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Abstract. While the algorithmic drawing of static trees is well-under-
stood and well-supported by software tools, creating animations depict-
ing how a tree changes over time is currently difficult: software support,
if available at all, is not integrated into a document production workflow
and algorithmic approaches only rarely take temporal information into
consideration. During the production of a presentation or a paper, most
users will visualize how, say, a search tree evolves over time by manually
drawing a sequence of trees. We present an extension of the popular TEX
typesetting system that allows users to specify dynamic trees inside their
documents, together with a new algorithm for drawing them. Running
TEX on the documents then results in documents in the svg format with
visually pleasing embedded animations. Our algorithm produces anima-
tions that satisfy a set of natural aesthetic criteria when possible. On
the negative side, we show that one cannot always satisfy all criteria
simultaneously and that minimizing their violations is NP-complete.

1 Introduction

Trees are undoubtedly among the most extensively studied graph structures in
the field of graph drawing; algorithms for drawing trees date back to the origins
of the field [26,40]. However, the extensive, ongoing research on how trees can be
drawn efficiently, succinctly, and pleasingly focuses on either drawing a single,
“static” tree or on interactive drawings of “dynamic” trees [11,12,27], which are
trees that change over time. In contrast, the problem of drawing dynamic trees
noninteractively in an offline fashion has received less attention.

It is this problem that lies at the heart of our paper.
Consider how an author could explain, in a paper or in a presentation, how

a tree-based data structure such as a search tree works. In order to explain
the dynamic behavior, our author might wish to show how the data structure
evolves for a sequence of update operations. A typical drawing of the evolving

Animations in this document will only be rendered in the SVG version [32], see
Sect. 2.3 for a discussion of the reasons.
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Fig. 1. A “manually” created drawing of a dynamic tree: each tree in the sequence has
been drawn using the Reingold–Tilford [29] algorithm.
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Fig. 2. The dynamic tree from Fig. 1, redrawn by drawing a “supergraph” (the union
of all trees in the sequence) and then using the positions of nodes in this supergraph
for the individual drawings.

sequence might look as in Fig. 1, which has been created “manually” by running
the Reingold–Tilford algorithm [29] on each tree in the sequence independently.
While the result is satisfactory, there are (at least) two shortcomings:
First Shortcoming: Flawed Layout. In the first step, the layout of the root’s
children changes (their horizontal distance decreases) even though there is no
structural change at the root. While in the present graph the effect is small, one
can construct examples where a single node removal causes a change in distances
on all levels, obscuring where the actual structural change occurred. Since the
whole sequence of trees (the whole “dynamic tree”) is given by the author, the
problem can be addressed by not running the Reingold–Tilford algorithm on
each tree individually, but by running it on the “supergraph” resulting from
uniting all trees in the sequence, resulting in the visualization in Fig. 2.

Unfortunately, this simple supergraph approach introduces new problems:
First, the nodes “2” and “7” are unnecessarily far apart – the nodes “3” and “6”
could use the same space since they are never both members of the same tree.
Second, it is easy to construct sequences of trees whose union is not a tree itself.

We address these problems in Sect. 3, where we present a new algorithm
for computing layouts of dynamic trees that addresses the above problems. For
dynamic trees whose supergraphs are trees or at least acyclic, the algorithm finds
an optimal layout (with respect to natural aesthetic criteria) of the dynamic tree
in linear time. For cyclic supergraphs, which are also important in practice since
they arise for instance from the rotations necessary to balance search trees in
data structures such as avl trees [1], we show that one has to break the cycles
in order to layout the graph according to the criteria we develop. While we show
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that it is NP-complete to find a minimal set of break points, a simple greedy
heuristic for finding breakpoints turns out to produce visually pleasing results.

Second Shortcoming: Presentation as a Sequence of Snapshots. In order to depict
the evolving nature of her dynamic tree, our author depicted different “snap-
shots” of the tree at different times and arranged these snapshots in a sequence.
While the temporal dimension needs to be turned into something else when
our medium of communication is printed paper, for documents presented using
appropriate electronic devices we can visualize dynamic trees using animations.
Such an animation needs much less space on a page and, perhaps more impor-
tantly, our visual system is much better at spotting movement than at identifying
structural changes between adjacent objects.

