
Placing Arrows in Directed Graph Drawings

Carla Binucci1(B), Markus Chimani2, Walter Didimo1, Giuseppe Liotta1,
and Fabrizio Montecchiani1

1 Università degli Studi di Perugia, Perugia, Italy
{carla.binucci,walter.didimo,giuseppe.liotta,

fabrizio.montecchiani}@unipg.it
2 Osnabrück University, Osnabrück, Germany

markus.chimani@uni-osnabrueck.de

Abstract. We consider the problem of placing arrow heads in directed
graph drawings without them overlapping other drawn objects. This
gives drawings where edge directions can be deduced unambiguously. We
show hardness of the problem, present exact and heuristic algorithms,
and report on a practical study.

1 Introduction

The default way of drawing a directed edge is to draw it as a line with an
arrow head at its target. While there also exist other models (placing arrows at
the middle, drawing edges in a “tapered” fashion, etc.; cf. [7,8]) the former is
prevailing in virtually all software systems. However, this simple model becomes
problematic when several edges attach to a vertex on a similar trajectory: it may
be hard to see whether a specific edge is in- or outgoing, cf. Fig. 1 and [1].

We try to solve this issue by looking for a placement of the arrow heads such
that (a) they do not overlap other edges or arrow heads, and (b) still retain the
property of being at—or at least close to—the target vertices of the edges. In
the following, we show NP-hardness of the problem, propose exact and heuristic
algorithms for its discretized variant, and evaluate their practical performance in
a brief exploratory study. We remark that our problem is related to map labeling
and in particular to edge labeling problems [4,5,9–11,13,15–18].

For space reasons, some proofs and technical details are omitted in this
extended abstract, and can be found in the appendix of the ArXiv version [1].

2 The Arrow Placement Problem

We first formally define our arrow placement problem and establish its theoret-
ical time complexity. Let G = (V,E) be a digraph and let Γ be a straight-line
drawing of G. We assume that in Γ each vertex v ∈ V is drawn as a circle

Work is partially supported by the MIUR project AMANDA “Algorithmics for
MAssive and Networked DAta”, prot. 2012C4E3KT 001.

c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 44–51, 2016.
DOI: 10.1007/978-3-319-50106-2 4

Placing Arrows in Directed Graph Drawings 45

Fig. 1. Layouts of a digraph with 10 vertices and 21 edges. (left) The arrows are placed
by a common editor; several arrows overlap and the direction of, e.g., the thick red edge
is not clear. (right) The arrows are placed by our exact method. (Color figure online)

(possibly a point) Cv. We also assume that, for each edge e ∈ E, the arrow of
e is modeled as a circle Ce of positive radius, centered in a point along the seg-
ment that represents e: when Γ is displayed, the arrow of e is drawn as a triangle
inscribed in Ce, suitably rotated according to the direction of e. We assume that all
circles representing a vertex (arrow) have a common radius rV (rE , respectively).
We say that two arrows—or an arrow and a vertex—overlap if their corresponding
circles intersect in two points. An arrow and an edge overlap if the segment rep-
resenting the edge intersects the circle representing the arrow in two points. For
the sake of simplicity, we reuse terms of theoretical concepts also for their visual
representation: “arrow” and “vertex” also refer to their corresponding circle in Γ ;
“edge” also refers to its corresponding segment in Γ .

Definition 1. Let ae denote the arrow of an edge e ∈ E. A valid position for
ae in Γ is such that: (P1) for every vertex v ∈ V , ae and v do not overlap; (P2)
for every edge g ∈ E, g �= e, ae and g do not overlap. An assignment of a valid
position to each arrow is called a valid placement of the arrows, denoted by PΓ .

Definition 2. Given a valid placement PΓ , the overlap number of PΓ is the
number of pairs of overlapping arrows, and is denoted as ov(PΓ).

Given a straight-line drawing Γ of a digraph G = (V,E), and constants rV ,
rE , we ask for a valid placement PΓ of the arrows (if one exists) such that ov(PΓ)
is minimum. This optimization problem is NP-hard; we prove this by showing
the hardness of the following decision problem Arrow-Placement.

Problem: Arrow-Placement

Instance: 〈G = (V,E), Γ, rV , rE〉.
Question: Does there exist a valid placement PΓ of the arrows with ov(PΓ) = 0?

Theorem 1. The Arrow-Placement problem is NP-hard.

