1-Bend Upward Planar Drawings of SP-Digraphs

Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani®™9

Dip. di Ingegneria, Universita Degli Studi di Perugia, Perugia, Italy
emilio.digiacomo,giuseppe.liotta,fabrizio.montecchiani;Ounipg.it
ilio.digi gi ppe. Li fabrizi hiani}@unipg. i

Abstract. It is proved that every series-parallel digraph whose maxi-
mum vertex-degree is A admits an upward planar drawing with at most
one bend per edge such that each edge segment has one of A distinct
slopes. This is shown to be worst-case optimal in terms of the number of
slopes. Furthermore, our construction gives rise to drawings with optimal
angular resolution %. A variant of the proof technique is used to show
that (non-directed) reduced series-parallel graphs and flat series-parallel
graphs have a (non-upward) one-bend planar drawing with [£] distinct
slopes if biconnected, and with ]—%] + 1 distinct slopes if connected.

1 Introduction

The k-bend planar slope number of a family of planar graphs with maximum
vertex-degree A is the minimum number of distinct slopes used for the edges
when computing a crossing-free drawing with at most & > 0 bends per edge of
any graph in the family. For example, if A = 4, a classic result is that every
planar graph has a crossing-free drawing such that every edge segment is either
horizontal or vertical and each edge has at most two bends (see, e.g., [2]). Clearly,
this is an optimal bound on the number of slopes. This result has been extended
to values of A larger than four by Keszegh et al. [15], who prove that [%W slopes
suffice to construct a planar drawing with at most two bends per edge for any
planar graph. However, if additional geometric constraints are imposed on the
crossing-free drawing, only a few tight bounds on the planar slope number are
known. For example, if one requires that the edges cannot have bends, the best
known upper bound on the planar slope number is O(c?) (for a constant ¢ > 1)
while a general lower bound of just 3A — 6 has been proved [15]. Tight bounds
are only known for outerplanar graphs [17] and subcubic planar graphs [9], while
the gap between upper and lower bound has been reduced for planar graphs with
treewidth two [18] or three [10,14]. If one bend per edge is allowed, Keszegh et
al. [15] show an upper bound of 2A and a lower bound of 3(A—1) on the planar
slope number of the planar graphs with maximum vertex-degree A. In a recent
paper, Knauer and Walczak [16] improve the upper bound to %(A —1); in the
same paper, it is also proved that a tight bound of (%] can be achieved for the
outerplanar graphs.
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In this paper we focus on the 1-bend planar slope number of directed graphs
with the additional requirement that the computed drawing be wupward, i.e.,
each edge is drawn as a curve monotonically increasing in the y-direction. We
recall that upward drawings are a classic research topic in graph drawing, see,
e.g., [1,3,11-13] for a limited list of references. Also, upward drawings of ordered
sets with no bends and few slopes have been studied by Czyzowicz [4,5]. We show
that every series-parallel digraph (SP-digraph for short) G' whose maximum
vertex-degree is A has 1-bend upward planar slope number A. That is, G admits
an upward planar drawing with at most one bend per edge where at most A
distinct slopes are used for the edges. This is shown to be worst-case optimal in
terms of the number of slopes. An implication of this result is that the general
3(A—1) upper bound for the (undirected) 1-bend planar slope number [16] can
be lowered to A when the graph is series-parallel. We then extend our drawing
technique to undirected graphs and hence look at non-upward drawings. We
show a tight bound of f%] for the 1-bend planar slope number of biconnected
reduced SP-graphs and biconnected flat SP-graphs (see Sect. 2 for definitions).
The biconnectivity requirement can be dropped at the expenses of one more
slope. To prove the above results, we construct a suitable contact representation
~ of an SP-digraph where each vertex is represented as a cross, i.e. a horizontal
segment intersected by a vertical segment (Sect. 3); then, we transform ~ into a
1-bend upward planar drawing I" optimizing the number of slopes used in such
transformation (Sect.4). Our algorithm runs in linear time and gives rise to
drawings with angular resolution at least 7, which is worst-case optimal. Some
proofs and technicalities are omitted and can be found in [7].

