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Abstract. We introduce and study the OrthoSEFE-k problem:
Given k planar graphs each with maximum degree 4 and the same ver-
tex set, do they admit an OrthoSEFE, that is, is there an assignment
of the vertices to grid points and of the edges to paths on the grid such
that the same edges in distinct graphs are assigned the same path and
such that the assignment induces a planar orthogonal drawing of each
of the k graphs? We show that the problem is NP-complete for k ≥ 3
even if the shared graph is a Hamiltonian cycle and has sunflower inter-
section and for k ≥ 2 even if the shared graph consists of a cycle and of
isolated vertices. Whereas the problem is polynomial-time solvable for
k = 2 when the union graph has maximum degree five and the shared
graph is biconnected. Further, when the shared graph is biconnected and
has sunflower intersection, we show that every positive instance has an
OrthoSEFE with at most three bends per edge.

1 Introduction

The input of a simultaneous embedding problem consists of several graphs G1 =
(V,E1), . . . , Gk = (V,Ek) on the same vertex set. For a fixed drawing style S, the
simultaneous embedding problem asks whether there exist drawings Γ1, . . . , Γk

This research was initiated at the Bertinoro Workshop on Graph Drawing 2016.
Research was partially supported by DFG grant Ka812/17-1, by MIUR project
AMANDA, prot. 2012C4E3KT 001, by DFG grant SCHU 2458/4-1, by the grant no.
14-14179S of the Czech Science Foundation GACR, and by DFG grant WA 654/21-1.

c© Springer International Publishing AG 2016
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of G1, . . . , Gk, respectively, in drawing style S such that for any i and j the
restrictions of Γi and Γj to Gi ∩ Gj = (V,Ei ∩ Ej) coincide.

The problem has been most widely studied in the setting of topological planar
drawings, where vertices are represented as points and edges are represented as
pairwise interior-disjoint Jordan arcs between their endpoints. This problem is
called Simultaneous Embedding with Fixed Edges or SEFE-k for short,
where k is the number of input graphs. It is known that SEFE-k is NP-complete
for k ≥ 3, even in the restricted case of sunflower instances [25], where every
pair of graphs shares the same set of edges, and even if such a set induces a
star [3]. On the other hand, the complexity for k = 2 is still open. Recently,
efficient algorithms for restricted instances have been presented, namely when
(i) the shared graph G∩ = G1 ∩ G2 is biconnected [4,18] or a star-graph [4], (ii)
G∩ is a collection of disjoint cycles [12], (iii) every connected component of G∩ is
either subcubic or biconnected [10,25], (iv) G1 and G2 are biconnected and G∩
is connected [13], and (v) G∩ is connected and the input graphs have maximum
degree 5 [13]; see the survey by Bläsius et al. [11] for an overview.

For planar straight-line drawings, the simultaneous embedding problem is
called Simultaneous Geometric Embedding and it is known to be NP-hard
even for two graphs [17]. Besides simultaneous intersection representation for,
e.g., interval graphs [13,19] and permutation and chordal graphs [20], it is only
recently that the simultaneous embedding paradigm has been applied to other
fundamental planarity-related drawing styles, namely simultaneous level planar
drawings [2] and RAC drawings [5,7].

We continue this line of research by studying simultaneous embeddings in the
planar orthogonal drawing style, where vertices are assigned to grid points and
edges to paths on the grid connecting their endpoints [28]. In accordance with the
existing naming scheme, we define OrthoSEFE-k to be the problem of testing
whether k input graphs 〈G1, . . . , Gk〉 admit a simultaneous planar orthogonal
drawing. If such a drawing exists, we call it an OrthoSEFE of 〈G1, . . . , Gk〉.
Note that it is a necessary condition that each Gi has maximum degree 4 in
order to obtain planar orthogonal drawings. Hence, in the remainder of the
paper we assume that all instances have this property. For instances with this
property, at least when the shared graph is connected, the problem SEFE-2 can
be solved efficiently [13]. However, there are instances of OrthoSEFE-2 that
admit a SEFE but not an OrthoSEFE; see Fig. 1(a).

