A Distributed Multilevel Force-Directed
Algorithm

Alessio Arleo®™), Walter Didimo®), Giuseppe Liotta,
and Fabrizio Montecchiani

Universita Degli Studi di Perugia, Perugia, Italy
alessio.arleo@studenti.unipg.it,
{walter.didimo,giuseppe.liotta,fabrizio.montecchiani}@unipg.it

Abstract. The wide availability of powerful and inexpensive cloud com-
puting services naturally motivates the study of distributed graph layout
algorithms, able to scale to very large graphs. Nowadays, to process Big
Data, companies are increasingly relying on PaaS infrastructures rather
than buying and maintaining complex and expensive hardware. So far,
only a few examples of basic force-directed algorithms that work in a
distributed environment have been described. Instead, the design of a
distributed multilevel force-directed algorithm is a much more challeng-
ing task, not yet addressed. We present the first multilevel force-directed
algorithm based on a distributed vertex-centric paradigm, and its imple-
mentation on Giraph, a popular platform for distributed graph algo-
rithms. Experiments show the effectiveness and the scalability of the
approach. Using an inexpensive cloud computing service of Amazon, we
draw graphs with ten million edges in about 60 min.

1 Introduction

Force-directed algorithms are very popular techniques to automatically compute
graph layouts. They model the graph as a physical system, where attractive and
repulsive forces act on each vertex. Computing a drawing corresponds to finding
an equilibrium state (i.e., a state of minimum energy) of the force system through
a simple iterative approach. Different kinds of force and energy models give
rise to different graph drawing algorithms. Refer to the work of Kobourov for
a survey on the many force-directed algorithms described in the literature [25].
Although basic force-directed algorithms usually compute nice drawings of small
or medium graphs, using them to draw large graphs has two main obstacles:
(i) There could be several local minima in their physical models: if the algorithm
falls in one of them, it may produce bad drawings. The probability of this event
and its negative effect increase with the size of the graph. (i7) Their approach
is computationally expensive, thus it gives rise to scalability problems even for
graphs with a few thousands of vertices.

Research supported in part by the MIUR project AMANDA “Algorithmics for
MAssive and Networked DAta”, prot. 2012C4E3KT _001.
© Springer International Publishing AG 2016

Y. Hu and M. Néllenburg (Eds.): GD 2016, LNCS 9801, pp. 3-17, 2016.
DOI: 10.1007/978-3-319-50106-2_1

4 A. Arleo et al.

To overcome the above obstacles, multilevel force-directed algorithms have
been conceived. A limited list of works on this subject includes [13,15,18,20,21,
23,33] (see [25] for more references). These algorithms generate from the input
graph G a series (hierarchy) of progressively simpler structures, called coarse
graphs, and then incrementally compute a drawing of each of them in reverse
order, from the simplest to the most complex (corresponding to G). On com-
mon machines, multilevel force-directed algorithms perform quickly on graphs
with several thousand vertices and usually produce qualitatively better draw-
ings than basic algorithms [8,19,25]. Implementations based on GPUs have been
also experimented [16,24,29,34]. They scale to graphs with a few million edges,
but their development requires a low-level implementation and the necessary
infrastructure could be expensive in terms of hardware and maintenance.

