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Abstract. A k-planar graph is a graph that can be drawn in the plane
such that every edge is crossed at most k times. For k ≤ 4, Pach and
Tóth [20] proved a bound of (k + 3)(n− 2) on the total number of edges
of a k-planar graph, which is tight for k = 1, 2. For k = 3, the bound of
6n− 12 has been improved to 11

2
n− 11 in [19] and has been shown to be

optimal up to an additive constant for simple graphs. In this paper, we
prove that the bound of 11

2
n−11 edges also holds for non-simple 3-planar

graphs that admit drawings in which non-homotopic parallel edges and
self-loops are allowed. Based on this result, a characterization of optimal
3-planar graphs (that is, 3-planar graphs with n vertices and exactly
11
2
n − 11 edges) might be possible, as to the best of our knowledge the

densest known simple 3-planar is not known to be optimal.

1 Introduction

Planar graphs play an important role in graph drawing and visualization, as
the avoidance of crossings and occlusions is central objective in almost all
applications [10,18]. The theory of planar graphs [15] could be very nicely applied
and used for developing great layout algorithms [13,22,23] based on the pla-
narity concepts. Unfortunately, real-world graphs are usually not planar despite
of their sparsity. With this background, an initiative has formed in recent years
to develop a suitable theory for nearly planar graphs, that is, graphs with various
restrictions on their crossings, such as limitations on the number of crossings per
edge (e.g., k-planar graphs [21]), avoidance of local crossing configurations (e.g.,
quasi planar graphs [2], fan-crossing free graphs [9], fan-planar graphs [17]) or
restrictions on the crossing angles (e.g., RAC graphs [11], LAC graphs [12]). For
precise definitions, we refer to the literature mentioned above.

The most prominent is clearly the concept of k-planar graphs, namely graphs
that allow drawings in the plane such that each edge is crossed at most k times
by other edges. The simplest case k = 1, i.e., 1-planar graphs [21], has been
subject of intensive research in the past and it is quite well understood, see
e.g. [4,6–8,14,20]. For k ≥ 2, the picture is much less clear. Only few papers on
special cases appeared, see e.g., [3,16].
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Pach and Tóth’s paper [20] stands out and contributed a lot to the under-
standing of nearly planar graphs. The paper considers the number of edges in
simple k-planar graphs for general k. Note the well-known bound of 3n−6 edges
for planar graphs deducible from Euler’s formula. For small k = 1, 2, 3 and 4,
bounds of 4n − 8, 5n − 10, 6n − 12 and 7n − 14 respectively, are proven which
are tight for k = 1 and k = 2. This sequence seems to suggest a bound of O(kn)
for general k, but Pach and Tóth also gave an upper bound of 4.1208

√
kn. Unfor-

tunately, this bound is still quite large even for medium k (for k = 9, it gives
12.36n). Meanwhile for k = 3 and k = 4, the bounds above have been improved
to 5.5n−11 and 6n−12 in [19] and [1], respectively. In this paper, we prove that
the bound on the number of edges for k = 3 also holds for non-simple 3-planar
graphs that do not contain homotopic parallel edges and homotopic self-loops.
Our extension required substantially different approaches and relies more on
geometric techniques than the more combinatorial ones given in [19] and [1]. We
believe that it might also be central for the characterization of optimal 3-planar
graphs (that is, 3-planar graphs with n vertices and exactly 11

2 n − 11 edges),
since the densest known simple 3-planar graph has only 11n

2 −15 edges and does
not reach the known bound.

The remaining of this paper is structured as follows: Some definitions and
preliminaries are given in Sect. 2. In Sects. 3 and 4, we give significant insights in
structural properties of 3-planar graphs in order to prove that 3-planar graphs
on n vertices cannot have more than 11

2 n−11 edges. We conclude in Sect. 5 with
open problems.

