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Abstract. We show that testing whether a given graph has a 3-track
layout is hard, by characterizing the bipartite 3-track graphs in terms
of leveled planarity. Additionally, we investigate the parameterized com-
plexity of track layouts, showing that past methods used for book lay-
outs do not work to parameterize the problem by treewidth or almost-
tree number but that the problem is (non-uniformly) fixed-parameter
tractable for tree-depth. We also provide several natural classes of bipar-
tite planar graphs, including the bipartite outerplanar graphs, square-
graphs, and dual graphs of arrangements of monotone curves, that always
have 3-track layouts.

1 Introduction

A k-track layout of a graph is a partition of the vertices into & ordered indepen-
dent sets called tracks, and a partition of the edges into non-crossing subsets that
connect pairs of tracks. The track-number of a graph is the minimum k for which
it has a k-track layout. Track layouts are connected with the existence of low-
volume three-dimensional graph drawings: a graph has a three-dimensional draw-
ing in an O(1) x O(1) x O(n) grid if and only if it has track-number O(1) [1,2].

Already in 2004, Dujmovié¢ et al. [3] asked whether it is computationally fea-
sible to construct optimal track layouts. A graph has track-number 2 if and only
if it is a forest of caterpillars [3]. So we can efficiently recognize and construct
optimal track layouts for track-number 2 graphs. In this paper we show that the
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answer to the general question is negative: even recognizing the graphs with
3-track layouts is NP-complete. Our proof is based on the known NP-
completeness of level planarity [4], and uses a new characterization of the bipar-
tite graphs with 3-track layouts as being exactly the leveled planar graphs, undi-
rected graphs that can be given a Sugiyama-style layered graph drawing with
no crossings and no dummy vertices.

Additionally, we show that known methods of obtaining fixed-parameter
tractable algorithms for other types of planar embedding, based on Courcelle’s
theorem for treewidth [5], or on kernelization of the 2-core for k-almost-trees [6],
do not generalize to track number. However, for any fixed bound on the tree-
depth of an input graph, the track number can be obtained in linear time.

We also provide several natural classes of bipartite planar graphs, including
the bipartite outerplanar graphs, squaregraphs, and dual graphs of arrangements
of monotone curves, that always have 3-track layouts.

2 Definitions

A track layout of a graph is a partition of its vertices into sequences, called
tracks, such that the vertices in each sequence form an independent set and the
edges between each pair of tracks form a non-crossing set. This means that there
do not exist edges uv and u'v’ such that u is before v’ in one track, but v is after
v’ in another track; such a pair of edges is said to form a crossing. (This ordering
constraint on endpoints of pairs of edges connecting two tracks is the same as
the constraint on the left-to-right ordering within levels on the endpoints of two
edges connecting the same two levels of a layered drawing.)

The track-number of a graph G is the minimum number of tracks in a track
layout of G; this is finite, since the layout in which each vertex forms its own
track is always non-crossing. The set of edges between two tracks form a forest
of caterpillars (a forest in which the non-leaf vertices of each component induce
a path); in particular, the graphs with track-number 1 are the independent sets,
and the graphs with track-number 2 are the forests of caterpillars [7].

A tree-decomposition of a graph G is given by a tree T" whose nodes index a
collection (B, C V(G) : z € V(T)) of sets of vertices in G called bags, such that:

— For every edge vw of G, some bag B, contains both v and w, and
— For every vertex v of G, the set {x € V(T) : v € B,} induces a non-empty
(connected) subtree of T'.

The width of a tree-decomposition is max, |B;| — 1, and the treewidth of a
graph G is the minimum width of any tree decomposition of G. Treewidth was
introduced (with a different but equivalent definition) by Halin [8] and tree
decompositions were introduced by Robertson and Seymour [9].