Unless mentioned otherwise, all instances of OrthoSEFE-k and SEFE-k we
consider are sunflower. Notice that instances with k = 2 are always sunflower.
Let 〈G1 = (V,E1), G2 = (V,E2)〉 be an instance of OrthoSEFE-2. We define
the shared graph (resp. the union graph) to be the graph G∩ = (V,E1 ∩ E2)
(resp. G∪ = (V,E1 ∪ E2)) with the same vertex set as G1 and G2, whose edge
set is the intersection (resp. the union) of the ones of G1 and G2. Also, we call
the edges in E1 ∩ E2 the shared edges and we call the edges in E1 \ E2 and in
E2 \ E1 the exclusive edges. The definitions of shared graph, shared edges, and
exclusive edges naturally extend to sunflower instances for any value of k.
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Fig. 1. (a) A negative instance of OrthoSEFE-2. Shared edges are black, while exclu-
sive edges are red and blue. The red edges require 270◦ angles on different sides of C.
Thus, the blue edge (u, v) cannot be drawn. Note that the given drawing is a SEFE-2.
(b) Examples of side assignments for the exclusive edges incident to degree-2 vertices
of G∩: orthogonality constraints are satisfied at v4 and v5, while they are violated at v3.
(Color figure online)

One main issue is to decide how degree-2 vertices of the shared graph are
represented. Note that, in planar topological drawings, degree-2 vertices do not
require any decisions as there exists only a single cyclic order of their incident
edges. In the case of orthogonal drawings there are, however, two choices for a
degree-2 vertex: It can either be drawn straight, i.e., it is incident to two angles
of 180◦, or bent, i.e., it is incident to one angle of 90◦ and to one angle of 270◦.
If v is a degree-2 vertex of the shared graph with neighbors u and w, and two
exclusive edges e, e′, say of G1, are incident to v and are embedded on the same
side of the path uvw, then v must be bent, which in turn implies that also every
exclusive edge of G2 incident to v has to be embedded on the same side of uvw
as e and e′. In this way, the two input graphs of OrthoSEFE-2 interact via the
degree-2 vertices. It is the difficulty of controlling this interaction that marks the
main difference between SEFE-k and OrthoSEFE-k. To study this interaction
in isolation, we focus on instances of OrthoSEFE-2 where the shared graph is
a cycle for most of the paper. Note that such instances are trivial yes-instances
of SEFE-k (provided the input graphs are all planar).

Contributions and Outline. In Sect. 2, we provide our notation and we show
that the existence of an OrthoSEFE of an instance of OrthoSEFE-k can
be described as a combinatorial embedding problem. In Sect. 3, we show that
OrthoSEFE-3 is NP-complete even if the shared graph is a cycle, and that
OrthoSEFE-2 is NP-complete even if the shared graph consists of a cycle plus
some isolated vertices. This contrasts the situation of SEFE-k where these cases
are polynomially solvable [4,9,18,25]. In Sect. 4, we show that OrthoSEFE-2
is efficiently solvable if the shared graph is a cycle and the union graph has max-
imum degree 5. Finally, in Sect. 5, we extend this result to the case where the
shared graph is biconnected (and the union graph still has maximum degree 5).
Moreover, we show that any positive instance of OrthoSEFE-k whose shared
graph is biconnected admits an OrthoSEFE with at most three bends per edge.
We close with some concluding remarks and open questions in Sect. 6.

Complete proofs can be found in the full version of the paper [1].
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2 Preliminaries

We will extensively make use of the Not-All-Equal 3-Sat (Nae3Sat)
problem [24, p.187]. An instance of Nae3Sat consists of a 3-CNF formula φ
with variables x1, . . . , xn and clauses c1, . . . , cm. The task is to find a Nae truth
assignment, i.e., a truth assignment such that each clause contains both a true
and a false literal. Nae3Sat is known to be NP-complete [26]. The variable–
clause graph is the bipartite graph whose vertices are the variables and the
clauses, and whose edges represent the membership of a variable in a clause.
The problem Planar Nae3Sat is the restriction of Nae3Sat to instances
whose variable–clause graph is planar. Planar Nae3Sat can be solved effi-
ciently [22,27].