2 Preliminaries

A drawing of a graph G is a representation of G in the plane, where the vertices
of G are represented by distinct points and its edges by Jordan curves joining
the corresponding pairs of points, so that: (i) no edge passes through a vertex
different from its endpoints, (ii) no edge crosses itself and (iii) no two edges
meet tangentially. In the case where G has multi-edges, we will further assume
that both the bounded and the unbounded closed regions defined by any pair of
self-loops or parallel edges of G contain at least one vertex of G in their interior.
Hence, the drawing of G has no homotopic edges. In the following when referring
to 3-planar graphs we will mean that non-homotopic edges are allowed in the
corresponding drawings. We call such graphs non-simple.

Following standard naming conventions, we refer to a 3-planar graph with n
vertices and maximum possible number of edges as optimal 3-planar. Let H be
an optimal 3-planar graph on n vertices together with a corresponding 3-planar
drawing Γ (H). Let also Hp be a subgraph of H with the largest number of edges,
such that in the drawing of Hp (that is inherited from Γ (H)) no two edges cross
each other. We call Hp a maximal planar substructure of H. Among all possible
optimal 3-planar graphs on n vertices, let G = (V,E) be the one with the
following two properties: (a) its maximal planar substructure, say Gp = (V,Ep),
has maximum number of edges among all possible planar substructures of all
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optimal 3-planar graphs, (b) the number of crossings in the drawing of G is
minimized over all optimal 3-planar graphs subject to (a). We refer to G as
crossing-minimal optimal 3-planar graph.

With slight abuse of notation, let G − Gp be obtained from G by removing
only the edges of Gp and let e be an edge of G − Gp. Since Gp is maximal,
edge e must cross at least one edge of Gp. We refer to the part of e between an
endpoint of e and the nearest crossing with an edge of Gp as stick. The parts of
e between two consecutive crossings with Gp are called middle parts. Clearly, e
consists of exactly 2 sticks and 0, 1, or 2 middle parts. A stick of e lies completely
in a face of Gp and crosses at most two other edges of G − Gp and an edge of
this particular face. A stick of e is called short, if there is a walk along the face
boundary from the endpoint of the stick to the nearest crossing point with Gp,
which contains only one other vertex of the face boundary. Otherwise, the stick
of e is called long ; see Fig. 1a. A middle part of e also lies in a face of Gp. We
say that e passes through a face of Gp, if there exists a middle part of e that
completely lies in the interior of this particular face. We refer to a middle part
of an edge that crosses consecutive edges of a face of Gp as short middle part.
Otherwise, we call it far middle part.

Fig. 1. (a) Illustration of a non-simple face {v1, v2, . . . , v7}; v6 is identified with v4. The
sticks from v1 and v2 are short, while the one from v7 is long. All other edge segments
are middle-parts. (b) The case, where two triangles of type (3, 0, 0) are associated to
the same triangle.

Let Fs = {v1, v2, . . . , vs} be a face of Gp with s ≥ 3. The order of the vertices
(and subsequently the order of the edges) of Fs is determined by a walk around
the boundary of Fs in clockwise direction. Since Fs is not necessarily simple, a
vertex (or an edge, respectively) may appear more than once in this order; see
Fig. 1a. We say that Fs is of type (τ1, τ2, . . . , τs) if for each i = 1, 2, . . . , s vertex
vi is incident to τi sticks of Fs that lie between (vi−1, vi) and (vi, vi+1)1.

Lemma 1 (Pach and Tóth [20]). A triangular face of Gp contains at most 3
sticks.

Proof. Consider a triangular face T of Gp of type (τ1, τ2, τ3). Clearly, τ1, τ2, τ3 ≤
3, as otherwise an edge of Gp has more than three crossings. Since a stick of T
cannot cross more than two other sticks of T , it follows that τ1 + τ2 + τ3 ≤ 3. ��
1 In the remainder of the paper, all indices are subject to (mod s) + 1.
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3 The Density of Non-simple 3-Planar Graphs

Let G = (V,E) be a crossing-minimal optimal 3-planar graph with n vertices
drawn in the plane. Let also Gp = (V,Ep) be the maximal planar substructure
of G. In this section, we will prove that G cannot have more than 11n

2 −11 edges,
assuming that Gp is fully triangulated, i.e., |Ep| = 3n − 6. This assumption will
be proved in Sect. 4. Next, we prove that the number of triangular faces of Gp

with exactly 3 sticks cannot be larger than those with at most 2 sticks.