The wide availability of powerful and inexpensive cloud computing services
and the growing interest towards PaaS infrastructures observed in the last few
years, naturally motivate the study of distributed graph layout algorithms, able
to scale to very large graphs. So far, the design of distributed graph visual-
ization algorithms has been only partially addressed. Mueller et al. [27] and
Chae et al. [9] proposed force-directed algorithms that use multiple large dis-
plays. Vertices are evenly distributed on the different displays, each associated
with a different processor, which is responsible for computing the positions of its
vertices; scalability experiments are limited to graphs with some thousand ver-
tices. Tikhonova and Ma [30] presented a parallel force-directed algorithm that
can run on graphs with few hundred thousand edges. It takes about 40 minutes
for a graph of 260, 385 edges, on 32 processors of the PSC’s BigBen Cray XT3
cluster. More recently, the use of emerging frameworks for distributed graph
algorithms has been investigated. Hinge and Auber [22] described a distributed
basic force-directed algorithm implemented in the Spark framework, using the
GraphX library. Their algorithm is mostly based on a MapReduce paradigm
and shows margins for improvement: it takes 5 hours on a graph with 8,000
vertices and 35,000 edges, on a cluster of 16 machines, each equipped with 24
cores and 48 GB of RAM. A distributed basic force-directed algorithm running
on the Apache Giraph framework has been presented in [7] (see also [5] for an
extended version of this work). Giraph is a popular platform for distributed
graph algorithms, based on a vertex-centric paradigm, also called the TLAV
(“Think Like a Vertex”) paradigm [11]. Giraph is used by Facebook to analyze
the huge network of its users and their connections [12]. The algorithm in [7] can
draw graphs with a million edges in a few minutes, running on an inexpensive
cloud computing infrastructure. However, the design of a distributed multilevel
force-directed algorithm is a much more challenging task, due to the difficulty
of efficiently computing the hierarchy required by a multilevel approach in a
distributed manner (see, also [5,22]).

Our Contribution. This paper presents MULTI-GILA (Multilevel Giraph Layout
Algorithm), the first distributed multilevel force-directed algorithm based on the
TLAV paradigm and running on Giraph. The model for generating the coarse
graph hierarchy is inspired by FM3 (Fast Multipole Multilevel Method), one

A Distributed Multilevel Force-Directed Algorithm 5

of the most effective multilevel techniques described in the literature [8,18,19].
The basic force-directed algorithm used by MULTI-GILA to refine the drawing
of each coarse graph is the distributed algorithm in [5] (Sect.3). We show the
effectiveness and the efficiency of our approach by means of an extensive experi-
mental analysis: MULTI-GILA can draw graphs with ten million edges in about
60 min (see Sect.4), using an inexpensive PaaS of Amazon, and exhibits high
scalability. To allow replicability of the experiments, our source code and graph
benchmarks are made publicly available [1]. It is worth observing that in order to
get an overview of the structure of a very large graph and subsequently explore
it in more details, one can combine the use of MULTI-GILA with systems like
LAGoO [35], which provides an interactive level-of-detail rendering, conceived for
the exploration of large graphs (see Sect.4). Section?2 contains the necessary
background on multilevel algorithms and on Giraph. Conclusions and future
research are in Sect. 5. Additional figures can be found in [6].

2 Background

Multilevel Force-Directed Algorithms. Multilevel force-directed algorithms
work in three main phases: coarsening, placement, and single-level layout. Given
an input graph G, the coarsening phase computes a sequence of graphs {G =
Go,G1,...,Gi}, such that the size of G;41 is smaller than the size of G;, for
i=0,...,k—1. To compute G;41, subsets of vertices of G; are merged into single
vertices. The criterion for deciding which vertices should be merged is chosen as a
trade-off between two conflicting goals. On one hand, the overall graph structure
should be preserved throughout the sequence of graphs, as it influences the way
the graph is unfolded. On the other hand, both the number of graphs in the
sequence and the size of the coarsest graph may have a significant influence
on the overall running time of the algorithm. Therefore, it is fundamental to
design a coarsening phase that produces a sequence of graphs whose sizes quickly
decrease, and, at the same time, whose structures smoothly change. The sequence
of graphs produced by the coarsening phase is then traversed from Gy to Gy = G,
and a final layout of G is obtained by progressively computing a layout for each
graph in the sequence. In the placement phase, the vertices of G; are placed
by exploiting the information of the (already computed) drawing I 11 of Giy1.
Starting from this initial placement, in the single-level (basic) layout phase, a
drawing I; of G; is computed by applying a single-level force-directed algorithm.
Thanks to the good initial placement, such an algorithm will reach an equilibrium
after a limited number of iterations. For G an initial placement is not possible,
thus the layout phase is directly applied starting from a random placement.
Since our distributed multilevel force-directed algorithm is partially based
on the FM3 algorithm, we briefly recall how the coarsening and placement
phases are implemented by FM3 (see [17,18] for details). Let G = G be a con-
nected graph (distinct connected components can be processed independently),
the coarsening phase is implemented through the SOLAR MERGER algorithm.
The vertices of G are partitioned into vertex-disjoint subgraphs called solar sys-
tems. The diameter of each solar system is at most four. Within each solar