Embedding Constraints. Let 〈G1, . . . , Gk〉 be an OrthoSEFE-k instance.
A SEFE is a collection of embeddings Ei for the Gi such that their restrictions
on G∩ are the same. Note that in the literature, a SEFE is often defined as a
collection of drawings rather than a collection of embeddings. However, the two
definitions are equivalent [21]. For a SEFE to be realizable as an OrthoSEFE it
needs to satisfy two additional conditions. First, let v be a vertex of degree 2
in G∩ with neighbors u and w. If in any embedding Ei there exist two exclusive
edges incident to v that are embedded on the same side of the path uvw, then
any exclusive edge incident to v in any of the Ej �= Ei must be embedded on
the same side of the path uvw. Second, let v be a vertex of degree 3 in G∩. All
exclusive edges incident to v must appear between the same two edges of G∩
around v. We call these the orthogonality constraints. See Fig. 1(b).

Theorem 1. An instance 〈G1, . . . , Gk〉 of OrthoSEFE-k has an OrthoSEFE
if and only if it admits a SEFE satisfying the orthogonality constraints.

For the case in which the shared graph is a cycle C, we give a simpler version
of the constraints in Theorem 1, which will prove useful in the remainder of the
paper. By the Jordan curve theorem, a planar drawing of cycle C divides the
plane into a bounded and an unbounded region – the inside and the outside of
C, which we call the sides of C. Now the problem is to assign the exclusive edges
to either of the two sides of C so that the following two conditions are fulfilled.

Planarity Constraints. Two exclusive edges of the same graph must be drawn
on different sides of C if their endvertices alternate along C.

Orthogonality Constraints. Let v ∈ V be a vertex that is adjacent to two exclusive
edges ei and e′

i of the same graph Gi, i ∈ {1, . . . , k}. If ei and e′
i are on the same

side of C, then all exclusive edges incident to v of all graphs G1, . . . , Gk must be
on the same side as ei and e′

i.
Note that this is a reformulation of the general orthogonality constraints.

Further, the orthogonality constraints also imply that if ei and e′
i are on different

sides of C, then for each graph Gj that contains two exclusive edges ej and e′
j

incident to v, with j ∈ {1, . . . , k}, ej and e′
j must be on different sides of C.
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The next theorem follows from Theorem 1 and from the following two
observations. First, for a sunflower instance 〈G1, . . . , Gk〉 whose shared graph is
a cycle, any collection of embeddings is a SEFE [21]. Second, the planarity con-
straints are necessary and sufficient for the existence of an embedding of Gi [6].

Theorem 2. An instance of OrthoSEFE-k whose shared graph is a cycle C
has an OrthoSEFE if and only if there exists an assignment of the exclusive edges
to the two sides of C satisfying the planarity and orthogonality constraints.

3 Hardness Results

We show that OrthoSEFE-k is NP-complete for k ≥ 3 for instances with
sunflower intersection even if the shared graph is a cycle, and for k = 2 even if
the shared graph consists of a cycle and isolated vertices.

Theorem 3. OrthoSEFE-k with k ≥ 3 is NP-complete, even for instances
with sunflower intersection in which (i) the shared graph is a cycle and (ii) k−1
of the input graphs are outerplanar and have maximum degree 3.

Proof sketch. The membership in NP directly follows from Theorem 2. To prove
the NP-hardness, we show a polynomial-time reduction from the NP-complete
problem Positive Exactly-Three Nae3Sat [23], which is the variant of
Nae3Sat in which each clause consists of exactly three unnegated literals.

Let x1, x2, . . . , xn be the variables and let c1, c2, . . . , cm be the clauses of a
3-CNF formula φ of Positive Exactly-Three Nae3Sat. We show how to
construct an equivalent instance 〈G1, G2, G3〉 of OrthoSEFE-3 such that G1

and G2 are outerplanar graphs of maximum degree 3. We refer to the exclusive
edges in G1, G2, and G3 as red, blue, and green, respectively; refer to Fig. 2.