A layering of a graph is a partition of the vertices into a sequence of disjoint
subsets (called layers) such that each edge connects vertices in the same layer
or consecutive layers. One way, but not the only way, to obtain a layering is the
breadth first layering in which we partition the vertices by their distances from
a fixed starting vertex, using breadth-first search [10,11].
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The class of leveled planar graphs was introduced in 1992 by Heath and
Rosenberg [4] in their study of queue layouts of graphs. A leveled planar drawing
of a graph is a planar drawing in which the vertices are placed on a collection
of parallel lines, and each edge must connect vertices in two consecutive parallel
lines. Another equivalent way to state this is that this kind of drawing is a
Sugiyama-style layered drawing [12] that achieves perfect quality according to
two of the most important quality measures for the drawing, the number of edge
crossings [13] and the number of dummy vertices [14].

3 Track Layouts and Leveled Planarity

We begin by demonstrating an equivalence between leveled planarity and bipar-
tite 3-track layout.

Lemma 1 (implicit in [15]). Ewvery leveled planar graph has a 3-track layout.

Proof. Assign the vertices of the graph to tracks according to the number of
their level in the layered drawing, modulo 3, as shown in Fig.1. Within each
track, order the vertices within each level contiguously, and order the levels by
their positions in the layered drawing. Two edges that connect the same pair of
levels cannot cross because of the chosen vertex ordering within the levels, and
two edges that connect different pairs of levels but are mapped to the same pair
of tracks cannot cross because of the ordering of the levels within the tracks. O

Lemmal can be interpreted as ‘wrapping’ a layered drawing on to 3 tracks;
see [3] for a more general wrapping lemma. As Fig.1 shows, a 3-track layout
can also be interpreted geometrically, as a planar drawing in which the tracks
are represented as three rays from the origin; it follows from this interpreta-
tion that 3-track graphs have universal point sets of size O(n), consisting of n
points on each ray. However, for more than three tracks, a similar embedding
of the tracks as rays in the plane would not lead to a planar drawing, because

Fig. 1. Converting a layered drawing to a 3-track layout
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there is no requirement that edges of the graph connect only consecutive rays.
Indeed, all graphs (for example, arbitrarily large complete graphs) have 4-track
subdivisions [16].

Define an arc of an undirected graph G to be a directed edge formed by orient-
ing one of the edges of G. For a graph G with a 3-track layout, define a function
0 from arcs to 1 as follows: if an arc uv goes from track ¢ to track ¢+1 (mod 3)
(that is, if it is oriented clockwise in the planar embedding described above), let
0(uv) = +1; otherwise (if it is oriented counterclockwise), let d(uv) = —1. For

an oriented cycle C, we define (by abuse of notation) 6(C) =3 . c 0(uv).

Lemma 2. Let C be a cycle embedded in a 3-track layout. Cyclically orient the
edges of C. If C is even then §(C) = 0. If C is odd then |6(C)| = 3. (Here |x| is
the absolute value of x.)

Proof. We proceed by induction on |C| := |V(C)|. If |C| = 3, then C has one
vertex on each track and 6(C) € {3,-3}. If |C| = 4, then C has two edges
with § = +1 and two edges with § = —1, implying §(C) = 0. Now assume that
|C| > 5. Use the 3-track layout to embed C in the plane as described above, but
with straight edges instead of the curved edges shown in the figure. As a planar
polygon, C' has at least two ears, triangles formed by two of its edges that are
empty of other vertices of C' (which may be found as the leaf edges in the tree
formed as the dual graph of a triangulation of C'). If one ear has the same sign
of ¢ for both of the edges that form it, these edges must connect pairs of vertices
that are the innermost on their tracks. Therefore, two such ears with same-sign
edges could only exist if C' is a triangle. For any longer cycle, let uvw be an
ear for which 0(uv) = —d(vw); thus edges uv and vw both connect the same
two tracks, and (by the assumption that triangle uvw is empty) v and w are
consecutive in their track. By deleting v and merging uw into a single vertex,
we construct a cycle C’ with |C’| = |C| — 2, and a 3-track layout of C" with
5(C") = 6(C). The result follows by induction. O

The previous lemma can be restated in terms of winding number. The winding
number of a closed curve C in the plane around a given point z is the number of
times that C' travels counterclockwise around x. Lemma 2 then says that for an
oriented cycle C around the origin in a 3-track representation of C' with three
rays (as in Fig. 1), if C is even then the winding number is 0, and if C' is odd
then the winding number is 1.