6 A. Arleo et al.

system S, there is a vertex s classified as a sun. Each vertex v of S at distance
one (resp., two) from s is classified as a planet (resp., a moon) of S. There is
an inter-system link between two solar systems S; and Ss, if there is at least
an edge of GG between a vertex of S; and a vertex of Sy. The coarser graph G
is obtained by collapsing each solar system into the corresponding sun, and the
inter-system links are transformed into edges connecting the corresponding pairs
of suns. Also, all vertices of G = G are associated with a mass equal to one.
The mass of a sun is the sum of the masses of all vertices in its solar system.
The coarsening procedure halts when a coarse graph has a number of vertices
below a predefined threshold. The placement phase of FM3 is called SOLAR
PLACER and uses information from the coarsening phase. The vertices of G;41
correspond to the suns of G;, whose initial position is defined in the drawing
I';11. The position of each vertex v in G; \ G;41 is computed by taking into
account all inter-system links to which v belongs. The rough idea is to position
v in a barycentric position with respect to the positions of all suns connected by
an inter-system link that passes through v.

The TLAV Paradigm and the Giraph Framework. The TLAV paradigm
requires to implement distributed algorithms from the perspective of a vertex
rather than of the whole graph. Each vertex can store a limited amount of
data and can exchange messages only with its neighbors. The TLAV framework
Giraph [11] is built on the Apache Hadoop infrastructure and originated as the
open source counterpart of Google’s Pregel [26] (based on the BSP model [31]).
In Giraph, the computation is split into supersteps executed iteratively and
synchronously. A superstep consists of two phases: (i) Each vertex executes a
user-defined vertex function based on both local vertex data and on data coming
from its adjacent vertices; (i7) Each vertex sends the results of its local compu-
tation to its neighbors, along its incident edges. The whole computation ends
after a fixed number of supersteps or when certain user-defined conditions are
met (e.g., no message has been sent or an equilibrium state is reached).

Design Challenges and the GILA Algorithm. Force-directed algorithms
(both single-level and multilevel) are conceived as sequential, shared-memory
graph algorithms, and thus are inherently centralized. On the other hand, the
following three properties must be guaranteed in the design of a TLAV-based
algorithm: P1. Each vertex exchange messages only with its neighbors; P2. Each
vertex locally stores a small amount of data; P3. The communication load in each
supertsep (number and length of messages sent in the superstep) is small: for
example, linear in the number of edges of the graph. Property P1 corresponds to
an architectural constraint of Giraph. Violating P2 causes out-of-memory errors
during the computation of large instances, which translates in the impossibility
of storing large routing tables in each vertex to cope with the absence of global
information. Violating P3 quickly leads to inefficient computations, especially on
graphs that are locally dense or that have high-degree vertices. Hence, sending
heavy messages containing the information related to a large part of the graph
is not an option.

A Distributed Multilevel Force-Directed Algorithm 7

In the design of a multilevel force-directed algorithm, the above three
constraints P1-P3 do not allow for simple strategies to make a vertex aware
of the topology of a large part of the graph, which is required in the coarsening
phase. In Sect.3 we describe a sophisticated distributed protocol used to cope
with this issue. For the same reason, a vertex is not aware of the positions of
all other vertices in the graph, which is required to compute the repulsive forces
acting on the vertex in the single-level layout phase. The algorithm described
in [5], called GILA, addresses this last issue by adopting a locality principle,
based on the experimental evidence that in a drawing computed by a force-
directed algorithm (see, e.g., [25]) the graph theoretic distance between two ver-
tices is a good approximation of their geometric distance, and that the repulsive
forces between two vertices u and v tend to be less influential as their geomet-
ric distance increases. Following these observations, in the GILA algorithm, the
resulting force acting on each vertex v only depends on its k-neighborhood N, (k),
i.e., the set of vertices whose graph theoretic distance from v is at most k, for
a predefined small constant k. Vertex v acquires the positions of all vertices in
N, (k) by means of a controlled flooding technique. According to an experimental
analysis in [5], K = 3 is a good trade-off between drawing quality and running
time. The attractive and repulsive forces acting on a vertex are defined using
Fruchterman-Reingold model [14].