2 Preliminaries

A series-parallel digraph (SP-diagraph for short) [6] is a simple planar digraph
that has one source and one sink, called poles, and it is recursively defined as
follows. A single edge is an SP-digraph. The digraph obtained by identifying the
sources and the sinks of two SP-digraphs is an SP-digraph (parallel composition).
The digraph obtained by identifying the sink of one SP-digraph with the source
of a second SP-digraph is an SP-digraph (series composition). A reduced SP-
digraph is an SP-digraph with no transitive edges. An SP-digraph G is associated
with a binary tree T, called the decomposition tree of G. The nodes of T are
of three types, @-nodes, S-nodes, and P-nodes, representing single edges, series
compositions, and parallel compositions, respectively. An example is shown in
Fig. 1(a). The decomposition tree of G has O(n) nodes and can be constructed
in O(n) time [6]. An SP-digraph is flat if its decomposition tree does not contain
two P-nodes that share only one pole and that are not in a series composition
(see, e.g., [8]). The underlying undirected graph of an SP-digraph is called an
SP-graph , and the definitions of reduced and flat SP-digraphs translate to it.
The slope s of a line { is the angle that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with £. The slope of a segment is
the slope of its supporting line. We denote by Sy the set of slopes: s; = § +i7
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Fig. 1. (a) An SP-digraph G and its decomposition tree. (b) The safe-region (dotted)
of a cross.

(¢ =0,...,k —1). Note that Sy contains the slope 7 for any value of k. Also,
any polyline drawing using only slopes in Sy has angular resolution (i.e. the
minimum angle between any two consecutive edges around a vertex) at least 7.

3 Cross Contact Representations

Basic Definitions. A cross consists of one horizontal and one vertical segment
that share an interior point, called center of the cross. A cross is degenerate
if either its horizontal or its vertical segment has zero length. The center of a
degenerate cross is its midpoint. A point p of a cross ¢ is an end-point (interior
point) of ¢ if it is an end-point (interior point) of the horizontal or vertical seg-
ment of ¢. Two crosses ¢; and ¢y touch if they share a point p, called contact,
such that p is an end-point of the vertical (horizontal) segment of ¢; and an
interior point of the horizontal (vertical) segment of c¢s. A cross-contact repre-
sentation (CCR) of a graph G is a drawing ~ such that: (i) Every vertex v of G
is represented by a cross c¢(v); (i7) All intersections of crosses are contacts; and
(#91) Two crosses ¢(u) and c(v) touch if and only if the edge (u,v) is in G.

We now consider CCRs of digraphs, and define properties that will be useful
to transform a CCR into a 1-bend upward planar drawing with few slopes and
good angular resolution. Let v be a CCR of a digraph G with maximum vertex-
degree A. Let (u,v) be an edge of G oriented from u to v. Let p be the contact
between c¢(u) and c¢(v). The point p is an upward contact if the following two
conditions hold: (a) p is an end-point of the vertical segment of one of the two
crosses and an interior point of the other cross, and (b) the center of ¢(v) is above
the center of c(u). A CCR of a digraph G such that all its contacts are upward is
an upward CCR (UCCR). An UCCR 7~ is balanced if for every non-degenerate
cross c(u) of v, we have that |n;(u) — n,.(u)| < 1, where n;(u) (n,(u)) is the
number of contacts to the left (right) of the center of ¢(u). Let {p1,p2,...,ps}
be the § > 0 contacts along the horizontal segment of ¢(u), in this order from
the leftmost one (p1) to the rightmost one (ps). Let ¢ be the intersection point
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between the vertical line passing through ps and the line with slope § — % and
passing through p;. Similarly, let ¢’ be the intersection point between the vertical

s ™

line passing through p; and the line with slope § — % and passing through ps.
The safe-region of c¢(u) is the rectangle having ¢ and ¢’ as the top-right and
bottom-left corner, respectively. See Fig.1(b) for an illustration. If § = 1, the
safe-region degenerates to a point, while it is not defined when § = 0. An UCCR
v is well-spaced if no two safe-regions intersect each other.