Fig. 2. (a) A clause gadget Cj (top) and a variable-clause gadget V j
i (bottom); solid

edges belong to the gadgets, dotted edges are optional, and dashed edges are trans-
mission edges. (b) Illustration of instance 〈G1, G2, G3〉, focused on a clause c4. Black
edges belong to the shared graph G∩. The red, blue, and green edges are the exclusive
edges of G1, G2, and G3, respectively. (Color figure online)
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For each clause cj , j = 1, . . . ,m, we create a clause gadget Cj as in Fig. 2(a)
(top). For each variable xi, i = 1, . . . , n, and each clause cj , j = 1, . . . ,m, we
create a variable-clause gadget V j

i as in Fig. 2(a) (bottom). Observe that the
(dotted) green edge {wj

i , r
j
i } in a variable-clause gadget is only part of V j

i if xi

does not occur in cj . Otherwise, there is a green edge {wj
i , y

j
x} connecting wj

i to
one of the three vertices yj

a, yj
b , or yj

c (dashed stubs) in the clause gadget. Observe
that these three variable-clause edges per clause can be realized in such a way
that there exist no planarity constraints between pairs of them. In Fig. 2(b),
the variable-clause gadgets V 4

1 , V 4
3 , V 4

4 are incident to variable-clause edges,
while V 4

2 and V 4
5 contain edges {w4

2, r
4
2} and {w4

5, r
4
5}, respectively.

The gadgets are ordered as indicated in Fig. 2(b). The variable-clause gad-
gets V j

i , with i = 1, . . . , n, always precede the clause gadget V j , for any
j = 1, . . . , m. Further, if j is odd, then the gadgets V j

1 , . . . , V j
n appear in this

order, otherwise they appear in reversed order V j
n , . . . , V j

1 . Finally, V j
i and V j+1

i ,
for i = 1, . . . , n and j = 1, . . . , m−1, are connected by an edge {wj

i , w
j+1
i }, which

is blue if j is odd and red if j is even. We call these edges transmission edges.
Assume 〈G1, G2, G3〉 admits an OrthoSEFE. Planarity constraints and

orthogonality constraints guarantee three properties: (i) If the edge {uj
i , v

j
i } is

inside C, then so is {uj+1
i , vj+1

i }, i = 1, . . . , n, j = 1, . . . ,m − 1. This is due to
the fact that, by the planarity constraints, the two green edges incident to wj

i

lie on the same side of C and hence, by the orthogonality constraints, the two
transmission edges incident to wj

i also lie on this side. We call {u1
i , v

1
i } the truth

edge of variable xi. (ii) Not all the three green edges a = {αj , βj}, b = {βj , γj},
and c = {γj , δj} lie on the same side of C. Namely, the two red edges of the
clause gadget Cj must lie on opposite sides of C because of the interplay between
the planarity and the orthogonality constraints in the subgraph of Cj induced
by the vertices between βj and γj . Hence, if edges a, b, and c lie on the same side
of C, then the orthogonality constraints at either βj or γj are not satisfied. (iii)
For each clause cj = (xa, xb, xc), edge a = {αj , βj} lies on the same side of C
as the truth edge of xa. This is due to the planarity constraints between each
of these two edges and the variable-clause edge {wj

a, yj
a}. Analogously, edge b

(edge c) lies on the same side as the truth edge of xb (of xc). Hence, setting
xi = true (xi = false) if the truth edge of xi is inside C (outside C) yields a
Nae3Sat truth assignment that satisfies φ.

The proof for the other direction is based on the fact that assigning the truth
edges to either of the two sides of C according to the Nae3Sat assignment of φ
also implies a unique side assignment for the remaining exclusive edges that
satisfies all the orthogonality and the planarity constraints.

It is easy to see that G1 and G2 are outerplanar graphs with maximum
degree 3, and that the reduction can be extended to any k > 3. 	


In the following, we describe how to modify the construction in Theorem3
to show hardness of OrthoSEFE-2. We keep only the edges of G1 and G3.
Variable-clause gadgets and clause gadgets remain the same, as they are com-
posed only of edges belonging to these two graphs. We replace each transmission
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edge in G2 by a transmission path composed of alternating green and red edges,
starting and ending with a red edge. This transformation allows these paths
to traverse the transmission edges of G1 and the variable-clause edges of G3

without introducing crossings between edges of the same color. It is easy to see
that the properties described in the proof of Theorem3 on the assignments of
the exclusive edges to the two sides of C also hold in the constructed instance,
where transmission paths take the role of the transmission edges.

Theorem 4. OrthoSEFE-2 is NP-complete, even for instances 〈G1, G2〉 in
which the shared graph consists of a cycle and a set of isolated vertices.