3 The Multi-GiLA Algorithm

In this section we describe our multilevel algorithm MuULTI-GILA. It is designed
having in mind the challenges and constraints discussed in Sect. 2. The key ingre-
dients of MULTI-GILA are a distributed version of both the SOLAR MERGER
and of the SOLAR PLACER used by FM3, together with a suitable dynamic
tuning of GILA.

3.1 Algorithm Overview

The algorithm is based on the pipeline described below. The pruning, partition-
ing, and reinsertion phases are the same as for the GILA algorithm, and hence
they are only briefly recalled (see [5] for details).

Pruning: In order to lighten the algorithm execution, all vertices of degree one
are temporarily removed from the graph; they will be reinserted at the end of
the computation by means of an ad-hoc technique.

Partitioning: The vertex set is then partitioned into subsets, each assigned
to a computing unit, also called worker in Giraph (each computer may have
more than one worker). The default partitioning algorithm provided by Giraph
may create partitions with a very high number of edges that connect vertices
of different partition sets; this would negatively affect the communication load
between different computing units. To cope with this problem, we use a parti-
tioning algorithm by Vaquero et al. [32], called SPINNER, which creates balanced
partition sets by exploiting the graph topology.

8 A. Arleo et al.

Layout: This phase executes the pipeline of the multilevel approach. The coars-
ening phase (Sect. 3.2) is implemented by means of a distributed protocol, which
attempts to behave as the SOLAR MERGER of FM3. The placement (Sect.3.3)
and single-level layout (Sect. 3.4) phases are iterated until a drawing of the graph
is computed.

Reinsertion: For each vertex v, its neighbors of degree one (if any) are suitably
reinserted in a region close to v, avoiding to introduce additional edge crossings.

This pipeline is applied independently to each connected component of the
graph, and the resulting layouts are then arranged in a matrix to avoid overlaps.

3.2 Coarsening Phase: DISTRIBUTED SOLAR MERGER

Our DISTRIBUTED SOLAR MERGER algorithm yields results (in terms of number
of levels) comparable to those obtained with the SOLAR MERGER of FM3 (see
also Sect. 4). The algorithm works into four steps described below; each of them
involve several Giraph supersteps. For every iteration i of these four steps, a new
coarser graph G; is generated, until its number of vertices is below a predefined
threshold. We use the same terminology as in Sect. 2, and equip each vertex with
four properties called ID, level, mass, and state. The ID is the unique identifier
of the vertex. The level represents the iteration in which the vertex has been
generated. That is, a vertex has level 7 if it belongs to graph G;. The vertices
of the input graph have level zero. The second property represents the mass of
the vertex and it is initialized to one plus the number of its previously pruned
neighbors of degree one for the vertices of the input graph. The state of a vertex
can receive one of the following values: sun, planet, moon, or unassigned. We shall
call sun, planet, moon, or unassigned, a vertex with the corresponding value for
its state. All vertices of the input graph are initially unassigned.

Sun Generation. In the first superstep, each vertex turns its state to sun
with probability p, for a predefined value of p. The next three supersteps aim
at avoiding pairs of suns with graph theoretic distance less than 3. First, each
sun broadcasts a message containing its ID. In the next superstep, if a sun ¢
receives a message from an adjacent sun s, then also s receives a message from
t, and the sun between s and ¢ with lower ID changes its state to unassigned. In
the same superstep, all vertices (of any state) broadcast to their neighbors only
the messages received from those vertices still having state sun. In the third
superstep, if a sun ¢ receives a message generated from a sun s (with graph
theoretic distance 2 from t), again also ¢ receives a message from s and the sun
with lower ID changes its state to unassigned. This procedure ensures that all
pairs of suns have graph theoretic distance at least three.

