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Abstract. Visualizing hypergraphs, systems of subsets of some uni-
verse, has continuously attracted research interest in the last decades.
We study a natural kind of hypergraph visualization called subdivision
drawings. Dinkla et al. [Comput. Graph. Forum ’12] claimed that only
few hypergraphs have a subdivision drawing. However, this statement
seems to be based on the assumption (also used in previous work) that
the input hypergraph does not contain twins, pairs of vertices which are
in precisely the same hyperedges (subsets of the universe). We show that
such vertices may be necessary for a hypergraph to admit a subdivision
drawing. As a counterpart, we show that the number of such “necessary
twins” is upper-bounded by a function of the number m of hyperedges
and a further parameter r of the desired drawing related to its number
of layers. This leads to a linear-time algorithm for determining such sub-
division drawings if m and r are constant; in other words, the problem
is linear-time fixed-parameter tractable with respect to the parameters
m and r.

1 Introduction

Hypergraph drawings are useful as visual aid in diverse applications [1], among
them electronic circuit design [11] and relational databases [2,18]. There are
several methods for embedding hypergraphs in the plane. The combinatorial
problem studied in this work stems from obtaining subdivision drawings [14,15].
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Herein, given a hypergraph H, we divide the plane into closed regions that one-to-
one correspond to the vertices of H in such a way that, for each hyperedge F , the
union of the regions corresponding to the vertices in F is connected. Subdivision
drawings have also been called vertex-based Venn diagrams [14]. Figure 1 shows
an example for such a drawing.

Fig. 1. Two drawings of the same hypergraph. On the left, we see a drawing in the
subset standard in which the vertices (white circles) are enclosed by curves that cor-
respond to hyperedges. On the right, we see a subdivision drawing in which we assign
vertices to regions (enclosed by black lines) and we color these regions with colors that
one-to-one correspond to the hyperedges; for each hyperedge, the union of the regions
of the vertices in that hyperedge is connected. (Color figure online)

Subdivision drawings are a natural extension of planarity for ordinary graphs:
A graph is planar if and only if it has a subdivision drawing when viewed as a
hypergraph. For hypergraphs, having a subdivision drawing is a rather general
concept of planar embeddings, as, for example, each Zykov planar hypergraph
(meaning that the incidence graph is planar) and each hypergraph with a well-
formed Euler diagram (see Flower et al. [12]) has a subdivision drawing. Still,
Dinkla et al. [10] claimed that “most hypergraphs do not have [subdivision draw-
ings]”. However, this claim might have been based on the fact that several works
on subdivision drawings assumed that the input hypergraph is twinless, that
is, there are no two vertices contained in precisely the same hyperedges (see
Mäkinen [18, p. 179], Buchin et al. [6, p. 535], and Kaufmann et al. [15, p. 399]).
Twins do not seem useful at first glance: whatever role one vertex can play to
obtain a subdivision drawing, its twin can also fulfill. One of our contributions is
disproving the general validity of this assumption in Sect. 3. More specifically, we
give a hypergraph with two twins that has a subdivision drawing but, removing
one twin, it ceases to have one. Thus, twins may indeed be helpful to find a
solution.

More generally, we can construct hypergraphs with � twins that allow for sub-
division drawings but cease doing so when removing one of the twins. However,
the number of hyperedges in the construction grows with �. It is thus natural to
ask whether there is a function ψ : N → N such that, in each hypergraph with
m hyperedges, we can forget all but ψ(m) twins while maintaining the property
of having a subdivision drawing. Using well-quasi orderings, one can relatively
easily prove the existence of such a function ψ, yet finding a closed form for ψ
turned out to be surprisingly difficult: so far we could only compute a concrete
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upper bound when considering a second parameter r measuring the number of
“layers” in the drawing. A small number r of layers, however, is a relevant special
case [4,6].

We study subdivision drawings from a combinatorial point of view, exploiting
the fact that it is equivalent for a hypergraph to have a subdivision drawing and
to have a support that is planar [14]. Herein, a support for a hypergraph H =
(V, E) is a graph G on the same vertex set as H such that each hyperedge F ∈ E
induces a connected subgraph G[F ]. The outerplanarity number r of the support
roughly translates to the number of layers in a corresponding drawing:1 An
r-outerplanar graph admits a planar embedding (without edge crossings) which
has the property that, after removing r times all vertices on the outer face, we
obtain an empty graph. Similar restrictions were studied before [4,6]. Formally,
we study the following problem.