4 Shared Graph is a Cycle

In this section, we give a polynomial-time algorithm for instances of
OrthoSEFE-2 whose shared graph is a cycle and whose union graph has maxi-
mum degree 5 (Theorem 5). In order to obtain this result, we present an efficient
algorithm for more restricted instances (Lemma 1) and give a series of transfor-
mations (Lemmas 2–3) to reduce any instance with the above properties to one
that can be solved by the algorithm in Lemma 1.

Lemma 1. OrthoSEFE-2 is in P for instances 〈G1, G2〉 such that the shared
graph C is a cycle and G1 is an outerplanar graph with maximum degree 3.

Proof. The algorithm is based on a reduction to Planar Nae3Sat, which is
in P [22,27]. First note that, since G1 is outerplanar, there exist no two edges
in E1 alternating along C. Hence, there are no planarity constraints for G1.

We now define an auxiliary graph H with vertex set E2 \ E1 and edges
corresponding to pairs of edges alternating along C; see Fig. 3(a). W.l.o.g. we may
assume that H is bipartite, since G2 would not meet the planarity constraints
otherwise [6]. Let B be the set of connected components of H, and for each
component B ∈ B, fix a partition B1, B2 of B into independent sets (possibly

Fig. 3. (a) Instance 〈G1, G2〉 satisfying the properties of Lemma 1, where the edges
in E2 belonging to the components α, β, γ, and δ of H have different line styles.
(b) Polygons for the components of H. (c) Graph ˜G. (d) Variable–clause graph Gφ.
(Color figure online)
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B2 = ∅ in case of a singleton B). Note that in any inside/outside assignment of
the exclusive edges of G2 that meets the planarity constraints, for every B ∈ B,
all edges of B1 lie on one side of C and all edges of B2 lie on the other side.

Draw the cycle C as a circle in the plane. For a component B ∈ B, let PB be
the polygon inscribed into C whose corners are the endvertices in V of the edges
in E2 corresponding to the vertices of B; refer to Fig. 3(b). If B only contains
one vertex (i.e., one edge of G2), we consider the digon PB as the straight-line
segment connecting the vertices of this edge. If B has at least two vertices, we let
PB be open along its sides, i.e., it will contain the corners and all inner points
(in Fig. 3(b) we depict this by making the sides of PB slightly concave). One
can easily show that, for any two components B,D ∈ B, their polygons PB, PD

may share only some of their corners, but no inner points. Hence, the graph ˜G
obtained by placing a vertex xB inside the polygon PB , for B ∈ B, making xB

adjacent to each corner of PB and adding the edges E1, is planar; see Fig. 3(c).
We construct a formula φ with variables xB, B ∈ B, such that φ is Nae-

satisfiable if and only if 〈G1, G2〉 admits an inside/outside assignment meeting all
planarity and orthogonality constraints. The encoding of the truth assignment
will be such that xB is true when the edges of B1 are inside C and the edges
of B2 are outside, and xB is false if the reverse holds. Every assignment satisfying
the planarity constraints for G2 defines a truth-assignment in the above sense.

Let e = (v, w) be an exclusive edge of E1 and let e1v, e2v (e1w, e2w) be the
exclusive edges of E2 incident to v (to w, respectively); we assume that all
such four edges of E2 exist, the other cases being simpler. Let B(u, i) be the
component containing the edge ei

u, for u ∈ {v, w} and i ∈ {1, 2}. Define the
literal �i

u to be xB(u,i) if ei
u ∈ B1(u, i) and ¬xB(u,i) if ei

u ∈ B2(u, i). With our
interpretation of the truth assignment, an edge ei

u is inside C if and only if �i
u is

true. Now, for the assignment to meet the orthogonality constraints, if �1v = �2v,
say both are true, then e must be assigned inside C as well, which would cause
a problem if and only if �1w = �2w = false. Hence, the orthogonality constraints
are described by Nae-satisfiability of the clauses ce = (�1v, �2v,¬�1w,¬�2w), for
each e ∈ E1. To reduce to Nae3Sat, we introduce a new variable xe for each
edge e ∈ E1 \ E2 and replace the clause ce by two clauses c′

e = (�1v, �2v, xe) and
c′′
e = (¬xe,¬�1w,¬�2w). A planar drawing of the variable–clause graph Gφ of the