Solar System Generation. In the first superstep, each sun broadcasts an
offer message. At the next superstep, if an unassigned vertex v receives an offer
message m from a sun s, then v turns its state to planet and stores the ID of
s in a property called system-sun. Also, v sends a confirmation message to s.
Finally, v forwards the message m to all its neighbors. At the next superstep,

A Distributed Multilevel Force-Directed Algorithm 9

every sun vertex processes the received confirmation messages. If a sun s received
a confirmation message, s stores the ID of the sender in a property called planet-
list. This property is used by each sun to keep track of the planets in its solar
system. If a planet v receives an offer message, then such a message comes from
the same sun stored in the system-sun property of v, and thus it can be ignored
(recall that the theoretic distance between two suns is greater than two). If an
unassigned vertex u receives one or more offer messages originated by the same
sun s, then u turns its state to moon and stores the ID of s in its system-sun
property. Furthermore, u stores the ID of all planets that forwarded the above
offer messages in a property called system-planets. This property is used by each
moon u to keep track of the planets adjacent to u and in the same solar system
as u. Finally, u sends a confirmation message to its sun s through a two-hop
message (that requires two further supersteps to be delivered), which will be
sent to one of the planets stored in the system-planets property. If u receives
offer messages from distinct vertices, then the above procedure is applied only for
those messages originated by the sun s with greatest ID. For every offer message
originated by a sun ¢ with ID lower than the one of s, u informs both s and ¢ of
the conflict through ad-hoc two-hop messages. These messages will be used by
s and t to maintain a suitable data structure containing the information of each
path between s and ¢t. At the end of this phase, all the galaxies of the generated
sun vertices have been created and have diameter at most four. Also, some of
the inter-system links have already been discovered, and this information will be
useful in the following. The two steps described above are repeated until there
are no more unassigned vertices. An example is illustrated in Fig. 1.

Inter-system Link Generation. In the first superstep, every planet and every
moon broadcasts an inter-link discovery message containing the ID stored in
the system-sun property of the vertex. In the next superstep, each vertex v
processes the received messages. All messages originated by vertices in the same
solar system are ignored. Similarly as in the previous step, for each inter-link
discovery message originated from a sun ¢ different from the sun s of v, vertex v
informs both s and ¢ of the conflict through two-hop messages that will be used

s, 1

(a)

Fig. 1. Illustration for the coarsening phase. (a) Two suns s (ID 1) and ¢ (ID 2)
broadcast an offer message. (b) The dark gray vertices receive the offer messages,
become planets, and forward the received offer messages. The striped vertex will then
receive offer messages from both s and ¢, and (c) will accept the offer message of ¢ due
to the greatest ID of . In (c) the final galaxies are enclosed by dashed curves, suns
(planets, moons) are light gray (dark gray, black).

10 A. Arleo et al.

by s and t to maintain a suitable data structure containing the information of
each path between s and t. Once all messages have been delivered, each sun s
is aware of all links between its solar system and other systems. Also, for each
link, s knows what planet and moon (if any) are involved.

Next Level Generation. In the first superstep, every sun s creates a vertex
vs whose level equals the level of s plus one, and whose mass equals the sum of
the masses of all the vertices in the solar system of s. Also, an inter-level edge
between s and vy is created and will be used in the placement phase. In the next
superstep, every sun s adds an edge between v; and vy, if ¢ is a sun of a solar
system for which there are k& > 0 inter-system links. The edge (vs, v¢) is equipped
with a weight equal to the maximum number of vertices involved in any of the k
links. Finally, all vertices (except the newly created ones) deactivate themselves.