In Sect. 2 we present a system for creating animations on-the-fly during a run
of the TEX program on a text document: First, we have augmented the popular
TikZ graphic package [37] (a macro package for TEX for creating graphics) by
commands that compute and embed animations in the output files. Due to the
way the system works, these commands have almost no overhead regarding com-
pilation speed or resulting file size. Second, we have implemented a prototype of
our algorithm from Sect. 3 for drawing dynamic trees that uses these animation
commands. In result, when an author specifies the above dynamic graph appro-
priately in a TEX document and then runs TEX on it to convert it, the resulting
file will contain the normal text and graphics as well as an embedded animation
of the dynamic tree. When the document is viewed on electronic devices with a
modern browser, the animation runs right inside the document.

Related Work. Approaches to drawing static trees date back to the early 1970s,
namely to the work of Knuth, Wetherell and Shannon, and Sweet [26,35,40].
A standard algorithm still in use today is due to Reingold and Tilford [29], see
also [38]. They suggested that symmetric tree structures should be drawn sym-
metrically and provided an algorithm that supports this objective well and runs
in linear time. Instead of visualizing trees as node-link diagrams, one can also use
tree maps [25], three dimensional cone trees [30], or sunburst visualizations [33].

Approaches to drawing general dynamic graphs are more recent. The sequen-
ce-of-snapshot visualizations sketched before as well as animations are standard
ways of visualizing them [19]. One can also generally treat time as another spacial
dimension, which turns nodes into tubes through space [23]. There are many
further techniques that are not restricted to node-link diagrams [8,9,22,28]; for
an extensive overview of the whole state of the art including a taxonomy of
different visualization techniques see Beck et al. [5], or [21] for a more tree-
specific overview. Diehl, Görg and Kerren [14,15] introduced a general concept,
called foresighted layout, for drawing dynamic graphs offline. They propose to
collapse nodes in the supergraph that never exist at the same time and to then
draw the supergraph. While this approach produces poor results for trees, the
results are better for hierarchical graphs [20].

Approaches tailored specifically to drawing dynamic trees are currently
almost always online approaches. The algorithms, which expect a sequence of
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update operation as input [12,27], are integrated into interactive software and
create or adjust the layout for each change. An early algorithm designed for
dynamic trees was developed by Moen [27]. Later Cohen et al. [11,12] presented
algorithms for different families of graphs the includes trees.

Concerning the integration of tree drawing algorithms into text processing
software, first implementations for the typesetting system TEX date back to
Eppstein [18] and Brüggemann and Wood [6]. A more recent implementation of
the Reingold–Tilford algorithm by the second author is now part of the graph
drawing engine in TikZ [36].

Organisation of This Paper. This paper is structured into two parts: In the first
part, Sect. 2, we present the system we have developed for generating animations
of dynamic graphs that are embedded into documents. Our core argument is
that the system’s seamless integration into a widely used system such as TEX
is crucial for its applicability in practice. In the second part, Sect. 3, partly as
a case study, partly as a study of independent interest, we investigate how a
dynamic tree can be drawn using animations. We derive aesthetic criteria that
animations and even image sequences of dynamic trees should meet and present
an algorithm that does meet them. Full proofs and pseudo-code can be found in
the appendix of the full version, which also contains a gallery of dynamic trees
drawn using our prototype.

2 Dynamic Trees in Documents

The problem for which we wish to develop a practical solution in the rest of this
paper is the following: Visualize one or more dynamic trees inside a document
created by an author from some manuscript. To make the terminology precise, by
dynamic graph we refer to a sequence (G1, . . . , Gn), where each Gi = (Vi, Ei, φi)
is a directed, annotated graph with vertex set Vi, edge set Ei, and an annotation
function φi : Vi ∪ Ei → A that assigns additional information to each node and
edge from some set A of annotations like ordering or size information. A dynamic
tree is a dynamic graph where each Ti is a tree with the edges pointing away
from the root. A manuscript is a plain text written by an author that can be
transformed by a program into an (output) document, a typically multi-page
text document with embedded graphics or embedded animations. Note that the
problem is an offline problem since the manuscript contains a full description of
the dynamic graph and algorithms have full access to it. In rest of this section
we explain how the practical obstacles arising from the problem are solved by
the system we have developed, in Sect. 3 we investigate algorithmic questions.