resulting formula φ is obtained from the planar drawing ˜Γ of ˜G (see Figs. 3(c)
and 3(d)) by (i) placing each variable xB, with B ∈ B, on the point where
vertex xB lies in ˜Γ , (ii) placing each variable xe, with e ∈ E1, on any point of
edge e in ˜Γ , (iii) placing clauses c′

e and c′′
e , for each edge e = (v, w) ∈ E1, on the

points where vertices v and w lie in ˜Γ , respectively, and (iv) drawing the edges
of Gφ as the corresponding edges in ˜Γ . This implies that Gφ is planar and hence
we can test the Nae-satisfiability of φ in polynomial time [22,27]. 	


The next two lemmas show that we can use Lemma 1 to test in polynomial time
any instance of OrthoSEFE-2 such that G∩ is a cycle and each vertex v ∈ V
has degree at most 3 in either G1 or G2.
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Fig. 4. Instances (left) 〈G1, G2〉 and (right) 〈G′
1, G

′
2〉 for the proof of Lemma 2. Edges

of G∩ (G′
∩) are black. Exclusive edges of G1 (G′

1) are red and those of G2 (G′
2) are blue.

(Color figure online)

Lemma 2. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph
is a cycle and such that G1 has maximum degree 3. It is possible to construct in
polynomial time an equivalent instance 〈G∗

1, G
∗
2〉 of OrthoSEFE-2 whose shared

graph is a cycle and such that G∗
1 is outerplanar and has maximum degree 3.

Proof sketch. We construct an equivalent instance 〈G′
1, G

′
2〉 of OrthoSEFE-2

such that G′
∩ is a cycle, G′

1 has maximum degree 3, and the number of pairs of
edges in G′

1 that alternate along G′
∩ is smaller than the number of pairs of edges

in G1 that alternate along G∩. Repeatedly applying this transformation yields
an equivalent instance 〈G∗

1, G
∗
2〉 satisfying the requirements of the lemma.

Consider two edges e = (u, v) and f = (w, z) of G1 such that u,w, v, z appear
in this order along cycle G∩ and such that the path Pu,z in G∩ between u and z
that contains v and w has minimal length. If G1 is not outerplanar, then the
edges e and f always exist. Figure 4 illustrates the construction of 〈G′

1, G
′
2〉.

By the choice of e and f , and by the fact that G1 has maximum degree 3,
there is no exclusive edge in G1 with one endpoint in the set H2 of vertices
between w and v, and the other one not in H2. Further, observe that in an
OrthoSEFE of 〈G′

1, G
′
2〉 edges f and f ′ (edges e and e′) must be on the same

side. Further, e and f must be in different sides of G′
∩. It can be concluded that

〈G′
1, G

′
2〉 has an OrthoSEFE if and only if 〈G1, G2〉 has an OrthoSEFE. 	


The proof of the next lemma is based on the replacement illustrated in Fig. 5.
Afterwards, we combine these results to present the main result of the section.

Fig. 5. Illustration of the transformation for the proof of Lemma 3 to reduce the number
of vertices incident to two exclusive edges in G1. Edges e′, f ′ of G2 and h′ of G1 (right)
take the role of edges e, f of G1 and h of G2 (left), respectively. Thus, the orthogonality
constraints at v′ are equivalent to those at v. (Color figure online)
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Lemma 3. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph is
a cycle and whose union graph has maximum degree 5. It is possible to construct
in polynomial time an equivalent instance 〈G∗

1, G
∗
2〉 of OrthoSEFE-2 whose

shared graph is a cycle and such that graph G∗
1 has maximum degree 3.

Theorem 5. OrthoSEFE-2 can be solved in polynomial time for instances
whose shared graph is a cycle and whose union graph has maximum degree 5.

5 Shared Graph is Biconnected

We now study OrthoSEFE-k for instances whose shared graph is biconnected.
In Theorem 6, we give a polynomial-time Turing reduction from instances of
OrthoSEFE-2 whose shared graph is biconnected to instances whose shared
graph is a cycle. In Theorem 7, we give an algorithm that, given a positive
instance of OrthoSEFE-k such that the shared graph is biconnected together
with a SEFE satisfying the orthogonality constraints, constructs an OrthoSEFE
with at most three bends per edge.