Lemma 2. We can uniquely associate each triangular face of Gp with 3 sticks
to a neighboring triangular face of Gp with at most 2 sticks.

Proof. Let T = {v1, v2, v3} be a triangular face of Gp. By Lemma 1, we have to
consider three types for T : (3, 0, 0), (2, 1, 0) and (1, 1, 1).

– T is of type (3, 0, 0): Since v1 is incident to 3 sticks of T , edge (v2, v3) is crossed
three times. Let T ′ be the triangular face of Gp neighboring T along (v2, v3).
We have to consider two cases: (a) one of the sticks of T ends at a corner of
T ′, and (b) none of the sticks of T ends at a corner of T ′. In Case (a), the two
remaining sticks of T might use the same or different sides of T ′ to exit it. In
both subcases, it is not difficult to see that T ′ can have at most two sticks. In
Case (b), we again have to consider two subcases, depending on whether all
sticks of T use the same side of T ′ to pass through it or two different ones. In
the former case, it is not difficult to see that T ′ cannot have any stick, while
in the later T ′ can have at most one stick. In all aforementioned cases, we
associate T with T ′.

– T is of type (2, 1, 0): Since v2 is incident to one stick of T , edge (v1, v3)
is crossed at least once. We associate T with the triangular face T ′ of Gp

neighboring T along (v1, v3). Since the stick of T that is incident to v2 has
three crossings in T , T ′ has no sticks emanating from v1 or v3. In particular,
T ′ can have at most one additional stick emanating from its third vertex.

– T is of type (1, 1, 1): This actually cannot occur. Indeed, if T is of type (1, 1, 1),
then all sticks of T have already three crossings each. Hence, the three trian-
gular faces adjacent to T define a 6-gon in Gp, which contains only six interior
edges. So, we can easily remove them and replace them with 8 interior edges
(see, e.g., Fig. 1b), contradicting thus the optimality of G.

Note that our analysis also holds for non-simple triangular faces. We now
show that the assignment is unique. This holds for triangular faces of type
(2, 1, 0), since a triangular face that is associated with one of type (2, 1, 0) cannot
contain two sides each with two crossings, which implies that it cannot be asso-
ciated with another triangular face with three sticks. This leaves only the case
that two (3, 0, 0) triangles are associated with the same triangle T ′ (see, e.g., the
triangle with the gray-colored edges in Fig. 1b). In this case, there exists another
triangular face (bottommost in Fig. 1b), which has exactly two sticks because of
3-planarity. In addition, this face cannot be associated with some other triangu-
lar face. Hence, one of the two type-(3, 0, 0) triangular faces associated with T ′

can be assigned to this triangular face instead resolving the conflict. ��
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We are now ready to prove the main theorem of this section.

Theorem 1. A 3-planar graph of n vertices has at most 11
2 n − 11 edges, which

is a tight bound.

Proof. Let ti be the number of triangular faces of Gp with exactly i sticks, 0 ≤
i ≤ 3. The argument starts by counting the number of triangular faces of Gp with
exactly 3 sticks. From Lemma 2, we conclude that the number t3 of triangular faces
of Gp with exactly 3 sticks is at most as large as the number of triangular faces
of Gp with 0, 1 or 2 sticks. Hence t3 ≤ t0 + t1 + t2. We conclude that t3 ≤ tp/2,
where tp denotes the number of triangular faces in Gp, since t0 + t1 + t2 + t3 = tp.
Note that by Euler’s formula tp = 2n − 4. Hence, t3 ≤ n − 2. Thus, we have:
|E| − |Ep| = (t1 + 2t2 + 3t3)/2 = (t1 + t2 + t3) + (t3 − t1)/2 = (tp − t0) +
(t3 − t1)/2 ≤ tp + t3/2 ≤ 5tp/4. So, the total number of edges of G is at most:
|E| ≤ |Ep| + 5tp/4 ≤ 3n − 6 + 5(2n − 4)/4 = 11n/2 − 11. In [5] we prove that our
bound is tight by a construction similar to the one of Pach et al. [19]. ��

4 The Density of the Planar Substructure

Let G = (V,E) be a crossing-minimal optimal 3-planar graph with n vertices
drawn in the plane. Let also Gp = (V,Ep) be the maximal planar substructure of
G. In this section, we will prove that Gp is fully triangulated, i.e., |Ep| = 3n − 6
(see Theorem 2). To do so, we will explore several structural properties of Gp

(see Lemmas 3–13), assuming that Gp has at least one non-triangular face, say
Fs = {v1, v2, . . . , vs} with s ≥ 4. In the first observations, we do not require
that Gp is connected. This is proved in Lemma 6. Recall that in general Fs is
not necessarily simple, which means that a vertex may appear more than once
along Fs. Our goal is to contradict either the optimality of G (that is, the fact
that G contains the maximum number of edges among all 3-planar graphs with
n vertices) or the maximality of Gp (that is, the fact that Gp has the maximum
number of edges among all planar substructures of all optimal 3-planar graphs
with n vertices) or the crossing minimality of G (that is, the fact that G has the
minimum number of crossings subject to the size of the planar substructure).

Lemma 3. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each stick of Fs is crossed at least once within Fs.

Proof (Sketch). Assume to the contrary that there exists a stick of Fs that is
not crossed within Fs. W.l.o.g. let (v1, v′

1) be the edge containing this stick and
assume that (v1, v′

1) emanates from vertex v1 and leads to vertex v′
1 by crossing

the edge (vi, vi+1) of Fs. We initially prove that i + 1 = s. Next, we show
that there exist two edges e1 and e2 which cross (vi, vi+1) and are not sticks
emanating from v1. The desired contradiction follows from the observation that
we can remove edges e1, e2 and (v1, v′

1) from G and replace them with the chord
(v1, vs−1) and two additional edges that are both sticks either at v1 or at vs. In
this way, a new graph is obtained, whose maximal planar substructure has more
edges than Gp, which contradicts the maximality of Gp. The detailed proof is
given in [5]. ��
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Lemma 4. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each middle part of Fs is short, i.e., it crosses consecutive edges of Fs.

Proof. (Sketch). For a proof by contradiction, assume that (u, u′) is an edge that
defines a middle part of Fs which crosses two non-consecutive edges of Fs, say
w.l.o.g. (v1, v2) and (vi, vi+1), where i �= 2 and i + 1 �= s. We distinguish two
main cases. Either (u, u′) is not involved in crossings in the interior of Fs or
(u, u′) is crossed by an edge, say e, within Fs. In both cases, it is possible to
lead to a contradiction to the maximality of Gp; refer to [5] for more details. ��

Lemma 5. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each stick of Fs is short.

Proof. Assume for a contradiction that there exists a far stick. Let
w.l.o.g. (v1, v′

1) be the edge containing this stick and assume that (v1, v′
1)

emanates from vertex v1 and leads to vertex v′
1 by crossing the edge (vi, vi+1)

of Fs, where i �= 2 and i + 1 �= s. If we can replace (v1, v′
1) either with chord

(v1, vi) or with chord (v1, vi+1), then the maximal planar substructure of the
derived graph would have more edges than Gp; contradicting the maximality of
Gp. Thus, there exist two edges, say e1 and e2, that cross (vi, vi+1) to the left
and to the right of (v1, v′

1), respectively; see Fig. 2a. By Lemma 3, edge (v1, v′
1)

is crossed by at least one other edge, say e, inside Fs. Note that by 3-planarity
edge (v1, v′

1) might also be crossed by a second edge, say e′, inside Fs. Suppose
first, that (v1, v′

1) has a single crossing inside Fs. To cope with this case, we
propose two alternatives: (a) replace e1 with chord (v1, vi+1) and make vertex
vi+1 an endpoint of e, or (b) replace e2 with chord (v1, vi) and make vertex vi
an endpoint of both e; see Figs. 2b and c, respectively. Since e and (vi, vi+1) are
not homotopic, it follows that at least one of the two alternatives can be applied,
contradicting the maximality of Gp.