In the introduction we saw an example of how a dynamic tree can be visu-
alized using a series of “snapshots” shown in a row. While this way of depicting
a dynamic tree is a sensible, traditional way of solving the problem (drawings
on printed paper “cannot change over time”), documents are now commonly
also read on electronic devices that are capable of displaying changing content
and, in particular, animations. We claim that using an animation instead of a
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sequence of snapshots has two major advantages: First, sequences of snapshots
need a lot of space on a page even for medium-sized examples. We did a cur-
sory survey of standard textbooks on computer science and found that typically
only three to four snapshots are shown and that the individual trees are often
rather small. For an animation, the length of the sequence is only limited by
the (presumed) attention span of the reader and not by page size. Second, our
visual system is much better at spotting movement than at identifying structural
changes between adjacent objects. When operations on trees such as adding or
deleting a leaf or moving whole subtrees are visualized using movements, readers
can identify and focus on these operations on a subconscious level.

Given the advantages offered by animations, it is surprisingly difficult to
integrate animations into documents. Of course, there is a lot of specialized
software for creating animations and graphics output formats like pdf or svg
allow the inclusion of movie files in documents. However, this requires authors
to use – apart from their main text processor like TEX or Word – one or more
programs for generating animations and they then have to somehow “link” the
(often very large) outputs of these different programs together. The resulting
workflows are typically so complicated that authors rarely employ them. Even
when they are willing to use and integrate multiple tools into their workflow,
authors face the problem that using different tools makes it next to impossible
to keep a visually consistent appearance of the document [36]. Very few, if any,
animation software will be able to render for instance TEX formulas inside to-
be-animated nodes correctly and take the sizes of these formulas into account.

We have developed a system that addresses the above problems; more pre-
cisely, we have augmented an existing system that is in wide-spread use – TEX –
by facilities for specifying dynamic trees, for computing layouts for them, and for
generating animations that are embedded into the output files. Our extensions
are build on top of TikZ’s graph drawing engine [36], which has been part of
standard TEX distributions since 2014.

Authors first specify the dynamic trees they wish to draw inside TEX manu-
scripts using a special syntax, which we describe in Sect. 2.1 (conceptually, this
is similar to specifying for instance formulas inside the TEX manuscripts). Next,
authors apply a graph drawing algorithm to the specified dynamic graph by
adding an appropriate option to the specification and then running the TEX
program as explained in Sect. 2.2. Lastly, in Sect. 2.3, we discuss which output
formats are supported by our system, how the output can be viewed on electronic
devices, and how a fallback for printed paper can be generated.

2.1 The Input: Specifying Dynamic Trees

In order to make dynamic trees accessible to graph drawing algorithms, we first
have to specify them. For dynamic graphs and, in particular, for dynamic trees,
there are basically two different methods available to us: We can specify each
graph or tree in the dynamic graph sequence explicitly. Alternatively, we can
specify a sequence of update operations that transform one graph into the next
such as, for the dynamic trees of search trees, the sequence of insert and delete
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operations that give rise to the individual trees. Besides being easy and natural to
use, the second method also provides algorithms with rich semantic information
concerning the change from one graph to the next in the sequence.

Despite the fact that the second method is more natural in several contexts
and more semantically rich, for our prototype we use the first method: Authors
specify dynamic graphs by explicitly specifying the sequence of graphs that make
up the dynamic graph. We have two reasons for this choice: First, specifying
the sequence of graphs explicitly imposes the least restrictions on what kind
of dynamic graphs can be drawn, in principle. In contrast, the set of update
operations necessary to describe the changes occurring just for the standard
data structures balanced search trees, heaps, and union–find trees is large and
hard to standardize. For instance, should the root rotation occurring in avl
trees be considered a standard update operation or not? Second, it easy to
convert a sequence of update operations into a sequence of graphs, while the
reverse direction is harder and, sometimes, not possible. Our system can easily
be extended to accept different sequences of update operations as input and
convert them on-the-fly into a sequence of graphs that is then processed further.