While Lemma 1 shows that a leveled planar drawing can be wrapped on to
three tracks, we now use Lemma 2 to show that a bipartite 3-track layout can
be unwrapped to produce a leveled planar drawing.

Theorem 1. A graph G has a leveled planar drawing if and only if G is bipartite
and has a 3-track layout.

Proof. In one direction, if G has a leveled planar drawing, then it is bipartite
(with a coloring determined by the parity of the level numbers of the drawing)
and has a 3-track layout by Lemma 1.

In the other direction, suppose that G is bipartite and has a 3-track layout.
We may assume without loss of generality that G is connected, for otherwise we
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can draw each connected component of G separately; let T' be a spanning tree
of G, and let v be an arbitrary vertex of G. Assign v to level zero of a layered
drawing, and assign each other vertex w to the level given by the sum of the
numbers §(zy) for the edges zy of the oriented path from v to w in 7. (Some
of these level numbers may be negative.) By construction, the endpoints of each
edge of T are assigned to consecutive levels, and by applying Lemma 2 to the
oriented cycle formed by a non-tree edge together with the tree path connecting
its endpoints, the same can be shown to be true of each edge of G — E(T).
Within each level of the drawing, the vertices all come from the same track,
determined by the value of the level modulo 3. Assign the vertices to positions in
left-to-right order on this level according to their ordering within this track. Then
no two consecutive levels of the drawing can have crossing edges, because such a
crossing would also be a crossing in the track layout. Therefore, this assignment
of vertices to levels and to positions within these levels gives a leveled planar
drawing of G. O

Theorem 2. Testing whether a given graph has a k-track layout for any con-
stant k > 3 is NP-complete.

Proof. For k = 3 this follows from Theorem 1 and from the known NP-complete-
ness of level planarity, proven by Heath and Rosenberg [4]. For k > 3 this follows
by adding k — 3 additional vertices, adjacent to all other vertices, to a hard
instance of the 3-track layout problem. O

4 Parameterized Complexity

A fixed-parameter tractable problem is also strongly uniform fized-parameter
tractable. A problem is uniformly fized-parameter tractable if there is an algo-
rithm that solves it in polynomial time for any value of the parameter, but we
cannot compute the dependence on the parameter. Lastly a problem is non-
uniformly fized-parameter tractable if there is a collection of algorithms such
that for each possible value of the parameter one of the algorithms solves the
problem in polynomial time.

4.1 Treewidth

We sketch an argument as to why it is not possible to use Courcelle’s Theorem
(or any automata methods based on tree decompositions) to produce a fixed-
parameter tractable algorithm for leveled planarity with respect to treewidth.
Consider the family of graphs depicted in Fig.2. These graphs have bounded
treewidth (in fact pathwidth at most 12) and are leveled planar precisely when
p = q. However, since p and ¢ are unbounded it is necessary to carry more than a
finite amount of state between bags in a treewidth decomposition when parsing
the decomposition. Thus, the decompositions corresponding to leveled planar
graphs cannot be recognized by automata or methods using automata such as
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Fig.2. A family of graphs with Fig. 3. A family of 2-almost trees for

bounded treewidth demonstrating that which the standard kernelization cannot
the family of leveled planar graphs is decide leveled planarity. The subgraphs
not finite state. Ty are complete binary trees of depth .

Courcelle’s Theorem. This intuitive argument is made formal below using the
Myhill-Nerode Theorem for tree automata below.