Fig. 2. Different configurations used in the proof of Lemma 5.
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Consider now the case where (v1, v′
1) has two crossings inside Fs, with edges

e and e′. Similarly to the previous case, we propose two alternatives: (a) replace
e1 with chord (v1, vi+1) and make vertex vi+1 an endpoint of both e and e′, or
(b) replace e2 with chord (v1, vi) and make vertex vi an endpoint of both e and
e′; see Figs. 2d and e, respectively. Note that in both alternatives the maximal
planar substructure of the derived graph has more edges than Gp, contradicting
the maximality of Gp. Since e and e′ are not homotopic, it follows that one of the
two alternatives is always applicable, as long as, e and e′ are not simultaneously
sticks from vi and vi+1, respectively; see Fig. 2f. In this scenario, both alternatives
would lead to a situation, where (vi, vi+1) has two homotopic copies. To cope
with this case, we observe that e, e′ and (v1, v′

1) are three mutually crossing
edges inside Fs. We proceed by removing from G edges e1 and e2, which we
replace by (v1, vi) and (v1, vi+1); see Fig. 2g. In the derived graph the maximal
planar substructure contains more edges than Gp (in particular, edges (v1, vi)
and (v1, vi+1)), contradicting its maximality. ��

Lemma 6. The planar substructure Gp of a crossing-minimal optimal 3-planar
graph G is connected.

Proof. Assume to the contrary that the maximum planar substructure Gp of G is
not connected and let G′

p be a connected component of Gp. Since G is connected,
there is an edge of G − Gp that bridges G′

p with Gp − G′
p. By definition, this edge

is either a stick or a passing through edge for the common face of G′
p and G−G′

p.
In both cases, it has to be short (by Lemmas 4 and 5); a contradiction. ��

In the next two lemmas, we consider the case where a non-triangular face Fs =
{v1, v2, . . . , vs}, s ≥ 4 of Gp has no sticks. Let br(Fs) and br(Fs) be the set of
bridges and non-bridges of Fs, respectively (in Fig. 1a, edge (v4, v5) is a bridge).
In the absence of sticks, a passing through edge of Fs originates from one of its
end-vertices, crosses an edge of br(Fs) to enter Fs, passes through Fs (possibly
by defining two middle parts, if it crosses an edge of br(Fs)), crosses another
edge of br(Fs) to exit Fs and terminates to its other end-vertex. We associate
the edge of br(Fs) that is used by the passing through edge to enter (exit) Fs

with the origin (terminal) of this passing through edge. Let sb and sb be the
number of edges in br(Fs) and br(Fs), respectively. Let also ŝb be the number
of edges of br(Fs) that are crossed by no passing through edge of Fs. Clearly,
ŝb ≤ sb and s = sb + 2sb.

Lemma 7. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp

that has no sticks. Then, the number ŝb of non-bridges of Fs that are crossed
by no passing through edge of Fs is strictly less than half the number sb of of
non-bridges of Fs, that is, ŝb < sb

2 .

Proof. For a proof by contradiction assume that ŝb ≥ sb
2 . Since at most sb

2 edges
of Fs can be crossed (each of which at most three times) and each passing through
edge of Fs crosses two edges of br(Fs), it follows that |pt(Fs)| ≤ � 3sb

4 	, where
pt(Fs) denotes the set of passing through edges of Fs. To obtain a contradiction,
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we remove from G all edges that pass through Fs and we introduce 2s− 6 edges
{(v1, vi) : 2 < i < s} ∪ {(vi, vi + 2) : 2 ≤ i ≤ s − 2} that lie completely in the
interior of Fs. This simple operation will lead to a larger graph (and therefore to
a contradiction to the optimality of G) or to a graph of the same size but with
larger planar substructure (and therefore to a contradiction to the maximality
of Gp) as long as s > 4. For s = 4, we need a different argument. By Lemma 4,
we may assume that all three passing through edges of Fs cross two consecutive
edges of Fs, say w.l.o.g. (v1, v2) and (v2, v3). This implies that chord (v1, v3) can
be safely added to G; a contradiction to the optimality of G. ��

Lemma 8. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, Fs has at least one stick.

