1. Let e # e* € E be
any inter-cluster edge not adjacent to e.

Consider Arrangement 1 and suppose sq(e*) = R and sp(e*) = L. The end-
vertices of e and e* in V, (in V;) have two possible relative positions in o, (resp.
in 0p,). This leads to four possible combinations for these relative positions.

If o,(e*) < 04(e) and op(e) < op(e*), then any zy-monotone curve represent-
ing e crosses e¢* independently of the side assignment for e and the statement
trivially holds. See Fig. 5a. For each of the three remaining combinations, ezactly
two side assignments for e create no crossing with e*. If o,(e) < o4(e*) and
op(e) < op(e*), then it holds that either s,(e) = R and sp(e) = T or s4(e) = R
and sp(e) = L. See Fig.5b. If 0,(e) < o4(e*) and op(e*) < op(e), then it holds
that either s,(e) = R and sp(e) = T or s.(e) = B and sp(e) = L. See Fig. 5c.
If o,(e*) < o4(e) and op(e*) < op(e), then it holds that either s,(e) = R and
sp(e) =L or s.(e) = B and sp(e) = L. See Fig. 5d.

The case in which @, and Q) are arranged as in Arrangement 1, s,(e*) = B,
and sp(e*) = T is analogous. The proof for Arrangement 2 is also analogous.
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Fig. 5. Illustrations for the proof of Lemma 3, Case 1, Arrangement 1.

We are now ready to show, for Case 1 of the lemma, that a locally planar
monotone NT representation of (G = (V, E,C = {V,,V,}),v) with s,(e*) = R
and sp(e*) = L exists if and only if a suitable 2-SAT formula ¢ is satisfiable.
For each inter-cluster edge e # e* € E not adjacent to e*, we define a Boolean
variable x.. The above discussion shows that, if a trivially false formula cannot
be associated with the instance (G,~, o), then there are exactly two distinct
side assignments for e. We select one arbitrarily, which we call canonical side
assignment, and associate r. = TRUE to it and x. = FALSE to the other. For
each pair of non-adjacent inter-cluster edges e, es # e* € E, consider the four
possible side assignments for them. We add to ¢ at most four clauses defined
as follows. If the canonical side assignment for e; and the one for e; generate a
crossing between e; and e, then we add clause {Ts, VT, } to ¢. If the canonical
side assignment for e; and the non-canonical side assignment for es; generate
a crossing between e; and eg, then we add clause {T¢; V x.,} to ¢. If the non-
canonical side assignment for e; and the canonical side assignment for e generate
a crossing between e; and eg, then we add clause {z., V T, } to ¢. If the non-
canonical side assignment for e; and the one for e, generate a crossing between
e1 and eg, then we add clause {x., V x.,} to ¢.

As a consequence of the above discussion (G = (V, E,C = {V,, V,}), ) admits
a locally planar monotone NT representation such that s,(e*) = R and sp(e*) =L
if and only if ¢ is satisfiable. Further, since the number of clauses in ¢ is upper-
bounded by O(|E|?) and since it can be determined in constant time whether
a side assignment for any two edges produces a crossing, then formula ¢ can
be constructed in O(|E|?) time and has O(|E|?) size. Since 2-SAT formulae can
be tested for satisfiability in linear time [8], the statement of Case 1 follows if
sq(€*) = R and sp(e*) = L; a 2-SAT formula can be analogously constructed if
sa(€*) = B and sp(e*) = T.

The discussion of Case 2 and the corresponding construction of the Boolean
formula are analogous to those of Case 1. O

We now turn to the study of flat clustered graphs with three clusters.

Lemma 4. Let (G = (V,E,C = {V,, W}, V.}),7,0) be an instance of MNTLP
WITH FIXED ORDER. Consider the four cases that are generated by assuming
that an edge e* € E,, has a prescribed S-drawing or not and that an edge
f* € Eqc has a prescribed S-drawing or not. In each case, we can construct in
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O(|E|?) time a 2-SAT formula with length O(|E|?) that is satisfiable if and only if
(G,~,0) admits a monotone NT representation with fized order that satisfies the
constraints of the corresponding case, such that no inter-cluster edge intersects
any matrix except at its incidence points, and such that there are no two edges,
one in B, and one in E, ., that cross each other.

Proof: In each of the four cases, the hypotheses lead us in either Case 1 or
Case 2 of Lemma 3 for the edges in E, ; and the same holds for the edges in E, .
Hence, by Lemma 3, each of these edges admits at most two side assignments in
each case. Moreover, each of these side assignments corresponds to a directed or
negated literal. For each pair of edges e € F,, and f € E, . and for each of the
at most four side assignments for them, we exploit Lemma2 to test whether a
side assignment for e and f leads to a crossing and in the case of a crossing we
introduce suitable clauses to rule out that side assignment. a

We finally get the following.

|2E+1|)

Theorem 8. MNTLP wiTH FIXED ORDERING can be tested in O(( |2

|E|?) time for an instance (G = (V, E,C),v,0).

Proof Sketch: The proof is based on guessing, for each pair of adjacent clusters,
whether they are connected by an S-drawn edge or not. For each guess we exploit
Lemmata 3 and 4 to construct a 2-SAT formula that is checked for satisfiability.
For each pair of adjacent clusters V,,V, we have to guess among 2|E, | + 1
possibilities, corresponding to the choice of |E, | edges to be S-drawn, each in
two possible ways, plus the possibility of not having any S-drawn edge. This
leads to O((|2|€‘J§1|)) guesses. O
Observe that the computational complexity of the algorithm described in the
proof of Theorem 8 is polynomial if the number of clusters is constant.

4 Conclusions and Open Problems

We have shown that testing NodeTrix (NT) representations of clustered graphs
for planarity is NP-complete even if the order of the rows and columns is fixed or
if the sides where the inter-cluster edges attach to the matrices is fixed. We have
also studied the setting where matrices have fixed positions and inter-cluster
edges are xy-monotone curves. In this case we established negative and positive
results; leveraging on the latter, we developed a library that computes a layout of
the inter-cluster edges with few crossings. A demo [3] shows that the computation
allows the user to move matrices without any slowdown of the interaction.
Several theoretical problems are related to the planarity of NT representa-
tions. First, the NP-completeness of NT planarity can be interpreted as a proof
of the NP-completeness of clustered planarity (see, for example, [4,6,11,14])
when a specific type of representation is required. Observe, though, that a flat
clustered graph may be NT planar even if its underlying graph is not planar.
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Second, planarity of hybrid representations have been recently studied [5] in the
setting in which clusters are represented as the intersections of geometric objects.
Our results can be viewed as a further progress in this area. Third, consider a
clustered graph with two clusters represented as matrices aligned along their
principal diagonal. Computing a locally planar NT representation is equivalent
to solve the 2-page bipartite book embedding with spine crossings problem [5].
Interestingly, if the two matrices are aligned along their secondary diagonal this
equivalence is not evident anymore.

Among the future research directions, we mention the one of automatically
embedding the matrices to minimize crossings in monotone NT representations.
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