We start with the Turing reduction, i.e., we develop an algorithm that takes as
input an instance 〈G1, G2〉 of OrthoSEFE-2 whose shared graph G∩ = G1∩G2

is biconnected and produces a set of O(n) instances 〈G1
1, G

1
2〉,. . . ,〈Gh

1 , Gh
2 〉 of

OrthoSEFE-2 whose shared graphs are cycles. The output is such that 〈G1, G2〉
is a positive instance if and only if all instances 〈Gi

1, G
i
2〉, i = 1, . . . , h, are

positive. The reduction is based on the SEFE testing algorithm for instances
whose shared graph is biconnected by Bläsius et al. [9,10], which can be seen as
a generalized and unrooted version of the one by Angelini et al. [4].

We first describe a preprocessing step. Afterwards, we give an outline of the
approach of Bläsius et al. [10] and present the Turing reduction in two steps. We
assume familiarity with SPQR-trees [15,16]; for formal definitions, see [1].

Lemma 4. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph is
biconnected. It is possible to construct in polynomial time an equivalent instance
〈G∗

1, G
∗
2〉 whose shared graph is biconnected and such that each endpoint of an

exclusive edge has degree 2 in the shared graph.

We continue with a brief outline of the algorithm by Bläsius et al. [10]. First,
the algorithm computes the SPQR-tree T of the shared graph. To avoid special
cases, T is augmented by adding S-nodes with only two virtual edges such that
each P-node and each R-node is adjacent only to S-nodes and Q-nodes. Then,
necessary conditions on the embeddings of P-nodes and R-nodes are fixed up to
a flip following some necessary conditions. Afterwards, by traversing all S-nodes,
a global 2SAT formula is produced whose satisfying assignments correspond to
choices of the flips that result in a SEFE. We refine this approach and show that
we can choose the flips independently for each S-node, which allows us to reduce
each of them to a separate instance, whose shared graph is a cycle.

We now describe the algorithm of Bläsius et al. [10] in more detail. Consider
a node μ of T . A part of skel(μ) is either a vertex of skel(μ) or a virtual edge of
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skel(μ), which represents a subgraph of G. An exclusive edge e has an attachment
in a part x of skel(μ) if x is a vertex that is an endpoint of e or if x is a virtual edge
whose corresponding subgraph contains an endpoint of e. An exclusive edge e
of G1 or of G2 is important for μ if its endpoints are in different parts of skel(μ).
It is not hard to see that, to obtain a SEFE, the embedding of the skeleton
skel(μ) of each node μ has to be chosen such that for each exclusive edge e the
parts containing the attachments of e share a face. It can be shown that any
embedding choice for P-nodes and R-nodes that satisfies these conditions can,
after possibly flipping it, be used to obtain a SEFE [4, Theorem 1]. The proof
does not modify the order of exclusive edges around degree-2 vertices of G∩, and
therefore applies to OrthoSEFE-2 as well.

Now, let μ be an S-node. Let ε be a virtual edge of skel(μ), Gε be the
subgraph represented by ε, and ν be the corresponding neighbor of μ in the
SPQR-tree of G. An attachment of ν with respect to μ is an interior vertex
of Gε that is incident to an important edge e for μ. If ν has such an attachment,
then it is a P- or R-node. It is a necessary condition on the embedding of Gε

that each attachment x with respect to μ must be incident to a face incident
to the virtual edge twin(ε) of skel(ν) representing μ, and that their clockwise
circular order together with the poles of ε is fixed up to reversal [10, Lemma 8].

For the purpose of avoiding crossings in skel(μ), we can thus replace each
virtual edge ε that does not represent a Q-node by a cycle Cε containing the
attachments of ε with respect to μ and the poles of ε in the order Oε. We keep
only the important edges of μ. Altogether, this results in an instance 〈Gμ

1 , Gμ
2 〉

of SEFE modeling the requirements for skel(μ); see Figs. 6(a) and 6(b).

Lemma 5. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph
is biconnected. Then 〈G1, G2〉 admits an OrthoSEFE if and only if all instances
〈Gμ

1 , Gμ
2 〉 admit an OrthoSEFE.