There are different possible formats for specifying individual graphs and, in
particular, trees of graph sequences, including graphml, an xml-based markup
language; the dot format, used by graphviz [17]; the gml format, used by the
Open Graph Drawing Framework [10]; or the format of the \graph command
of TikZ [37], which is similar to the dot format. As argued in [36], it is not
purely a matter of taste, which format is used; rather, good formats make it
easy for humans to notate all information about a graph that is available to
them. For instance, for static graphs the order in which vertices are specified is
almost never random, but reflects information about them that the author had
and that algorithms should take into account.

Since the algorithm and system we have implemented are build on top of the
graph drawing engine of TikZ [36], we can use all of the different syntax flavors
offered by this system, but authors will typically use the \graph command. Each
graph in the sequence of graphs is surrounded by curly braces and, following the
opening brace, we say [when=i] to indicate that we now specify the ith graph
in the sequence. The graph is then specified by listing the edges, please see [36]
and [37] for details on the syntax and its use in TikZ. The result is a specification
of the dynamic graph such as the following for the example graph from Figs. 1
and 2:

\tikz \graph { {[when=1] 10->{ 5->{ 2, 7->6 }, 15->12 } },

{[when=2] 10->{ 5->{ 2, 7->6 }, 15 } },

{[when=3] 10->{ 5->{ 2, 7 }, 15 } },

{[when=4] 10->{ 5->{ 2->{ , 3 }, 7 }, 15 } } };

2.2 Document Processing and Algorithm Invocation

Once a dynamic graph has been specified as part of a larger TEX document,
we need to process it. This involves both running a dynamic graph drawing
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algorithm to determine the positions of the nodes and the routing of the edges
as well as producing commands that create the desired animation.

The framework provided by the graph drawing engine [36] of TikZ is well-
suited for the first task. All the author has to do is to load an appropriate graph
drawing library and then use a special key with the \tikz command:
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\tikz [animated binary tree layout]

\graph { {[when=1] 10->{ ... } };

{[when=2] 10->{ ... } },

{[when=3] 10->{ ... } },

{[when=4] 10->{ ... } } };

The key animated binary tree layout causes the graph drawing engine to
process the dynamic graph. It will parse the dynamic graph, convert it to an
object-oriented model, and pass it to an algorithm from the evolving library,
which is written in the Lua programming language [24].1 The framework also
handles the later rendering of the nodes and edges and their correct scaling and
embedding into the output document. Thus, the algorithm’s implementation
only needs to address the problem of computing node positions from an object-
oriented model of the dynamic graph. The implementation need not (indeed,
cannot) produce or process graphical output and primitives.

Once the algorithm has computed the positions for nodes and edges of the
graphs in the sequence, actual animations need to be generated. For this, TikZ
itself was extended by a new animation subsystem, which can be used inde-
pendently of the graph drawing engine and allows users to specify and embed
arbitrary animations in their documents. The animation subsystem adds anima-
tion annotations to the output file, which are statements like “move this graphics
group by 1 cm to the right within 2 s” or “change the opacity of this node from
opaque to transparent within 200 ms.” More formally, they are xml elements
in the Synchronized Multimedia Integration Language [7]. For the animation of
dynamic graphs, the graph drawing engine can now map the computed posi-
tions of the nodes at different times to TikZ commands that add appropriate
movement and opacity-change annotations to the output.

2.3 The Output: Scalable Vector Graphics

The annotation-based way of producing animations has two important conse-
quences: Firstly, adding the annotations to the output does not have a noticeable
effect on the speed of compilation (computing the necessary xml statements is
quite easy) nor on the file size (annotations are small). However, secondly, the
job of rendering the graph animations with, say, 30 frames per second does not

1 When the algorithm is also implemented in the Lua language, it can be used directly
by TEX without special configurations or runtime linking, but it can also be imple-
mented in C or C++ at the cost of a more complicated deployment.
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lie with TEX, but with the viewer application and we need both a format and
viewer applications that support this.

Currently, there is only one graphics format that supports these annotation-
based animations: The Scalable Vector Graphics (svg) format [13], which is
a general purpose graphics language that is in wide-spread use. All modern
browsers support it, including the parsing and rendering of svg animations.
The dvisvgm program, which is part of standard TEX distributions, transforms
arbitrary TEX documents into svg files that, when viewed in a browser, are
visually indistinguishable from pdf files produced by TEX – except, of course,
for the animations of the dynamic graphs.