Following Downey and Fellows [17], we define a t-boundaried graph to be
a graph G with t designated boundary vertices labeled 1,2,...,t. Given two
t-boundaried graphs G; and G5 we define their gluing G1 @G> by identifying each
boundary vertex of G; with the boundary vertex of G5 having the same label.

An n-ary t-boundaried operator & consists of a t-boundaried graph Gg =
(Vg, Eg) and injections f; : {1,...,t} — Vg for 1 < < n. Then for t-boundaried
graphs G1,...,G, we define the t-boundaried graph G; ® -+ ® G,, by gluing
each G; to Gg after applying f; to the boundary labels of Gg. After the gluing
the labels of GG; are forgotten.

It can be shown that there exists a standard set of t-boundaried operators
on t-boundaried graphs that can be used to generate the set of all graphs of
treewidth ¢. Furthermore, it is possible to convert (in linear time) a tree decom-
position of width ¢ into a parse tree that uses these standard operators; see
Theorem 12.7.1 in [17]. Define U™a!! to be the small universe of t-boundaried
graphs obtained by parse trees, using these standard operators. Given a family of
graphs F', we define the equivalence relation ~g on Ufmau, such that G1 ~r G»
if and only if for all H € Utsmau, wehave Gy O He F < GodHEF.

A family of graphs F' is said to be t-finite state if the family of parse trees
for graphs in F; = F NU™a! is finite state. Equivalently, such a family of parse
trees may be recognized by a finite tree automaton. We can now state the analog
of the Myhill-Nerode Theorem (characterizing recognizability of sets of strings
by finite state machines) for treewidth ¢ graphs in place of strings and finite tree
automata in place of finite state machines.

Lemma 3 (Theorem 12.7.2 of [17]). Let F be a family of graphs. Then F is
t-finite state if and only if ~p has finite index over U™,
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Fig. 4. The 6-boundaried graphs U, (left) and L, (right) from the proof of Theorem 3.

As we now show, leveled planarity is not ¢-finite state when ¢ is sufficiently
large.

Theorem 3. For allt > 6, the families of leveled planar graphs and of 3-track
graphs are not t-finite state.

Proof. Let F be the family of leveled planar graphs. It suffices to prove the
theorem in the case when ¢t = 6. Consider the 6-boundaried graphs U, and L,
shown in Fig. 4, and observe that U, ® L, is leveled planar if and only if p = g.
So U, ~p U, if and only if p = £, which implies that ~g, does not have finite
index and that in turn F' is not 6-finite state by Lemma 3. a

Theorem 3 implies that (when ¢ > 6) the parse trees of leveled planar graphs
with treewidth ¢ are not recognizable by tree automata. Therefore automata-
based methods such as Courcelle’s Theorem cannot be used to show leveled
planarity to be fixed-parameter tractable with respect to treewidth. In particular,
leveled planarity cannot be expressed using the forms of monadic second-order
graph logic to which Courcelle’s Theorem applies.

4.2 Almost-Trees

The cyclomatic number (also called circuit rank) of a graph is defined to be
7 = m —n+ c where m is the number of edges, n is the number of vertices, and ¢
is the number of connected components in the graph. We say that a graph G is
a k-almost tree if every biconnected component of G has cyclomatic number at
most k. The problems of 1-page and 2-page crossing minimization and testing
1-planarity were shown to be fixed-parameter tractable with respect to the k-
almost tree parameter, via the kernelization method [6,18].

In these previous papers, the “standard kernelization” used for a k-almost
tree G is constructed by first iteratively removing degree one vertices until no
more remain, leaving what is called the 2-core of G. The 2-core consists of
vertices of degree greater than two and paths of degree two vertices connecting
these high degree vertices. The paths of degree two vertices are then shortened
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to a maximum length whose value is a function of k, with a precise form that
depends on the specific problem.