The proof of Theorem1 uses a reduction from Planar 3-SAT [12], and
is similar to those used in the context of edge labeling [9,13,16,18]. It yields
an instance of Arrow-Placement where the search of a valid placement PΓ

with ov(PΓ) = 0 can be restricted to a finite number of valid positions for

46 C. Binucci et al.

each arrow.Hence,Arrow-Placement remainsNP-hard even ifwe fix a finite set
of positions for each arrow, and a valid placement with overlap number zero (if any)
may only choose from these positions. As this variant of Arrow-Placement,
which we call Discrete-Arrow-Placement, clearly belongs to NP, it is
NP-complete.

3 Algorithms

We describe algorithms for the optimization version of Discrete-Arrow-
Placement. We assume that a set of valid positions for each arrow is given,
based on {Γ, rV , rE}, and look for a valid placement PΓ that minimizes ov(PΓ)
over this set of positions. We give both an exact algorithm and two variants of a
heuristic, which we experimentally compare in Sect. 4. Given an edge e ∈ E, let
Ae denote the set of valid positions for the arrow of edge e, and let A :=

⋃
e∈E Ae

be the set of all valid positions. Our algorithms are based on an arrow conflict
graph CA, depending on A, Γ , and rE . The positions A form the node set of
CA. Two positions are conflicting, and connected by an (undirected) edge in CA,
if they correspond to positions of different edges and the arrows would overlap
when placed on these positions. Finding a valid placement PΓ with ov(PΓ) = 0
means to select one element from each Ae such that they form an independent
set in CA. More general, finding a valid placement PΓ with ov(PΓ) = k (k ≥ 0)
means to select one element from each Ae such that they induce a subgraph with
k edges in CA. Our exact algorithm minimizes k using an ILP formulation, while
our heuristic adopts a greedy strategy. Both techniques try to minimize the dis-
tance of each arrow from its target vertex as a secondary objective. However, our
algorithms can be easily adapted to privilege other positions (e.g., close to the
source vertices, in the middle of the edges, etc.), or to consider bidirected edges.

ILP Formulation. For each position pe ∈ Ae of an edge e = (v, u), we have
a binary variable xpe

. We define a distance d(pe) ∈ {1, . . . , |Ae|}, from pe to
u: d(pe) = 1 (d(pe) = |Ae|) means that pe is the position closest (farthest,
respectively) to u. Let EA := E(CA) be the pairs of conflicting positions. For
every (pe, pg) ∈ EA, we define a binary variable ypepg

. The total number of
variables is O(|A|2), and we write:

min
∑

(pe,pg)∈EA

ypepg
+

1
M

·
∑

e∈E

∑

pe∈Ae

d(pe)xpe
(1)

∑

pe∈Ae

xpe
= 1 ∀e ∈ E (2)

xpe
+ xpg

≤ ypepg
+ 1 ∀(pe, pg) ∈ EA (3)

The objective function minimizes the overlap number and, secondly, the sum
of the distances of the arrows from their target vertices. To do this, the second
term is divided for a sufficiently large constant M . For example, one can set
M = |E|maxe∈E{|Ae|}. Equation 2 guarantee that exactly one valid position

Placing Arrows in Directed Graph Drawings 47

per edge is selected. Constraint 3 enforces ypepg
= 1 if both conflicting positions

xpe
and xpg

are chosen. In the following, the exact technique will be referred to
as Opt. We remark that optimization problems and ILP formulations similar to
above have been given in the context of edge and map labeling [4,5,9,11,15,16].

Heuristics. Our heuristics follow a greedy strategy, again based on CA. Let
pe ∈ Ae ⊂ V (CA) as above. We initially assigns cost c(pe) to each position
pe, and then execute |E| iterations. In each iteration, we select a position pe of
minimum cost (over all e ∈ E) and place the arrow of the corresponding edge
there; then, we remove all positions Ae from CA (including pe), and update the
costs of the remaining positions. We define c(pe) := δ(pe)+ 1

M d(pe)+Tσpe
, where:

δ(pe) is the degree of pe in CA (i.e., the number of positions conflicting with pe);
constant M and “distance” d(pe) are defined as in the ILP; σpe

is the number of
already chosen positions conflicting with pe (0 in the first iteration); T is equal
to the maximum initial cost of a valid position. This cost function guarantees
that: (i) positions conflicting with already selected positions are chosen only
if necessary; (ii) the algorithm prefers positions with the minimum number of
conflicts with the remaining positions and, among them, those closer to the target
vertex. Since constructing CA may be time-consuming in practice (we compare
all pairs of valid positions), we also consider using only a subset of the edges of
CA; we may consider only those conflicts arising from positions of adjacent edges
in the input graph. In the following, HeurGlobal is the heuristic that considers
full CA, while HeurLocal is the variant based on this simplified version of CA.