Problem (r-Outerplanar Support).
Input: A connected hypergraph H with n vertices and m hyperedges, and r ∈ N.
Question: Does H admit an r-outerplanar support?

Our main result is a concrete upper bound on the number ψ(m, r) of twins that
might be necessary to obtain an r-outerplanar support. Since superfluous twins
can then be removed in linear time, this gives the following algorithmic result.

Theorem 1. There is an algorithm solving r-Outerplanar Support which,
for constant r and m, has linear running time.

In contrast to Theorem 1, r-Outerplanar Support remains NP-complete for
r = ∞ [14] and even for every fixed r > 1 [6] (see below). The constants in the
running time of the algorithm in Theorem1 have a large dependence on m and r.
However, it is conceivable that the parameters m and r are small in practical
instances: for a large number m of hyperedges, it is plausible that we obtain only
hardly legible drawings unless the hyperedges adhere to some special structure.
Thus, it makes sense to design algorithms particularly for hypergraphs with a
small number of hyperedges, as done by Verroust and Viaud [21]. Moreover, a
small outerplanarity number r leads to few layers in the drawing which may lead
to aesthetically pleasing drawings, similarly to path- or cycle-supports [6].

Related Work. For specifics on the relations of some different planar embeddings
for hypergraphs, see Kaufmann et al. [15], Brandes et al. [4].

As mentioned before, Johnson and Pollak [14] showed that find-
ing a planar support is NP-complete. Buchin et al. [6] proved that
r-Outerplanar Support is NP-complete for r = 2, 3. From their proof it fol-
lows that r-Outerplanar Support is also NP-complete for every r > 3. This
is due to a property of the reduction that Buchin et al. use. Given a formula φ

1 We refer to Kaufmann et al. [15] for a method to obtain a subdivision drawing from
a planar support.
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in 3CNF, they construct a hypergraph H that has a planar support if and only
if φ is satisfiable. Due to the way in which H is constructed, if there is any pla-
nar support, then it is 3-outerplanar. Thus, deciding whether an r-outerplanar
support, r ≥ 3, exists also decides the satisfiability of the corresponding formula.

Towards determining the computational complexity of finding an outerplanar
hypergraph support, Buchin et al. [4] gave a polynomial-time algorithm for cac-
tus supports (graphs in which each edge is contained in at most one cycle). They
also showed that finding an outerplanar support (or planar support) can be done
in polynomial time if, in the input hypergraph, each intersection or difference
of two hyperedges is either a singleton or again a hyperedge in the hypergraph.
Getting even more special, a tree support can be found in linear time [2,19].
Buchin et al. [6] gave a polynomial-time algorithm that can deal with an addi-
tional upper bound on the vertex degrees in the tree support. Klemz et al. [16]
studied so-called area-proportional Euler diagrams, for which the corresponding
computational problem reduces to finding a minimum-weight tree support. Such
supports can also be found in polynomial time [16,17].

In a wider scope, motivated by drawing metro maps and metro map-like dia-
grams, Brandes et al. [5] studied the problem of finding path-based planar hyper-
graph supports, that is, planar supports that fulfill the additional constraint that
the subgraph induced by each hyperedge contains a Hamiltonian path, giving
NP-hardness and tractability results. Finding path-based tree supports is also
known as the Graph Realization problem, for which several polynomial-time
algorithms were already known [3].

Chen et al. [7] showed that for obtaining minimum-edge supports (not nec-
essarily planar), twins show a similar behavior as for r-outerplanar supports:
Removing a twin can increase the minimum number of edges needed for a sup-
port and finding a minimum-edge support is linear-time solvable for a constant
number of hyperedges via removing superfluous twins. The proof is quite differ-
ent, however.

Organization. In Sect. 2 we provide some technical preliminaries used throughout
the work. In Sect. 3 we give an example that shows that twins can be crucial for
a hypergraph to have a planar support. As mentioned, for each m ∈ N, there
is a number ψ(m) such that in each hypergraph with a planar support we can
safely forget all but ψ(m) twins (a proof is deferred to a full version). In Sect. 4
we give a concrete upper bound for ψ(m) in the case of r-outerplanar supports
and derive the linear-time algorithm for r-Outerplanar Support promised in
Theorem 1. We conclude and give some directions for future research in Sect. 5.