While we argued that animations are a superior way of visualizing dynamic
graphs, there are situations where they are not feasible: First, documents are
still often printed on paper. Second, the popular pdf format does not support
annotation-based animations and, thus, is not able to display TikZ’s animations.
Third, it is sometimes desirable or necessary to display “stills” or “snapshots” of
animations at interesting time steps alongside the animation. In these situations,
authors can say make snapshot of=t to replace the animation by a static picture
of what the animated graphic would look like at time t. Since the computation of
the snapshot graphic is done by TEX and since no animation code is inserted into
the output, this method works with arbitrary output formats, including pdf.

3 Algorithmic Aspects of Drawing Dynamic Trees

Given a dynamic tree T = (T1, . . . , Tk) consisting of a sequence of trees
Ti = (Vi, Ei, φi), we saw in the introduction that neither drawing each tree
independently and then “morphing” the subsequent drawings to create an ani-
mation nor laying out just the supergraph super(T ) = (

⋃
i Vi,

⋃
i Ei) and then

animating just the opacity of the nodes and edges will lead to satisfactory draw-
ings of dynamic trees. Our aim is to devise a new algorithm that addresses the
shortcomings of these approaches and that meets a number of sensible aesthetic
criteria that we formulate in Sect. 3.1. The algorithm, presented in Sect. 3.2, has
been implemented as a prototype [31] and we have used it to create the anima-
tions of dynamic trees in the present paper. While the prototype implementation
does not even run in linear time (as would be possible by Theorem3.2), it only
needs fractions of a second for the example graphs from this paper.

3.1 Aesthetic Criteria for Drawing Dynamic Trees

Already in 1979, Wetherell and Shannon [40] explicitly defined aesthetic criteria
for the layout of trees. Two years later Reingold and Tilford [29] refined these
static criteria towards more symmetric drawings in which isomorphic subtrees
must have the same layout. While the criteria were originally formulated for
binary trees only, one can allow any number of children when there is an ordering
on the children of each node.
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Criterion (Ranking). The vertical position of a node equals its topological
distance from the root.

Criterion (Ordering). The horizontal positions of a node’s children respect
their topological order in the tree.

Criterion (Centering). Nodes are horizontally centered between their leftmost
and rightmost child if there are at least two children.

Criterion (Symmetry). All topologically order-isomorphic subtrees are drawn
identically. Topologically mirrored subtrees are drawn horizontally mirrored.

As numerous applications show, these rather sensible criteria lead to aesthet-
ically pleasing drawings of static trees. We extend these criteria to the dynamic
case. Ideally, we would like to keep all of the above criteria, but will see in a
moment that this is not always possible.

nTi :

c

nTi+1 :

c

Our first dynamic criterion forbids the unnec-
essary movement of nodes in drawings like the
one shown on the right, which shows the same
problem as the example in the introduction did:
The horizontal offset between n and c changes
from Ti to Ti+1 even though there is no struc-
tural change at n. (Note that when a node disappears in the step from Ti to
Ti+1 and then reappears in Ti+2, the stability criterion does no require it to
appear at the same position as before.)

Criterion (Stability). The horizontal offset between a node n and a child c
may not change between the layouts of trees Ti and Ti+1 if c does not change its
position in the ordering of the children of n.

While the stability criterion forbids relative movements of connected nodes, it
allows whole subtrees to move without changing their inner layout. This empha-
sizes the important parts of changes since multiple objects moving with the
same speed are percieved as one connected group [4,39]. The criterion reduces
movements and draws common structures identically, thereby reducing errors
in understanding [2] and making it easier for viewers to correctly recognize the
changes in the tree sequence [3].

While all of the above criteria are reasonable, unfortunately, there is no way
of meeting all of them simultaneously, see the appendix for the proof:

Lemma 3.1. No drawing of the dynamic tree T = (T1, T2) from Fig. 3 meets all
of the criteria Ranking, Ordering, Centering, Symmetry, and Stability.