Proof (Sketch). For a proof by contradiction, assume that Fs has no sticks. By
Lemma 7, it follows that there exist at least two incident edges of br(Fs) that are
crossed by passing through edges of Fs, say w.l.o.g. (vs, v1) and (v1, v2). Note
that these two edges are not bridges of Fs. If s + ŝb + 2sb ≥ 6, then as in the
proof of Lemma 7, it is possible to construct a graph that is larger than G or
of equal size as G but with larger planar substructure. The same holds when
s + ŝb + 2sb = 5 (that is, s = 5 and ŝb = sb = 0 or s = 4, ŝb = 1 and sb = 0).
Both cases, contradict either the optimality of G or the maximality of Gp. The
case where s + ŝb + 2sb = 4 is slightly more involved; refer to [5]. ��

Fig. 3. Different configurations used in Lemma 9.

By Lemma 5, all sticks of Fs are short. A stick (vi, v′
i) of Fs is called right, if it

crosses edge (vi+1, vi+2) of Fs. Otherwise, stick (vi, v′
i) is called left. Two sticks

are called opposite, if one is left and the other one is right.

Lemma 9. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, Fs has not three mutually crossing sticks.

Proof. Suppose to the contrary that there exist three mutually crossing sticks
of Fs and let ei, for i = 1, 2, 3 be the edges containing these sticks. W.l.o.g. we
assume that at least two of them are right sticks, say e1 and e2. Let e1 = (v1, v′

1).
Then, e2 = (v2, v′

2); see Fig. 3a. Since e1, e2 and e3 mutually cross, e3 can only
contain a left stick. By Lemma 5 its endpoint on Fs is v3 or v4. The first case is
illustrated in Fig. 3b. Observe that (v1, v2) of Fs is only crossed by e3. Indeed,
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if there was another edge crossing (v1, v2), then it would also cross e1 or e2, both
of which have three crossings. Hence, e3 can be replaced with (v1, v3); see Fig. 3c.
The maximal planar substructure of the derived graph would have more edges
than Gp, contradicting the maximality of Gp. The case where v4 is the endpoint
of e3 on Fs is illustrated in Fig. 3e. Suppose that there exists an edge crossing
(v2, v3) of Fs to the left of e3. This edge should also cross e2 or e3, which is not
possible since both edges have three crossings. So, we can replace e3 with chord
(v2, v4) as in Fig. 3e, contradicting the maximality of Gp. ��

Lemma 10. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each stick of Fs is crossed exactly once within Fs.

Proof (Sketch). The detailed proof is given in [5]. By Lemma 3, each stick of Fs

is crossed at least once within Fs. So, the proof is given by contradiction either
to the optimality of G or to the maximality of Gp, assuming the existence of a
stick of Fs that is crossed twice within Fs, say by edges e1 and e2. Note that
by 3-planarity a stick of Fs cannot be further crossed within Fs. First, we prove
that e1 and e2 do not cross each other. Then, we show that e1 and e2 cannot
be simultaneously passing through Fs. The desired contradiction is obtained by
considering two main cases: Either e1 passes through Fs (and therefore, e2 is a
stick of Fs) or both e1 and e2 are sticks of Fs. ��

Lemma 11. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, there are no crossings between sticks and middle parts of Fs.

Proof. Assume to the contrary that there exists a stick, say of edge (v1, v′
1) that

emanates from vertex v1 of Fs (towards v′
1), which is crossed by a middle part of

(u, u′) of Fs. By Lemma 10, this stick cannot have another crossing within Fs.
By Lemma 5, we can assume w.l.o.g. that (v1, v′

1) is a right stick, i.e., (v1, v′
1)

crosses (v2, v3). By Lemma 4, edge (u, u′) crosses two consecutive edges of Fs.
We distinguish two cases based on whether (v1, v′

1) crosses (vs, v1) and (v1, v2)
of Fs or (v1, v′

1) crosses (v1, v2) and (v2, v3) of Fs; see Figs. 4a and c respectively.
In the first case, we can assume w.l.o.g. that u is the vertex associated with