4 Experimental Analysis

Experimental Setting. We use three different sets of graph: Planar are bicon-
nected planar digraphs with edge density 1.5–2.5, randomly generated with the
OGDF [3]. Random are digraphs generated with uniform probability distrib-
ution with edge density 1.4–1.6. Both sets contain 30 instances each; 6 graphs
for each number of vertices n ∈ {100, 200, . . . , 500}. We did not generate denser
graphs, as they give rise to cluttered drawings with few valid positions for the
arrows—there, the arrow placement problem seems less relevant. Finally, North
is a popular set of 1, 275 real-world digraphs with 10–100 vertices and average
density 1.4 [14]. We draw each instance of the three sets with straight-line edges
using OGDF’s FM3 algorithm [6]. The layouts of the Planar may contain edge
crossings, as they are generated by a force-directed approach.

Value rE is chosen as the minimum of (a) 40% of the shortest edge length,
(b) 25% of the average edge length, and (c) 10 pixels, but enforced to be at least
3 pixels. We set rV := rE . For each edge e = (w, u) we compute positions Ae as
follows. The i-th position, i ≥ 1, has its center at distance rV +i·rE from target u.
We generate positions as long as they have distance at least rV +rE from source
vertex w. We then remove positions that overlap with edges or vertices in Γ . If
no valid positions remain, we choose the one closest to u as e’s unique arrow
position. Thus, in the final placements there might be some conflicts between an

48 C. Binucci et al.

arrow and a vertex or edge of the drawing. We call such conflicts crossings and
observe that a single invalid position may result in several crossings.

We apply Opt, HeurGlobal, and HeurLocal to each of the drawings. The algo-
rithms are implemented in C# and run on an Intel Core i7-3630QM notebook
with 8 GB RAM under Windows 10. For the ILP we use CPLEX 12.6.1 with
default settings. For each computation, we measure total running time, overlap
number, and number of crossings (due to invalid positions, see above). From the
qualitative point of view, we also compare the algorithmic results with a trivial
placement, called Editor, which simply places each arrow close to its target ver-
tex, similarly as most graph editors do. We also measure placement time, i.e.,
the time spent by an algorithm to find a placement after CA has been computed.

Results. For Planar, the average numbers of positions in CA range from 640
to 7, 150. Figures 2(a) and (b) show that for Planar all the algorithms are
very applicable, although Opt is of course significantly slower. While the pure
placement time for HeurGlobal is not much longer than that of HeurLocal, it
suffers from the fact that generating the full CA constitutes roughly 1/3 of
its overall runtime, whereas the generation time of the reduced conflict graph is
rather neglectable. On the other hand, Fig. 2(c) shows that HeurGlobal practically
coincides with the optimum w.r.t. the number of overlaps (its average gap is
below 3%; the worst gap is 6.76%). HeurLocal still gives very good solutions,
with gaps about half that of Editor. Figure 2(d) shows that our algorithms reduce
the number of invalid positions by 33−77% compared to Editor. The number of

Fig. 2. Planar: (a) Placement time; (b) Total running time; (c) Number of overlaps;
(d) Number of crossings (edge/vertex with arrow) and of invalid positions.

Placing Arrows in Directed Graph Drawings 49

Fig. 3. Random: (a) Total running time; (b) Number of overlaps, relative to Opt.

Fig. 4. North: (a) Total running time; (b) Number of overlaps, relative to to Opt.

crossings is the same for all our algorithms, as they occur when we cannot find
any valid position for arrows during the generation procedure. Figure 2(d) shows
that our algorithms cause significantly less crossings than Editor.

For Random, average numbers of positions in CA range from 640 to 4, 377.
The general behavior for Random is similar to that of Planar but the difference
between the running time of Opt and the heuristics is slightly more pronounced
(Fig. 3(a)). Again, constructing CA constitutes roughly 1/3 of HeurGlobal’s run-
ning time. Still, the quality of HeurGlobal’s solutions again essentially coincide
with Opt; the other heuristics are now closer than before, see Fig. 3(b).