2 Preliminaries

General Notation. By A�B we denote the union of two disjoint sets A and B. For
a family of sets F , we write

⋃
F in place of

⋃
S∈F S. For equivalence relations ρ

over some set S and v ∈ S we use [v]ρ to denote the equivalence class of v in ρ.
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Hypergraphs. A hypergraph H is a tuple (V, E) consisting of a vertex set V , also
denoted V (H), and a hyperedge set E , also denoted E(H). The hyperedge set E
is a family of subsets of V , that is, F ⊆ V for every hyperedge F ∈ E . Where it
is not ambiguous, we use n := |V | and m := |E|. When specifying running times,
we use |H| to denote |V (H)|+

∑
F∈E(H) |F |. The size |F | of a hyperedge F is the

number of vertices in it. Unless stated otherwise, we assume that hypergraphs
do not contain hyperedges of size at most one or multiple copies of the same
hyperedge. (These do not play any role for the problem under consideration,
and removing them can be done easily and efficiently.)

A vertex v ∈ V and a hyperedge F ∈ E are incident with one another
if v ∈ F . For a vertex v ∈ V (H), we let EH(v) := {F ∈ H | v ∈ F}. If it is
not ambiguous, then we omit the subscript H from EH. A vertex v covers a
vertex u if E(u) ⊆ E(v). Two vertices u, v ∈ V are twins if E(v) = E(u). Clearly,
the relation τ on V defined by ∀u, v ∈ V : (u, v) ∈ τ ⇐⇒ E(u) = E(v) is an
equivalence relation. The equivalence classes [u]τ , u ∈ V , are called twin classes.

Removing a vertex subset S ⊆ V (H) from a hypergraph H = (V, E) results
in the hypergraph H−S := (V \S, E ′) where E ′ is obtained from {F \S | F ∈ E}
by removing empty and singleton sets. For brevity, we also write H − v instead
of H − {v}. The subhypergraph shrunken to V ′ ⊆ V is the hypergraph H|V ′ :=
H − (V \ V ′).

Graphs. Our notation related to graphs is basically standard and heavily borrows
from Diestel’s book [9]. In particular, a bridge of a graph is an edge whose
removal increases its number of connected components. Analogously, a cut-vertex
is a vertex whose removal increases its number of connected components. Some
special notation including the gluing of graphs is given below. We use the usual
notation for planar and plane graphs. An r-outerplanar graph admits a planar
embedding which has the property that, after r times of removing all vertices on
the outer face, we obtain an empty graph. The ith layer Li of a plane graph is
defined as the set of vertices on the outer face, after having i − 1 times removed
all vertices on the outer face.

Boundaried Graphs and Gluing. For a nonnegative integer b ∈ N, a b-boundaried
graph is a tuple (G,B, β) where G is a graph, B ⊆ V (G) such that |B| = b,
and β : B → {1, . . . , b} is a bijection. Vertex subset B is called the boundary
and β the boundary labeling. For ease of notation we also refer to (G,B, β)
as the b-boundaried graph G with boundary B and boundary labeling β. For
brevity, we also denote by β-boundaried graph G that b-boundaried graph G
whose boundary is the domain of β and whose boundary labeling is β.

For a nonnegative integer b, the gluing operation ◦b maps two b-boundaried
graphs to an ordinary graph as follows: Given two b-boundaried graphs G1, G2

with corresponding boundaries B1, B2 and boundary labelings β1, β2, to obtain
the graph G1 ◦b G2 take the disjoint union of G1 and G2, and identify each
v ∈ B1 with β−1

2 (β1(v)) ∈ B2. We omit the index b in ◦b if it is clear from the
context.
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3 Beware of Removing Twins

In Fig. 2, we provide a concrete example that shows that twins can be necessary
to obtain a 2-outer-planar support:

Fig. 2. A hypergraph H and its support, showing that twins can be essential for obtain-
ing a 2-outer-planar support. The set of hyperedges consists of size-two hyperedges
that are drawn as solid lines between the corresponding vertices and, additionally,
{a, va, t, t′, c}, {a, vb, t, t

′, c}, {b, va, t, t′, c}, {b, vb, t, t′, c}, {b, ub, t, t
′, a}, {b, uc, t, t

′, a},
{c, ub, t, t

′, a}, and {c, uc, t, t
′, a}. Note that the vertices t and t′ are twins. The hyper-

graph H has a (2-outer)planar support whose edges are indicated by the solid and the
dotted lines. However, H− t does not have a planar support.