3.3 Placement Phase: DISTRIBUTED SOLAR PLACER

We now describe a DISTRIBUTED SOLAR PLACER algorithm, which behaves
similarly to the SOLAR PLACER of FM3. After the coarsening phase, the only
active vertices are those of the coarsest graph Gy. For this graph, the placement
phase is not executed, and the computation goes directly to the single-level
layout phase (described in the next subsection). The output of the single-level
layout phase is an assignment of coordinates to all vertices of Gj. Then, the
placement phase starts and its execution is as follows.

In the first superstep, every vertex broadcasts its coordinates. In the second
superstep, all vertices whose level is one less than the level of the currently
active vertices activate themselves, and hence will start receiving messages from
the next superstep. In the same superstep, every vertex v forwards the received
messages to the corresponding vertex v* of lower level through its inter-level edge.
Then v deletes itself. At the next superstep, if a vertex s receives a message, then
s is the sun of a solar system. Thanks to the received messages, s becomes aware
of the position of all suns of its neighboring solar systems. Hence, s exploits this
information (and the data structure containing information on the inter-system
links), to compute the coordinates of all planets and moons in its solar system,
as for the SOLAR PLACER. Once this is done, s sends to every planet u of its
solar system the coordinates of u. The coordinates of the moons are delivered
through two-hop messages (that is, sent to planets and then forwarded).

3.4 Single-Level Layout Phase: The GILA Algorithm

This phase is based on the GILA algorithm, the distributed single-level force-
directed algorithm described in Sect.2. Recall that the execution of GILA is
based on a set of parameters, whose tuning affects the trade-off between quality
of the drawing and speed of the computation. The most important parameter
is the maximum graph theoretic distance k between pairs of vertices for which
the pairwise repulsive forces are computed. Also, there are further parameters
that affect the maximum displacement of a vertex, at a given iteration of the

A Distributed Multilevel Force-Directed Algorithm 11

algorithm. The idea is to tune these parameters in order to achieve better quality
for the coarser graphs, and shorter running times for the graphs whose size is
closer to the original graph. Here we only describe how the parameter k has been
experimentally tuned, since it is the parameter that mostly affect the trade-off
between quality and running time. The other parameters have been set similarly.
For the drawing of every graph G, the value of £ is 6 if the number of edges m;
of G; is below 103, it is 5 if 10° < m; < 5-10%, it is 4 if 5- 10% < m; < 10%, it is
3if 10* < my < 10, it is 2 if 10° < m; < 106, and it is 1 if m; > 109.

4 Experimental Analysis

We executed an experimental analysis whose objective is to evaluate the perfor-
mance of MULTI-GILA. We aim to investigate both the quality of the produced
drawings and the running time of the algorithm, also in terms of scalability when
we increase the number of machines. We expect that MULTI-GILA computes
drawings whose quality is comparable to that achieved by centralized multi-
level force-directed algorithms. This is because the locality-based approximation
scheme adopted by GILA (used in the single-level layout phase) should be mit-
igated by the use of a graph hierarchy. Also, we expect MULTI-GILA to be able
to handle graphs with several million edges in tens of minutes on an inexpen-
sive Paa$S infrastructure. Clearly, the use of a scalable vertex-centric distributed
framework adds some unavoidable overhead, which may make MULTI-GILA not
suited for graphs whose size is limited to a few hundred thousand of edges. Our
experimental analysis is based on three benchmarks called REGULARGRAPHS,
REALGRAPHS, and BIGGRAPHS, described in the following.