For North, the average |V (CA)| range from 62 to 311. We observe the same
patterns, see Figs. 4: HeurLocal requires nearly no time, while HeurGlobal is very
competitive at just above 20ms for the large graphs (a third of which is the
construction of full CA). Again, Opt always finds a solution very quickly, in fact
within roughly 80ms. HeurGlobal again gives essentially optimal solutions, while
HeurLocal exhibits 5−10% gaps. Editor requires 30−50% more overlaps than Opt.

5 Conclusions and Future Work

We discussed optimizing arrow head placement in directed graph drawings, to
improve readability. As mentioned, this is very related to studies in map and
graph labeling, but its specifics seem to make a more focused study worthwhile.

50 C. Binucci et al.

Our techniques are of practical use, and could be sped-up by constructing
CA using a sweepline or the labeling techniques in [17]. It would be interesting
to validate the effectiveness of our approach through a user study (e.g. for tasks
that involve path recognition). Moreover, one may consider both placing labels
and arrow heads. Finally, the non-discretized problem variant, as well as the
variants’ respective (practical) benefits, should be investigated in more depth.

Acknowledgments. Research on this problem started at the Dagstuhl seminar
15052 [2]. We thank Michael Kaufmann and Dorothea Wagner for valuable discus-
sions, and the anonymous referees for their comments and suggestions.

References

1. Binucci, C., Chimani, M., Didimo, W., Liotta, G., Montecchiani, F.: Placing arrows
in directed graph drawings. ArXiv e-prints abs/1608.08505 (2016). http://arxiv.
org/abs/1608.08505v1

2. Brandes, U., Finocchi, I., Nöllenburg, M., Quigley, A.: Empirical evaluation for
graph drawing (Dagstuhl seminar 15052). Dagstuhl Rep. 5(1), 243–258 (2015)

3. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.:
The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook
of Graph Drawing and Visualization, chap. 17. CRC Press, Boca Raton (2014).
www.ogdf.net

4. Gemsa, A., Niedermann, B., Nöllenburg, M.: Trajectory-based dynamic map label-
ing. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283,
pp. 413–423. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45030-3 39

5. Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating
maps. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp.
235–246. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07959-2 20

6. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31843-9 29

7. Holten, D., Isenberg, P., van Wijk, J.J., Fekete, J.: An extended evaluation of
the readability of tapered, animated, and textured directed-edge representations
in node-link graphs. In: IEEE PacificVis 2011, pp. 195–202. IEEE (2011)

8. Holten, D., van Wijk, J.J.: A user study on visualizing directed edges in graphs.
In: CHI 2009, pp. 2299–2308. ACM (2009)

9. Kakoulis, K.G., Tollis, I.G.: On the complexity of the edge label placement problem.
Comput. Geom. 18(1), 1–17 (2001)

10. Kakoulis, K.G., Tollis, I.G.: Labeling algorithms. In: Tamassia, R. (ed.) Hand-
book on Graph Drawing and Visualization, pp. 489–515. Chapman and Hall/CRC,
New York (2013)

11. van Kreveld, M.J., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput.
Geom. 13(1), 21–47 (1999)

12. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

13. Marks, J., Shieber, S.: The computational complexity of cartographic label place-
ment. Technical Report 05-91, Harvard University (1991)

14. North graphs. http://www.graphdrawing.org/data.html

http://arxiv.org/abs/1608.08505v1
http://arxiv.org/abs/1608.08505v1
www.ogdf.net
http://dx.doi.org/10.1007/978-3-642-45030-3_39
http://dx.doi.org/10.1007/978-3-319-07959-2_20
http://dx.doi.org/10.1007/978-3-540-31843-9_29
http://www.graphdrawing.org/data.html

Placing Arrows in Directed Graph Drawings 51

15. Strijk, T., van Kreveld, M.J.: Practical extensions of point labeling in the slider
model. GeoInformatica 6(2), 181–197 (2002)

16. Strijk, T., Wolff, A.: Labeling points with circles. Int. J. Comput. Geom. Appl.
11(2), 181–195 (2001)

17. Wagner, F., Wolff, A., Kapoor, V., Strijk, T.: Three rules suffice for good label
placement. Algorithmica 30(2), 334–349 (2001)

18. Wolff, A.: A simple proof for the NP-hardness of edge labeling. Technical Report
11/2000, Institute of Mathematics and Computer Science, Ernst Moritz Arndt
University Greifswald (2000)

	Placing Arrows in Directed Graph Drawings
	1 Introduction
	2 The Arrow Placement Problem
	3 Algorithms
	4 Experimental Analysis
	5 Conclusions and Future Work
	References