The vertex set of the hypergraph H shown in Fig. 2 is V := {a, b, c, d, va, vb,
vd, ub, uc, ud, t, t

′}. We choose the hyperedges in such a way that t and t′ are twins
and H has a planar (more precisely, 2-outerplanar) support but H − t does not.
First, we add to the set of hyperedges E of H the size-two hyperedges represented
by solid lines between the corresponding vertices in Fig. 2. The corresponding
“solid” hyperedges incident with (and only with) a, b, c, d form a K4 and have the
purpose of essentially fixing the embedding of each support G: Since the complete
graph on four vertices, K4, is 3-connected, it has only one planar embedding up to
the choice of the outer face [20, p. 747]. The remaining solid hyperedges (incident
with va, vb, vd and ua, uc, ud) have the purpose of anchoring the u- and v-vertices
within two different faces of the embedding of the K4: These hyperedges form
two connected components that are adjacent to a, b, d and b, c, d, respectively.
Hence, these connected components reside in those (unique) faces of the K4 that
are incident with a, b, d and b, c, d, respectively.

With the following additional hyperedges, our goal is to enforce that t and
t′ are used as conduits to connect the v-vertices to c via both a and b, and to
connect the u-vertices to a via both b and c. As we explain below, this is achieved
by the following hyperedges:

{a, va, t, t′, c}, {a, vb, t, t
′, c}, {b, va, t, t′, c}, {b, vb, t, t

′, c},

{b, ub, t, t
′, a}, {b, uc, t, t

′, a}, {c, ub, t, t
′, a}, {c, uc, t, t

′, a}.
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Clearly, t and t′ are twins. As can easily be verified, adding t and t′ and the
dotted edges in Fig. 2 to the graph induced by the solid edges gives a planar
support for H.

We now show that t and t′ have to reside in different faces for each planar
support G for H. First, observe that, in G, either va is not adjacent to b or vb is
not adjacent to a. Moreover, neither of va and vb is adjacent to c. Thus, to connect
the subgraphs induced by the hyperedges that contain va or vb, either vertex t or
its twin t′ must be adjacent to one of the two vertices in G. For the same reason,
one of t and t′ must be adjacent to one of ub and uc. Since there is no face in G
that is simultaneously incident with one of va or vb and one of ub or uc, the twins
t and t′ thus have to be in different faces. This implies that it is impossible to
obtain a planar support if t or t′ is missing. Consequently, removing one vertex
of a twin class can transform a yes-instance of r-Outerplanar Support into
a no-instance.

The example above is not a pathology of having only one pair of twins, in a
full version, we extend it so that an arbitrarily large set of twins is required for
the existence of a planar support.

4 Relevant Twins for r-Outerplanar Supports

In this section, we show that there is an explicit function ψ such that, out of
each twin class of a given hypergraph H, we can remove all but ψ(m, r) twins
such that the resulting hypergraph has an r-outerplanar support if and only if H
has. In other words, we prove that the following data reduction rule is correct.

Rule 1. Let H be a hypergraph with m edges. If there is a twin class with more
than ψ(m, r) = 26r·2m·(2r2+r+1)·(r+1)32r

2+8r
vertices, then remove one vertex out

of this class.

Assuming that Rule 1 is correct, Theorem 1 follows.

Proof (Theorem 1). Rule 1 can be applied exhaustively in linear time because
the twin classes can be computed in linear time [13]. After this, each twin class
contains at most ψ(m, r) vertices, meaning that, overall, at most 2mψ(m, r)
vertices remain. Testing all possible planar graphs for whether they are a support
for the resulting hypergraph thus takes constant time if m and r are constant.
Hence, the overall running time is linear in the input size. �


We mention in passing that, in the terms of parameterized algorithmics, exhaus-
tive application of Rule 1 can be seen as a problem kernel (see [8], for example).