In view of the lemma, we will need to weaken one or more of our criteria,
while still trying to meet them at least in “less problematic” cases than the
dynamic tree from Fig. 3. Furthermore, even when the criteria can be met, this
may not always be desirable.
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Fig. 3. A “problematic” dynamic tree. Already the dynamic tree T = (T1, T2) cannot
be drawn while meeting all of the criteria Ranking, Ordering, Centering, Symmetry, and
Stability, as shown in Lemma 3.1. The whole dynamic tree T = (T1, T2, T3) cannot even
be drawn when the Symmetry Criterion is replaced by the Weak Symmetry Criterion,
see Lemma 3.3.

T1 :

1

2 3 a

b c

T2 :

1

2 3 a

b c

Consider the right example, which seems
like a “reasonable” drawing of a dynamic
tree. The Stability Criterion enforces the
large distance between b and c already in
T1, but the Symmetry Criterion would now
actually enforce the same distance between
2 and 3, which seems undesirable here. As
a replacement of the Symmetry Criterion we
propose a Weak Symmetry Criterion that our
algorithm will be able to meet in many important cases, including the trouble-
some example from Lemma 3.1. Nevertheless, there are still dynamic trees that
cannot be drawn in this way, see Lemma 3.3, which also turn out to be the
algorithmically difficult cases.

Criterion (Weak Symmetry). Let n and n′ be nodes such that for all i ∈
{1, . . . , n} the subtrees rooted at n and at n′ in Ti are order-isomorphic (or all
mirrored). Then in all drawings of the Ti the subtrees rooted at n and n′ must
all be drawn identically (or all mirrored).

3.2 An Algorithm for Drawing Arbitrary Dynamic Trees

Our starting point for an algorithm that meets the aesthetic criteria just formu-
lated is the classical Reingold–Tilford algorithm [29]. It will be useful to review
this algorithm briefly, formulated in a “bottom-up” fashion: While there is a
node that has not yet been processed, pick a node n whose children c1, . . . , cm

have all already been processed (this is immediately the case for all leafs, where
m = 0). For each child cr a layout L(cr) will have been computed for the subtree
T (cr) of T rooted at cr. The algorithm now shifts the L(cr) vertically so that all
cr lie on the same horizontal line (Ranking Criterion), then shifts them horizon-
tally so that the c1 comes first, followed by c2, and so on (Ordering Criterion),
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such that no overlap of the L(cr) occurs. Finally, n is centered above its children
(Centering Criterion). The Symmetry Criterion is satisfied automatically by this
algorithm since the same shifts occur for symmetric subtrees. Using appropriate
data structures, the algorithm can be implemented in linear time.

Our Algorithm A.1, see the appendix for pseudo-code, uses the same basic
idea as the Reingold–Tilford algorithm, but introduces two new ideas.

tighten

Idea 1: Treat Nodes as Three-Dimen-
sional Objects. In our algorithm, we treat
nodes and subtrees as “three dimensional”
objects with time as the third dimension.
Given a dynamic tree T = (T1, . . . , Tk),
the algorithm does not process the Ti one
at a time (as online algorithms have to
do), but instead considers for each node n
of the supergraph super(T ) the sequence
(T1(n), . . . , Tk(n)) of trees rooted at n in the different Ti and computes a whole
sequence of layouts (L1(n), . . . , Lk(n)) for these trees: The core operation of the
Reingold–Tilford algorithm, the shifting of a layout L(cr) until it almost touches
the previous layout L(cr−1), is replaced by a shifting of the whole sequence
(L1(cr1), . . . , Lk(crk)), where cij denotes the ith child of n in Tj , until at least
one layout Lj(crj) (one of the gray layouts in the example) almost touches its
sibling’s layout Lj(cr−1

j ) (one of the dark layouts).
Idea 2: Processing the Supergraph Using a Topological Ordering. For static

trees, there is a clear order in which the nodes should be processed by the
Reingold–Tilford algorithm: from the leafs upwards. For a dynamic tree, this
order is no longer clear – just consider the example from Fig. 3: Should we first
process node 1 or node a? Our algorithm address this ordering problem as follows:
We compute the supergraph super(T ) and then check whether it is acyclic. If
so, it computes a topological ordering of super(T ) and then processes the nodes
in this order. Observe that this guarantees that whenever a node is processed,
complete layouts for its children will already have been computed.