Drawing Construction. We describe a linear-time algorithm, UCCRDrawer,
that takes as input a reduced SP-digraph G, and computes an UCCR v of G
that is balanced and well-spaced. The algorithm computes « through a bottom-
up visit of the decomposition tree T of G. For each node u of T, it computes an
UCCR vy, of the graph G, associated with u satisfying the following properties:
P1. v, is balanced; P2. v, is well-spaced; P3. Let s, and t,, be the two poles of
G,. If 1 is not a -node, then both c(s,) and c(t,) are degenerate, with ¢(s,)
at the bottom side of a rectangle R, that contains v, and ¢(t,,) at the top side
of R,,.

o(ty) “Ain) e
! c(sy) c(ty,)
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Fig. 2. Illustration for UCCRDrawer. The safe-regions are dotted (and not in scale).

For each leaf node p (which is a @-node) the associated graph G, consists of
a single edge (s,,t,). We define two possible types of UCCR, fy;f (type A) and
'yf (type B), of G, which are shown in Fig. 2(a) and (b), respectively. Properties
P1 — P2 trivially hold in this case, while property P3 does not apply.

For each non-leaf node u of T', UCCRDrawer computes the UCCR 7, by suit-
ably combining the (already) computed UCCRs 7,, and ~,, of the two graphs
associated with the children v; and vs of p. If 1 is an S-node of T, we distinguish
between the following cases, where t,, = s,, is the pole shared by v; and vs.

Case 1. Both v; and v are ()-nodes. Then an UCCR of G, is computed by
combining ’yj‘l and ’yz as in Fig. 2(c). Properties P1 — P3 trivially hold.
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Case 2. v is a @Q-node, while v, is not (the case when s is a @-node and
v is not is symmetric). We combine the drawing vl‘j‘l of G, and the drawing
Y, of G, as in Fig.2(d). Notice that to combine the two drawings we may
need to scale one of them so that their widths are the same. To ensure P1,
we move the vertical segment of ¢(t,,) = ¢(s,,) so that |n;(t,,) —n,(t,,)] < 1.
We may also need to shorten its upper part in order to avoid crossings with
other segments, and to extend its lower part so that ¢(s,,) is outside the
safe-region of ¢(t,,) = ¢(s,,), thus guaranteeing property P2. Property P3
holds by construction.

Case 3. If none of 11 and 14 is a )-node, then we combine v,, and v,, as in
Fig. 2(e). We may need to scale one of the two drawings so that their widths
are the same. Property P1 holds, as it holds for v,, and +,,. Furthermore, we
ensure P2 by performing the following stretching operation. Let ¢, and ¢, be
two horizontal lines slightly above and slightly below the horizontal segment
of ¢(ty,) = ¢(s.,), respectively. We extend all the vertical segments intersected
by £, or ¢, until the safe-region of ¢(t,,) = ¢(s,,) does not intersect any other
safe-region. Property P3 holds by construction.

Let 1 be a P-node of T, having vy and vs as children (recall that neither v
nor vy is a @-node, since G is a reduced SP-digraph). We combine v, and ~,,, as
in Fig. 2(f). We may need to scale one of the two drawings so that their heights
are the same. Property P1 holds, as it holds for 7,, and 7,,. To ensure P2, a
stretching operation similar to the one described in Case 3 is possibly performed
by using a horizontal line slightly above (below) the horizontal segment of ¢(s,,)
(c(t,)). Property P3 holds by construction.

To deal with the time complexity of algorithm UCCRDrawer, we represent
each cross with the coordinates of its four end-points. To obtain linear time
complexity, for each drawing -, of a node u, we avoid moving all the crosses
of its children. Instead, for each child of i, we only store the offset of the top-
left corner of the bounding box of its drawing. Afterwards, we fix the final
coordinates of each cross through a top-down visit of T'. The above discussion
can be summarized as follows.

Lemma 1. Let G be an n-vertex reduced SP-digraph. Algorithm UCCRDrawer
computes a balanced and well-spaced UCCR ~y of G in O(n) time.