(v1, v2), while u′ is the one associated with (vs, v1). Hence, there exists an edge,
say f1, that crosses (v1, v2) to the right of (u, u′), as otherwise we could replace
(u, u′) with stick (v2, u′) and reduce the total number of crossings by one, contra-
dicting the crossing minimality of G. Edge f1 passes through Fs and also crosses

Fig. 4. Different configurations used in Lemma 11.
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edge (v2, v3) above (v1, v′
1). Similarly, there exists an edge f2 that crosses (v2, v3)

below (v1, v′
1), as otherwise replacing (v1, v′

1) with chord (v1, v3) would contra-
dict the maximality of Gp. We proceed by removing edges (u, u′) and f2 from G
and by replacing them with (v3, u) and chord (v1, v3); see Fig. 4b. The maximal
planar substructure of the derived graph is larger than Gp; a contradiction.

In the second case, we assume that u is associated with (v1, v2) and u′ with
(v2, v3); see Fig. 4c. In this scenario, there exists an edge, say f , that crosses
(v2, v3) below (v1, v′

1), as otherwise we could replace (v1, v′
1) with chord (v1, v3),

contradicting the maximality of Gp. If (v1, u′) does not belong to G, then we
remove (u, u′) from G and replace it with stick (v1, u′); see Fig. 4d. In this way,
the derived graph has fewer crossings than G; a contradiction. Note that (v1, v′

1)
and (v1, u′) cannot be homotopic (if v′

1 = u′), as otherwise edge (v1, v′
1) and

(u, u′) would not cross in the initial configuration. Hence, edge (v1, u′) already
exists in G. In this case, f is identified with (v1, u′); see Fig. 4e. But, in this case
f is an uncrossed stick of Fs, contradicting Lemma 3. ��

Lemma 12. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, any stick of Fs is only crossed by some opposite stick of Fs.

Proof. By Lemma 5, each stick of Fs is short. By Lemma 10, each stick of Fs is
crossed exactly once within Fs and this crossing is not with a middle part due
to Lemma 11. For a proof by contradiction, consider two crossing sticks that are
not opposite and assume w.l.o.g. that the first stick emanates from vertex v1
(towards vertex v′

1) and crosses edge (v2, v3), while the second stick emanates
from vertex v2 (towards vertex v′

2) and crosses edge (v3, v4); see Fig. 5a.
If we can replace (v1, v′

1) with the chord (v1, v3), then the maximal planar
substructure of the derived graph would have more edges than Gp; contradicting
the maximality of Gp. Thus, there exists an edge, say e, that crosses (v2, v3)
below (v1, v′

1). By Lemma 11, edge e is passing through Fs. Symmetrically, we
can prove that there exists an edge, say e′, which crosses (v3, v4) right next to
v4, that is, e′ defines the closest crossing point to v4 along (v3, v4). Note that e′

can be either a passing through edge or a stick of Fs. We proceed by removing
from G edges e′ and (v1, v′

1) and by replacing them by the chord (v2, v4) and
edge (v4, v′

1); see Fig. 5b. The maximal planar substructure of the derived graph
has more edges than Gp (in the presence of edge (v2, v4)), a contradiction. ��

Fig. 5. Different configurations used in (a)–(b) Lemma 12 and (c)–(d) Lemma 13.
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Lemma 13. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, Fs has exactly two sticks.

Proof. By Lemmas 8 and 12 there exists at least one pair of opposite crossing
sticks. To prove the uniqueness, assume that Fs has two pairs of crossing opposite
sticks, say (v1, v′

1), (v2, v′
2) and (vi, v′

i), (vi+1, v
′
i+1), 2 < i < s; see Fig. 5c. We

remove edges (v2, v′
2) and (vi, v′

i) and replace them by (v1, vi) and (v2, vi+1); see
Fig. 5d. By Lemmas 4 and 5, the newly introduced edges cannot be involved in
crossings. The maximal planar substructure of the derived graph has more edges
than Gp (in the presence of (v1, vi) or (v2, vi+1)); a contradiction. ��

We are ready to state the main theorem of this section.

Theorem 2. The planar substructure Gp of a crossing-minimal optimal
3-planar graph G is fully triangulated.