However, this kernelization cannot be used to produce a fixed-parameter
tractable algorithm for deciding leveled planarity. To see this, consider the graph
in Fig. 3, constructed by drawing K53 in the plane, and replacing each of the
three vertices with paths of k vertices, and then rooting a complete binary tree
of depth £ at one of the vertices of each of these paths. We note that, as complete
binary trees have unbounded pathwidth, they also require an unbounded number
of layers (depending on ¢) in any leveled planar drawing. Additionally, depending
on the planar embedding chosen for this graph, at most two of its three trees
can be drawn on the outside face. So this graph is leveled planar precisely when
¢ is small enough for the remaining tree T, to be drawn within one of the two
bounded faces of the drawing, i.e., the leveled planarity of the graph depends
on the relationship between k and ¢. Since this relationship is not preserved
in the kernelization it can not be used to produce a fixed-parameter tractable
algorithm for leveled planarity.

4.3 Tree-Depth

The tree-depth of a graph G is the minimum height of a forest of rooted trees
on the same vertex set as G such that edges in G only go from ancestors to
descendants in the forest. It is bounded by pathwidth, and therefore by track-
number: track-number(G) < pathwidth(G) + 1 < tree-depth(G); see [1,19].

Theorem 4. Computing the track-number of a graph G is non-uniformly fized-
parameter linear in the tree-depth of G.

Proof. Track-number and layered pathwidth are both monotone (cannot
increase) under taking induced subgraphs. The graphs with tree-depth bounded
by a constant are well-quasi-ordered under taking induced subgraphs and so for
any fixed bound on tree-depth and either track-number or layered pathwidth
there exist only a finite number of forbidden induced subgraphs [19]. Since the
track-number and pathwidth are both bounded by the tree-depth, the same is
true for any fixed bound on tree-depth, regardless of track-number or layered
pathwidth.

Because induced subgraph testing is linear time for graphs with tree-depth
bounded by a fixed number d, we can for each ¢ < d test if the graph has any of
the forbidden induced subgraphs to track-number ¢ each in linear time [19]. O

However, this argument does not tell us how to find the set of forbidden
induced subgraphs, nor what the dependence of the time bound on the tree-
depth is. It would be of interest to replace this existence proof with a more
constructive algorithm.

5 Special Classes of Graphs

We consider here particular graph families such as the outerplanar graphs,
and prove that these families are leveled planar. Our results are based on
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Fig. 5. Examples of graphs with planar breadth-first layerings (start vertex shown in
red, and layering in yellow): left, a bipartite outerplanar graph (Theorem 5); center,
a squaregraph (Theorem 6); and right, the dual graph of an arrangement of doubly-
unbounded monotonic curves (Theorem 7). (Color figure online)

breadth-first layerings; we define a layering of a graph to be planar if there
exists a non-crossing layered drawing of the graph in which the layers of the
drawing are the same as the layers of the layering.

5.1 Bipartite Outerplanar Graphs

Theorem 5 (implicit in [15]). FEvery bipartite outerplanar graph is leveled
planar and 3-track. Every breadth first layering of such a graph G gives a leveled
planar drawing.

Proof. Let v be the starting vertex of a breadth first layering. Then for each
face cycle C' of the outerplanar embedding of G, there must be a unique nearest
neighbor in C' to v. For, if v were nearest to distinct vertices u and w in C, then
by bipartiteness these two vertices must be non-adjacent in C'. In this case, the
graph formed by C together with the shortest paths from v to w and w would
contain a subdivision of K3 (with u and w as the degree three vertices, two
paths between them in C, and one more path between them through the shortest
path tree rooted at v), an impossibility for an outerplanar graph. For the same
reason, the distances in v from this nearest neighbor or pair of nearest neighbors
must increase monotonically in both directions around C' until reaching a unique
farthest neighbor, because in the same way any non-monotonicity could be used
to construct a subdivision of K3 3.