The correctness proof for Rule 1 consists of two parts. First, in Theorem 2,
we show that each r-outerplanar graph has a long sequence of nested separators.
Here, nested means that each separator separates the graph into a left side and
a right side, and each left side contains all previous left sides. Furthermore,
the sequence of separators has the additional property that, for any pair of
separators S1, S2, we can glue the left side of S1 and the right side of S2, obtaining
another r-outerplanar graph.
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In the second part of the proof, we fix an initial support for our input hyper-
graph. We then show that, in a long sequence of nested separators for this sup-
port as above, there are two separators such that we can carry out the following
procedure. We discard all vertices between the separators, glue their left and
right sides, and reattach the vertices which we discarded as degree-one ver-
tices. Furthermore, we can do this in such a way that the resulting graph is an
r-outerplanar support. The reattached degree-one vertices hence are not crucial
to obtain an r-outerplanar support. We will show that if our input hypergraph is
large enough, that is, larger than some function of m and r, then there is always
at least one non-crucial vertex which can be removed.

We now formalize our approach. Theorem2 will guarantee the existence of a
long sequence of gluable separators. To formally state it, we need the following
notation.

Definition 1. For an edge bipartition A�B = E(G) of a graph G, let M(A,B)
be the set of vertices in G which are incident with both an edge in A and in B,
that is,

M(A,B) := {v ∈ V (G) | ∃a ∈ A∃b ∈ B : v ∈ a ∩ b}.

We call M(A,B) the middle set of A,B. For an edge set A ⊆ E(G), denote by
G〈A〉 := (

⋃
e∈A e,A) the subgraph induced by A.

Recall from Sect. 2 the definitions of graph gluing, boundary, and boundary
labeling.

Theorem 2 (�2). For every connected, bridgeless, r-outerplanar graph G with
n vertices there is a sequence ((Ai, Bi, βi))s

i=1 where each pair Ai, Bi ⊆ E(G)
is an edge bipartition of G and βi : M(Ai, Bi) → {1, . . . , |M(Ai, Bi)|} such that
s ≥ log(n)/(r + 1)32r2+8r, and, for every i, j, 1 ≤ i < j ≤ s,

(i) |M(Ai, Bi)| = |M(Aj , Bj)| ≤ 2r,
(ii) Ai � Aj, Bi � Bj, and
(iii) G〈Ai〉 ◦ G〈Bj〉 is r-outerplanar, where G〈Ai〉 is understood to be βi-

boundaried and G〈Bj〉 is understood to be βj-boundaried.

To gain some intuition for Theorem2 note that each M(Ai, Bi) is a separator,
separating its left side G〈Ai〉 from its right side G〈Bi〉 in G. Statement (ii)
ensures that each left sides contains all previous left sides, that is, the separators
are nested. Statement (iii) ensures that for any two separators in the sequence,
we can glue their left and right sides and again obtain an r-outerplanar graph.
In this new graph, the vertices inbetween the separators are missing—these will
be the vertices which are not crucial to obtain an r-outerplanar support.

The reason why we can prove the lower bound on the length of the sequence
is basically because r-outerplanar graphs have a tree-like structure, whence large
r-outerplanar graphs have a long “path” in this structure, and a long path in

2 Results labeled by � are deferred to a full version of the paper.
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such a structure induces many nested separators from which we can glean the
separators that are amenable to Statement (iii).

We next formalize the crucial vertices for obtaining an r-outerplanar support.
These are the vertices in a smallest representative support, defined as follows.

Definition 2 (Representative support). Let H be a hypergraph. A graph G
is a representative support for H if V (G) ⊆ V (H), graph G is a support for
subhypergraph H|V (G) shrunken to V (G), and every vertex in V (H) \ V (G) is
covered in H by some vertex in V (G).

Using the sequence of separators from Theorem 2, we show that the size of a
smallest representative r-outerplanar support is upper-bounded by a function
of m and r. To this end, we take an initial support, find two separators whose
vertices in between we can remove and reattach as non-crucial vertices, that
is, vertices not in a representative support. Intuitively, the two separators have
to have the same “status” with respect to the hyperedges that cross them. We
formalize this as follows.

Definition 3 (Edge-bipartition signature). Let H = (V, E) be a hypergraph
and let G be a representative planar support for H. Let (A,B, β) be a tuple where
(A,B) is an edge bipartition of G, and β : M(A,B) → {1, . . . , |M(A,B)|}. Let
� := |M(A,B)|. The signature of (A,B, β) is a triple (T , φ, C), where

– T := {[u]τ | u ∈
⋃

A} is the set of twin classes in
⋃

A,
– φ : {1, . . . , �} → {[u]τ | u ∈ V } : j �→ [β−1(j)]τ maps each index of a vertex

in M(A,B) to the twin class of that vertex, and
– C := {(F, γF ) | F ∈ E}, where γF is the relation on {1, . . . , �} defined by

(i, j) ∈ γF whenever β−1(i), β−1(j) ∈ F and β−1(i) is connected to β−1(j) in
G〈B〉[F ∩

⋃
B]. Herein, G〈B〉[F ∩

⋃
B] is the subgraph of G〈B〉 induced by

F ∩
⋃

B.