4 1-Bend Drawings

We start by describing how to transform an UCCR of a reduced SP-digraph into
a 1-bend upward planar drawing that uses the slope-set Sa. Let v be an UCCR
of a reduced SP-digraph G and let ¢(u) be the cross representing a vertex u
of G in v. Let py,...,ps (6 > 1) be the contacts along the horizontal segment
of ¢(u), in this order from the leftmost one (p1) to the rightmost one (ps). Let
c be either the center of c(u), if c(u) is non-degenerate, or p|5/2/41 if c(u) is
degenerate. Consider the set of lines ¢y, ...,¢a_1, such that ¢; passes through ¢
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Fig. 3. (a)—(b) Transforming an UCCR into a 1-bend drawing. (c) An SP-digraph
requiring at least A slopes in any 1-bend upward planar drawing.

and has slope s; € Sa (for t =0,..., A—1). These lines, except for ¢y, intersect
all the vertical segments forming a contact with the horizontal segment of ¢(u).
If ¢(u) is not degenerate, then ¢, coincides with the vertical segment, which has
at least one contact. In particular, each quadrant of ¢(u) contains a number
of lines that is at least the number of vertical segments touching c(u) in that
quadrant. Since 7y is well-spaced, these intersections are inside the safe-region of
¢(u). Hence we can replace each contact of ¢(u) with two segments having slope
in Sa as shown in Fig.3(a) and (b). More precisely, each contact p; of c(u) is
replaced with two segments that are both in the quadrant of ¢(u) that contains
the vertical segment defining p;. This guarantees the upwardness of the drawing.
Also, each edge has one bend, since it is represented by a single contact between
a horizontal and a vertical segment and we introduce one bend only when dealing
with the cross containing the horizontal segment. Finally, I" is planar, because
there is no crossing in v and each cross is only modified inside its safe-region
which, by the well-spaced property, is disjoint by any other safe-region. Thus,
every reduced SP-digraph admits a 1-bend upward planar drawing with at most
A slopes. To deal with a general SP-digraph, we subdivide each transitive edge
and compute a drawing of the obtained reduced SP-digraph. We then modify
this drawing to remove subdivision vertices (see also [7]).

Figure 3(c) shows a family of SP-digraphs such that, for every value of A,
there exists a graph in this family with maximum vertex-degree A and that
requires at least A slopes in any 1-bend upward planar drawing. Namely, if
a digraph G has a source (or a sink) of degree A, then it requires at least
A — 1 slopes in any upward drawing because each slope, with the only possible
exception of the horizontal one, can be used for a single edge. In the digraph of
Fig. 3(c) however, the edge (s,t) must be either the leftmost or the rightmost
edge of s and ¢ in any upward planar drawing. Therefore, if only A — 1 slopes
are allowed, such edge cannot be drawn planarly and with one bend. Thus, the
following theorem holds.

Theorem 1. FEvery n-vertexr SP-digraph G with maximum vertex-degree A
admits a 1-bend upward planar drawing I with at most A slopes and angular
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resolution at least . These bounds are worst-case optimal. Also, I' can be com-
puted in O(n) time.

Since every SP-graph can be oriented to an SP-digraph (by computing a so-
called bipolar orientation [19,20]), the next corollary is implied by Theorem 1
and improves the upper bound of %(A — 1) [16] for the case of SP-graphs.

Corollary 1. The 1-bend planar slope number of SP-graphs with maximum
vertex-degree A is at most A.

Our drawing technique can be naturally extended to construct 1-bend planar
drawings of two sub-families of biconnected SP-graphs using [%W slopes. Intu-
itively, if the drawing does not need to be upward, then for each cross c(u) (see
e.g. Fig.3(a)), one can use the same slope for two distinct edges incident to w.
Also, the biconnectivity requirement can be dropped by using one more slope.

Theorem 2. Let G be a 2-connected SP-graph with mazimum vertex-degree A
and n vertices. If G is reduced or flat, then G admits a 1-bend planar drawing
I' with at most f%] slopes and angular resolution at least QZ”. Also, I' can be
computed in O(n) time.

Corollary 2. Let G be an SP-graph with mazimum vertex-degree A and n ver-
tices. If G is reduced or flat, then G admits a 1-bend planar drawing I' with at
most (%1 +1 slopes and angular resolution at least AQ—L. Also, I' can be computed
in O(n) time.

5 Open Problems

We proved that the 1-bend upward planar slope number of SP-digraphs with
maximum vertex-degree A is at most A and this is a tight bound. Is the bound
of Corollary 1 also tight? Moreover, can it be extended to any partial 2-tree?
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