Proof. For a proof by contradiction, assume that Gp has a non-triangular face
Fs = {v1, v2, . . . , vs}, s ≥ 4. By Lemmas 10, 12 and 13, face Fs has exactly
two opposite sticks, that cross each other. Assume w.l.o.g. that these two sticks
emanate from v1 and v2 (towards v′

1 and v′
2) and exit Fs by crossing (v2, v3) and

(v1, vs), respectively; recall that by Lemma 5 all sticks are short; see Fig. 6a.
If we can replace (v1, v′

1) with the chord (v1, v3), then the maximal planar
substructure of the derived graph would have more edges than Gp; contradicting
the maximality of Gp. Thus, there exists an edge, say e, that crosses (v2, v3) below
(v1, v′

1). By Lemma 13, edge e is passing through Fs. We consider two cases: (a)
edge (v2, v3) is only crossed by e and (v1, v′

1), (b) there is a third edge, say e′,
that crosses (v2, v3) (which by Lemma 13 is also passing through Fs).

In Case (a), we can remove from G edges e and (v1, v′
1), and replace them

by (v1, v3) and the edge from v2 to the endpoint of e that is below (v3, v4); see
Fig. 6b. In Case (b), there has to be a (passing through) edge, say e′′, surround-
ing v4 (see Fig. 6c), as otherwise we could replace e′ with a stick emanating from
v4 towards the endpoint of e′ that is to the right of (v2, v3), which contradicts
Lemma 13. We proceed by removing from G edges e′′ and (v1, v′

1) and by replac-
ing them by (v2, v4) and the edge from v2 to the endpoint of e′′ that is associated
with (v3, v4); see Fig. 6d. The maximal planar substructure of the derived graph
has more edges than Gp (in the presence of (v1, v2) in Case (a) and (v2, v4) in

Fig. 6. Different configurations used in Theorem 2.
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Case (b)), which contradicts the maximality of Gp. Since Gp is connected, there
cannot exist a face consisting of only two vertices. ��

5 Discussion and Conclusion

This paper establishes a tight upper bound on the number of edges of non-simple
3-planar graphs containing no homotopic parallel edges or self-loops. Our work
is towards a complete characterization of all optimal such graphs. In addition,
we believe that our technique can be used to achieve better bounds for larger
values of k. We demonstrate it for the case where k = 4, where the known bound
for simple graphs is due to Ackerman [1].

If we could prove that a crossing-minimal optimal 4-planar graph G = (V,E)
has always a fully triangulated planar substructure Gp = (V,Ep) (as we proved
in Theorem 2 for the corresponding 3-planar ones), then it is not difficult to prove
a tight bound on the number of edges for 4-planar graphs. Similar to Lemma 1,
we can argue that no triangle of Gp has more than 4 sticks. Then, we associate
each triangle of Gp with 4 sticks to a neighboring triangle with at most 2 sticks.
This would imply t4 ≤ t1 + t2, where ti denotes the number of triangles of Gp

with exactly i sticks. So, we would have |E| − |Ep| = (4t4 + 3t3 + 2t2 + t1)/2 ≤
3(t4 + t3 + t2 + t1)/2 = 3(2n − 4)/2 = 3n − 6. Hence, the number of edges of a
4-planar graph G is at most 6n − 12. We conclude with some open questions.

– A nice consequence of our work would be the complete characterization of
optimal 3-planar graphs, as exactly those graphs that admit drawings where
the set of crossing-free edges form hexagonal faces which contain 8 additional
edges each

– We also believe that for simple 3-planar graphs (i.e., where even non-
homotopic parallel edges are not allowed) the corresponding bound is 5.5n−15.

– We conjecture that the maximum number of edges of 5- and 6-planar graphs
are 19

3 n − O(1) and 7n − 14, respectively.
– More generally, is there a closed function on k which describes the maximum

number of edges of a k-planar graph for k > 3? Recall the general upper bound
of 4.1208

√
kn by Pach and Tóth [20].

Acknowledgment. We thank E. Ackerman for bringing to our attention [1] and [19].
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