We have the following upper bound on the number of different separator states.

Lemma 1 (�). In a sequence ((Ai, Bi, βi))s
i=1 as in Theorem2 the number of

distinct edge-bipartition signatures is upper-bounded by 2m·(2r2+r+1).

As before, let ψ(m, r) := 26r·2m·(2r2+r+1)·(r+1)32r
2+8r

.

Lemma 2. If a hypergraph H = (V, E) has an r-outerplanar support, then it
has a representative r-outerplanar support with at most ψ(m, r) vertices.

Proof. Let G = (W,E) be a representative r-outerplanar support for H with
the minimum number of vertices and fix a corresponding planar embedding.
Assume towards a contradiction that |W | > ψ(m, r). We show that there is a
representative support for H with less than ψ(m, r) vertices.

We aim to apply Theorem 2 to G. For this we need that G is connected and
does not contain any bridges. Indeed, if G is not connected, then add edges
between its connected components in a tree-like fashion. This does not affect the
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outerplanarity number of G (although it adds bridges). If G has a bridge {u, v},
then proceed as follows. At least one of the ends of the bridge, say v, has degree
at least two because |W | > ψ(m, r) ≥ 2. One neighbor w �= u of v is incident
with the same face as u, because {u, v} is a bridge. Add the edge {u,w}. Thus,
edge {u, v} ceases to be a bridge. We can embed {u,w} in such a way that the
face F incident with u, v, and w is split into one face that is incident with only
{u, v, w} and devoid of any other vertex, and one face F′ that is incident with
all the vertices that are incident with F including u, v, and w. This implies that
each vertex retains its layer Li, meaning that G remains r-outerplanar. Thus,
we may assume that G is connected, bridgeless, and r-outerplanar.

Since G contains more than ψ(m, r) vertices, there is a sequence S =
((Ai, Bi, βi))s

i=1 as in Theorem 2 of length at least

s ≥ log(ψ(m, r))
(r + 1)32r2+8r

=
6r · 2m·(2r2+r+1) · (r + 1)32r2+8r

(r + 1)32r2+8r
= 6r · 2m·(2r2+r+1).

Since there are less than 2m·(2r2+r+1) different signatures in S (Lemma 1),
there are 6r elements of S with the same signature. Note that each middle
set M(Ai, Bi) induces a plane graph in G and, since |M(Ai, Bi)| ≤ 2r, induces
at most max{1, 3|M(Ai, Bi)| − 6} ≤ max{1, 6r − 6} edges. Thus, there are two
edge bipartitions (Ai, Bi, βi) and (Aj , Bj , βj), i < j, in S with the same sig-
nature such that the middle sets M(Ai, Bi), M(Aj , Bj) differ in at least one
vertex.

Let Gij := G〈Ai〉 ◦ G〈Bj〉, wherein G〈Ai〉 is βi-boundaried and G〈Bj〉 is
βj-boundaried. Let W ′ := V (Gij), where we assume that W ′ ∩ M(Aj , Bj) ⊆
M(Ai, Bi) for the sake of a simpler notation. Note that W \ W ′ �= ∅ since the
middle sets of the two edge bipartitions differ in at least one vertex and since
Ai � Aj .

We prove that Gij is a representative support for H, that is, each vertex
V \ W ′ is covered by some vertex in W ′ in H and that Gij is a support for
H|W ′ . Since Gij is r-outerplanar by Theorem2, Statement (iii), this contradicts
the choice of G according to the minimum number of vertices, thus proving the
lemma.

To prove that each vertex V \ W ′ is covered by some vertex in W ′, we show
that {[u]τ | u ∈ V } = {[u]τ | u ∈ W ′}. Since G = (W,E) is a representative
support, {[u]τ | u ∈ V } = {[u]τ | u ∈ W}. Furthermore, by the definition
of signature, we have {[u]τ | u ∈

⋃
Ai} = {[u]τ | u ∈

⋃
Aj}. Thus, for each

vertex u ∈ W \ W ′, there is a vertex v ∈ W ′ with [u]τ = [v]τ , meaning that,
indeed, {[u]τ | u ∈ V } = {[u]τ | u ∈ W ′}.