Theorem 3.2. Let T be a dynamic tree whose supergraph is acyclic. Then Algo-
rithmA.1 draws T in linear time such that all of the criteria Ranking, Ordering,
Centering, Weak Symmetry, and Stability are met.

Theorem 3.2 settles the problem of drawing dynamic trees with acyclic super-
graphs nicely. In contrast, for a cyclic supergraph, things get much harder:

Lemma 3.3. No drawing of T = (T1, T2, T3) from Fig. 3 meets all of the criteria
Ranking, Ordering, Centering, Weak Symmetry, and Stability.

The lemma tempts us to just “give up” on cyclic supergraphs. However,
these arise naturally in prune-and-regraft operations and from rotations in search
trees – which are operations that we would like to visualize. We could also
just completely ignore the temporal criteria and return to drawing each tree
individually in such cases – but we might be able to draw everything nicely
except for a single “small” cycle “somewhere” in the supergraph.

https://arxiv.org/pdf/1608.08385v1.pdf#page=17
https://arxiv.org/pdf/1608.08385v1.pdf#page=17
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We propose to deal with the cycle problem by “cutting” the cycles with as few
“temporal cuts” as possible. These are defined as follows: Let G = (G1, . . . , Gk)
be a dynamic graph and let n be a node of the supergraph super(G) and let
i ∈ {1, . . . , k − 1}. The temporal cut of G at n and i is a new dynamic graph G′

that is identical to G, except that for all j ∈ {i + 1, . . . , k} in which Gj contains
the node n, this node is replaced by the same new node n′ (and all edges to or
from n are replaced by edges to or from n′).

Temporal cuts can be used to remove cycles from the supergraph of a dynamic
graph, which allows us to then run our AlgorithmA.1 on the resulting graph;
indeed, simply “cutting everything at all times” turns every supergraph into a
(clearly acyclic) collection of non-adjacent edges and isolated nodes. However,
we wish to minimize the number of temporal cuts since, when we visualize G′

using an animation, the different locations that may be assigned to n and n′ will
result in a movement of the node n to the new position of n′.

By the above discussion, we would like to find an algorithm that solves the
following problem temporal-cut-minimization: Given a dynamic tree T , find
a minimal number of temporal cuts, such that the resulting dynamic tree T ′ has
an acyclic supergraph. Unfortunately, this problem turns out to be difficult:

Theorem 3.4. The decision version of temporal-cut-minimization is NP-
complete.

In light of the above theorem, we have developed and implemented a simple
greedy heuristic, Algorithm A.2, for finding temporal cuts that make the super-
graph acyclic, which our prototype runs prior to invoking AlgorithmA.1: Given
a dynamic tree, the heuristic simply adds the trees Ti and their edges incremen-
tally to the supergraph. However, whenever adding an edge e = (v, w) of Ti to
the supergraph creates a cycle, we cut w at i − 1.

4 Conclusion and Outlook

We have presented a system for offline drawings of
dynamic trees using animations that are embedded
in (text) documents. The system has been imple-
mented [31] as an extension of the popular TEX sys-
tem and will become part of future version of TikZ.2

The generated animation are light-weight both in
terms of file size and generation time, but require
that the documents (or, at least, the graphic files)
are stored in the svg format. Our new algorithm is a natural extension of the
Reingold–Tilford algorithm to the dynamic case, but while the original algo-
rithm runs in linear time on all trees, we showed that the dynamic case leads to
NP-complete problems. Fortunately, in practice, the hard subproblems can be
solved satisfactorily using a greedy strategy – at least, that has been our finding

2 Currently available in the development version at http://pgf.cvs.sourceforge.net.

https://arxiv.org/pdf/1608.08385v1.pdf#page=17
https://arxiv.org/pdf/1608.08385v1.pdf#page=18
https://arxiv.org/pdf/1608.08385v1.pdf#page=17
http://pgf.cvs.sourceforge.net
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for a limited number of examples such as the above animation; a perceptual
study of animated drawings of dynamic graphs has not (yet) been conducted.

We see our algorithm as a first step towards a general set of algorithms for
drawing dynamic graphs using animations, which we believe to have a great (and
not yet fully realized) potential as parts of text documents. A next logical step
would be a transferal of the Sugiyama method [16,34] to the dynamic offline
case.
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