Next, we transform a given instance 〈Gμ
1 , Gμ

2 〉 of OrthoSEFE-2 as above
into an equivalent instance 〈Gμ

1 , Gμ
2 〉 whose shared graph is a cycle. Let Cεi

be
the cycles corresponding to the neighbor νi, i = 1, . . . , k of μ in 〈Gμ

1 , Gμ
2 〉. To

Fig. 6. (a) Skeleton of an S-node μ in which the R-node ν corresponding to the virtual
edge ε = (u, v) is expanded to show its skeleton. (b) Replacing ε with cycle Cε. (c)
Replacing Cε with path Pε; vertices a1, a2, x1, . . . , x4, b1, b2 are green boxes. (Color
figure online)
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obtain the instance 〈Gμ
1 , Gμ

2 〉, we replace each cycle Cεi
with poles u and v by

a path Pεi
from u to v that first contains two special vertices a1, a2 followed

by the clockwise path from u to v (excluding the endpoints), then four special
vertices x1, . . . , x4, then the counterclockwise path from u to v (excluding the
endpoints), and finally two special vertices b1, b2 followed by v. In addition to the
existing exclusive edges (note that we do not remove any vertices), we add to G1

the exclusive edges (a2, x3), (x1, x3), (x2, x4), (x2, b1), and to G2 the exclusive
edges (a1, x3) and (x2, b2) to G2; see Fig. 6(c).

The above reduction together with the next lemma implies the main result.

Lemma 6. 〈Gμ
1 , Gμ

2 〉 admits an OrthoSEFE if and only if 〈Gμ
1 , Gμ

2 〉 does.

Theorem 6. OrthoSEFE-2 when the shared graph is biconnected is polynomial-
time Turing reducible to OrthoSEFE-2 when the shared graph is a cycle. Also,
the reduction does not increase the maximum degree of the union graph.

Corollary 1. OrthoSEFE-2 can be solved in polynomial time for instances
whose shared graph is biconnected and whose union graph has maximum degree 5.

Observe that, from the previous results, it is not hard to also obtain a SEFE
satisfying the orthogonality constraints, if it exists. We show how to construct
an orthogonal geometric realizations of such a SEFE.

Theorem 7. Let 〈G1, . . . , Gk〉 be a positive instance of OrthoSEFE-k whose
shared graph is biconnected. Then, there exists an OrthoSEFE 〈Γ1, Γ2, . . . , Γk〉
of 〈G1, . . . , Gk〉 in which every edge has at most three bends.

Proof sketch. We assume that a SEFE satisfying the orthogonality constraints
is given. We adopt the method of Biedl and Kant [8]. We draw the vertices with
increasing y-coordinates with respect to an s-t-ordering [14] v1, . . . , vn on the
shared graph. We choose the face to the left of (v1, vn) as the outer face of the
union graph. The edges will bend at most on y-coordinates near their incident
vertices and are drawn vertically otherwise. Figure 7 indicates how the ports are
assigned. We make sure that an edge may only leave a vertex to the bottom if
it is incident to vn or to a neighbor with a lower index. Thus, there are exactly
three bends on {v1, vn}. Any other edge {vi, vj}, 1 ≤ i < j ≤ n has at most one
bend around vi and at most two bends around vj . 	


Fig. 7. Constructing a drawing with at most three bends per edge. (Color figure online)
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6 Conclusions and Future Work

In this work, we introduced and studied the problem OrthoSEFE-k of realizing
a SEFE in the orthogonal drawing style. While the problem is already NP-hard
even for instances that can be efficiently tested for a SEFE, we presented a
polynomial-time testing algorithm for instances consisting of two graphs whose
shared graph is biconnected and whose union graph has maximum degree 5. We
have also shown that any positive instance whose shared graph is biconnected
can be realized with at most three bends per edge.

We conclude the paper by presenting a lemma that, together with Theorem6,
shows that it suffices to only focus on a restricted family of instances to solve
the problem for all instances whose shared graph is biconnected.

Lemma 7. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph
G∩ is a cycle. An equivalent instance 〈G∗

1, G
∗
2〉 of OrthoSEFE-2 such that (i)

the shared graph G∗
∩ is a cycle, (ii) graph G∗

1 is outerplanar, and (iii) no two
degree-4 vertices in G∗

1 are adjacent, can be constructed in polynomial time.
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