To show that Gij is a representative support it remains to show that it is
a support for H|W ′ , that is, each hyperedge F ′ of H|W ′ induces a connected
graph Gij [F ′]. Let F be a hyperedge of H such that F ∩ W ′ = F ′. Observe
that such a hyperedge F exists and that G[F ∩ W ] is connected since G is a
representative support of H. Denote by Sk the middle set M(Ak, Bk) of (Ak, Bk)
in G for k ∈ {i, j} and by S the middle set M(Ai, Bj) = Si = Sj of (Ai, Bj)
in Gij .
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To show that Gij [F ′] is connected, consider first the case that F ∩(Si ∪Sj) =
∅. Since each vertex in V \ W ′ is covered by a vertex in W ′ we have that each
vertex in F is contained in either G〈Ai〉 or G〈Bj〉 along with all edges of G[F ].
All these edges are also present in Gij whence Gij [F ′] is connected.

Now consider the case that F ∩ (Si ∪ Sj) �= ∅. Since Si and Sj are separators
in G, each vertex in F \(Si∪Sj) is connected in G[F ] to some vertex in Si or Sj via
a path with internal vertices in F \(Si∪Sj). We consider the connectivity relation
of their corresponding vertices in S. To this end, for a graph H and T ⊆ V (H) use
γ(T,H) for the equivalence relation on T of connectivity in H. That is, for u, v ∈
T we have (u, v) ∈ γ(T,H) if u and v are connected in H. Using this terminology,
since both Si and Sj equal S in Gij , to show that Gij [F ′] is connected, it is
enough to prove that the transitive closure δ of γ(F ′ ∩ S,Gij〈Ai〉) ∪ γ(F ′ ∩
S,Gij〈Bj〉) contains only one equivalence class.

Denote by Ĝ the graph obtained from G by identifying each v ∈ Si with
β−1

j (βi(v)) ∈ Sj , hence, identifying Si and Sj , resulting in the set S. Relation
α := γ(F ∩S, Ĝ) has only one equivalence class and, moreover, it is the transitive
closure of γ(F ∩Si, G〈Ai〉) ∪ γ(F ∩S, Ĝ〈Bi \Bj〉) ∪ γ(F ∩Sj , G〈Bj〉), wherein
we identify each v ∈ Si with β−1

j (βi(v)) ∈ Sj as above and, thus, Si = Sj = S.
We have γ(F ′ ∩ S,Gij〈Ai〉) = γ(F ∩ Si, G〈Ai〉) and γ(F ′ ∩ S,Gij〈Bj〉) =
γ(F ∩Sj , G〈Bj〉). Thus for α = δ it suffices to prove that γ(F ∩S, Ĝ〈Bi\Bj〉) ⊆
γ(F ′ ∩ Sj , Gij〈Bj〉). Indeed, the left-hand side γ(F ∩ S, Ĝ〈Bi \ Bj〉) is contained
in γ(F ∩Si, G〈Bi〉). Let (T , φ, C) be the signature of (Ai, Bi, βi) and (Aj , Bj , βj)
and (F, γF ) ∈ C. Note that γ(F ∩ Si, G〈Bi〉) = γF = γ(F ∩ Sj , G〈Bj〉) where
we abuse notation and set u = βi(u) for u ∈ Si and v = βj(v) for v ∈ Sj .
Hence, γ(F ∩ S, Ĝ〈Bi \ Bj〉) ⊆ γ(F ∩ Sj , G〈Bj〉) = γ(F ′ ∩ Sj , G〈Bj〉) = γ(F ′ ∩
Sj , Gij〈Bi〉). Thus, indeed, δ = α, that is, F ′ is connected. �

We now use the upper bound on the number of vertices in representative supports
to get rid of superfluous twins. First, we show that representative supports can
be extended to obtain a support.

Lemma 3. Let G = (W,E) be a representative r-outerplanar support for a
hypergraph H = (V, E). Then H has an r-outerplanar support in which all ver-
tices of V \ W have degree one.

Proof. Let G′ be the graph obtained from G by making each vertex v of V \W a
degree-one neighbor of a vertex in W that covers v (such a vertex exists by the
definition of representative support). Clearly, the resulting graph is planar. It is
also r-outerplanar, which can be seen by adapting an r-outerplanar embedding
of G for G′: If the neighbor v of a new degree-one vertex u is in L1, then place u
in the outer face. If v ∈ Li, i > 1, then place u in a face which is incident with v
and a vertex in Li−1 (such a face exists by the definition of Li).