Thus, each face cycle of G has a planar breadth first layering. The result
follows from the fact that in a plane graph with an assignment of levels to the
vertices, there is a planar drawing consistent with this level assignment and with
the given embedding of the graph, if and only if every face cycle of the given
graph has a planar drawing consistent with the level assignment [20]. a
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5.2 Squaregraphs

A squaregraph is defined to be a graph that has a planar embedding in which
each bounded face is a 4-cycle and each vertex either belongs to the unbounded
face or has four or more incident edges. These graphs may also be character-
ized in various other ways, for instance as the dual graphs of hyperbolic line
arrangements with no three mutually-intersecting lines [21].

Theorem 6. FEvery squaregraph G is leveled planar, and 3-track, with a leveled
planar drawing coming from a breadth first layering.

Proof. Because all their bounded faces are even-sided, squaregraphs are neces-
sarily bipartite, so every choice of a starting vertex gives a valid breadth first
layering. Bandelt et al. [21, Lemma 12.2] prove that, for every choice of a starting
vertex, we can add extra edges to the squaregraph to form a plane multigraph
in which the added edges link each layer into a cycle, and in which these cycles
are all nested within each other.

Now, choose the starting vertex v to be a vertex of the outer face. Then each
cycle added in this augmentation of G contains an edge that separates v from the
unbounded face of the augmented graph. If we remove each such edge from the
augmented graph, we break each cycle into a path in a consistent way, such that
the path ordering within each layer matches the given planar embedding of G.

O

5.3 Dual Graphs of Monotone Curves

Theorem 7. Let A be a collection of finitely many x-monotone curves in the
plane, each of whose projection onto the x-axis covers the entire axis, such that
any two curves intersect at finitely many crossing points. Then the dual graph
of the arrangement of the curves in A is leveled planar and 3-track.

Proof. Each vertex of the dual graph corresponds to a connected component of
the complement of | J A; we call this the region of the vertex. We may assign each
vertex to a layer according to the number of curves in A that pass above it; this
is a breadth first layering starting from the vertex corresponding to the topmost
(unbounded upward) connected component. Because a single curve separates
adjacent regions, vertices in adjacent regions will be assigned to consecutive
regions. No two vertices in the same layer have regions that project to overlapping
subsets of the x-axis, so we may order the vertices within each layer according to
the left-to-right ordering of these projections. This ordering is compatible with
the planar embedding of the dual graph given by placing a representative point
within each region and connecting each two adjacent regions by a curve crossing
their shared boundary. a

See Fig.5 for examples of the graphs shown to have planar layerings by
these theorems. Figure 6 gives another example, demonstrating that Theorem 7
cannot be generalized to monotone curves whose projections do not cover the
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Fig. 6. An arrangement of monotone curves whose dual graph has no planar layering

entire axis: it gives a family of monotone curves, all ending within the outer face
of their arrangement, such that the dual graph of the arrangement is not leveled
planar. The dual graph is made of multiple K 3 subgraphs, each of which must
have the 2-vertex side of its bipartition drawn on two layers with the 3-vertex
side of its bipartition in a single layer between them; thus, up to top-bottom
reflection, there is only a single layering for this graph that could possibly be
planar. However, this layering forced by the planarity of the individual K3
subgraphs is not planar globally, because it forces one of the two arms of the
graph (upper and lower right) to collide with the “armpit” where the other arm
meets the body of the graph (left). The graph is drawn without crossings in the
figure, but in a way that does not respect any layering of the graph. The dual
used in Fig. 6 is non-standard; there is a vertex in the outer face for each pair of
consecutive curve endpoints on the outer face. The dual shown can be made as a
subgraph of the more standard dual with one vertex on the outer face by adding
additional curves. This example is also a series-parallel graph, and shows that
Theorem 5 cannot be generalized to series-parallel, treewidth-2, or 2-outerplanar
graphs: none of these classes of graphs is leveled planar.
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