It remains to show that G′ is a support for H. Consider a hyperedge F ∈ E .
Since G is a representative support for H, we have that F ∩W is nonempty and
that G[F ∩ W ] is connected. In G′, each vertex u ∈ F \ W is adjacent to some
vertex v ∈ W that covers u. Hence v ∈ F . Thus, G′[F ] is connected as G′[F ∩W ]
is connected and all vertices in F \ W are neighbors of a vertex in F ∩ W . �
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We now use Lemma 3 to show that, if there is a twin class that contains
more vertices than a small representative support, then we can safely remove
one vertex from this twin class.

Lemma 4. Let � ∈ N, let H be a hypergraph, and let v ∈ V (H) be a vertex such
that |[v]τ | ≥ �. If H has a representative r-outerplanar support with less than �
vertices, then H − v has an r-outerplanar support.

Proof. Let G = (W,E) be a representative r-outerplanar support for H such that
|W | < �. Then at least one vertex of [v]τ is not in W and we can assume that this
vertex is v without loss of generality. Thus, H has an r-outerplanar support G′

in which v has degree one by Lemma 3. The graph G′ − v is an r-outerplanar
support for H − v: For each hyperedge F in H − v, we have that G′[F \ {v}] is
connected because v is not a cut-vertex in G′[F ] (since it has degree one). �


Now we combine the observations above with the fact that there are small r-
outerplanar supports to prove that Rule 1 is correct.

Proof (Correctness of Rule 1). Consider an instance H = (V, E) of
r-Outerplanar Support to which Rule 1 is applicable and let v ∈ V be a ver-
tex to be removed, that is, v is contained in a twin class of size more than ψ(m, r).
By Lemma 2, if H has an r-outerplanar support, then it has a representative
r-outerplanar support with at most ψ(m, r) vertices. By Lemma 4, this implies
that H−v has an r-outerplanar support. Moreover, if H−v has an r-outerplanar
support, then this r-outerplanar support is a representative r-outerplanar sup-
port for H. By Lemma 3, this implies that H has an r-outerplanar support.
Therefore, H and H − v are equivalent instances, and v can be safely removed
from H. �


5 Concluding Remarks

The main contribution of this work is to show that twins may be crucial
for instances of r-Outerplanar Support but the number of crucial twins
is upper-bounded in terms of the number m of hyperedges and the outer-
planarity number r of a support. As a result, we can safely remove non-
crucial twins. More specifically, in linear time we can transform any instance of
r-Outerplanar Support into an equivalent one whose size is upper-bounded
by a function of m and r only. In turn, this implies fixed-parameter tractability
with respect to m+ r. It is fair to say, however, that due to the strong exponen-
tial growth in m and r this result is mainly of classification nature. Improved
bounds (perhaps based on further data reduction rules) are highly desirable for
practical applications.

Two further directions for future research are as follows. First, above we only
showed how to reduce the size of the input instance. We also need an efficient
algorithm to construct an r-outerplanar support for such an instance. As a first
step, it would be interesting to improve on the nO(n)-time brute-force algorithm
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that simply enumerates all n-vertex planar graphs and tests whether one of them
is an r-outerplanar support.3

Second, it is interesting to gear the parameters under consideration more
towards practice. In Sect. 4 above we attached signatures to each edge bipartition
in a sequence of edge bipartitions of a support and we could reduce our input only
if there were sufficiently many edge bipartitions with the same signature. This
signature contained, among other information, the twin class of each vertex of
the separator induced by the edge bipartition. Clearly, if all of these at least 2mr

different types of signatures are present, this will lead to an illegible drawing of
the hypergraph (and still, in absence of better upper bounds, we cannot reduce
our input). It seems thus worthwhile to contemplate parameters that capture
legibility of the hypergraph drawing by restricting further the number of possible
signatures.

Finally, an obvious open question is whether finding a planar support is
(linear-time) fixed-parameter tractable with respect to the number m of hyper-
edges only. A promising direction might be to show that there is a planar repre-
sentative support (as in Definition 2) which has treewidth upper-bounded by a
function of m. From this, we would get a sequence of gluable subgraphs similarly
to the one we have used here, amenable to the same approach as in Sect. 4.
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