The REGULARGRAPHS benchmark is the same used by Bartel et al. [8] in
an experimental evaluation of various implementations of the three main phases
of a multilevel force-directed algorithm (coarsening, placement, and single-level
layout). It contains 43 graphs with a number of edges between 78 and 48,232,
and it includes both real-world and generated instances [2]. See also Table1
for more details. We used this benchmark to evaluate MULTI-GILA in terms of
quality of the computed drawings. Since the coarsening phase plays an important
role in the computation of a good drawing, we first evaluated the performance
of our DISTRIBUTED SOLAR MERGER in terms of number of produced levels
compared to the number of levels produced by the SOLAR MERGER of FM3.
It may be worth remarking that, in the experimental evaluation conducted by
Bartel et al. [8], the SOLAR MERGER algorithm showed the best performance in
terms of drawing quality when used for the coarsening phase. Our experiments
show that the number of levels produced by the two algorithms is comparable and
follows a similar trend throughout the series of graphs. The DISTRIBUTED SOLAR
MERGER produces one or two levels less than the SOLAR MERGER in most of
the cases, and this is probably due to some slight difference in the tuning of the
two algorithms. To capture the quality of the computed drawings, we compared
FMS3 (the implementation available in the OGDF library [10]) and MULTI-GILA
in terms of average number of crossings per edge (CRE), and normalized edge

12 A. Arleo et al.

Table 1. REGULARGRAPHS: number of vertices (n), number of edges (m), average
number of crossings per edge (CRE), normalized edge length std deviation (NELD).

FM3 Murt-GILA FM3 MurTl-GILA

NAME n m CRE |NELD|CRE |NELD NaMBE n m CRE NELD | CRE NELD
karateclub 34 78 1.10{0.25 1.09/0.33 | Grid_40-40_df| 1,597 3,120 0.19/0.23 0.20/0.33
snowflake_A 98 97 | 0.00/0.25 0.11]0.21 |Grid-40-40_sf| 1,599 | 3,120 0.39/0.18 0.38/0.31
spider_A 100 160 | 3.06|0.24 2.86/0.27 |ug-380 1,104 | 3,231 | 25.68|0.64 13.47|0.96
cylinder-010 97 178 | 0.35/0.16 0.72]0.08 |esslingen 2,075 | 5,530 | 19.89/0.41 34.18/0.53
sierpinski-04 123 243 0.00/0.25 0.00/0.22 |uk 4,824 6,837 0.07/0.36 0.06/0.65
tree-06-03 259 258 0.40/0.29 1.54|0.17 |4970 4,970 7,400 0.01/0.23 0.01/0.46
rna 363 468 0.04|0.24 0.06|0.50 |add20 2,395 7,462 60.38|0.50 |100.44/0.50
protein_part 417 511 1.20/0.33 1.73/0.50 |dg-1087 7,602 7,601 0.06|0.34 0.00|1.04
516 516 729 0.09/0.13 0.18|0.44 |tree_06_.05 9,331 9,330 8.63/0.47 19.65/0.93
Grid_20-20 400 760 0.00/0.13 0.00/0.23 |add32 4,960 9,462 1.31/0.88 0.97/1.66
Grid_20-20_df 397 760 | 0.24|0.23 0.20|0.34 |snowflake_.C 9,701 | 9,700 0.00|0.64 0.00|0.40
Grid-20-20_sf 397 760 0.41/0.17 0.41/0.26 |flower-005 930 [13,521 48.76|0.61 45.24|0.61
dg-617_part 341 797 |10.57|0.30 |16.61|0.36 |3elt 4,720 |13, 722 0.40/0.35 0.27/0.60
snowflake_B 971 970 0.00/0.42 0.00/0.39 |data 2,851 |15,093 2.15/0.39 2.52|0.64
tree-06-04 1,555 |1,554 8.53/0.35 7.04|0.19 |grid400-20 8,000 |15, 580 0.02/0.22 0.24/0.89
spider-B 1,000 |1,600 7.03/0.24 8.26|0.73 |spider-C 10,000 16,000 [171.31|0.32 |262.09/0.93
grid-rnd-032 985 |1, 834 0.00/0.15 0.00/0.30 |grid-rnd-100 9,499 |17, 849 0.00|0.16 0.00/0.34
cylinder_032 985 |1, 866 0.46(0.19 0.44|0.39 |sierpinski_08 9,843 |19, 683 0.09/0.44 0.03/0.70
cylinder_100 985 |1, 866 4.60(0.18 4.48|0.45 |crack 10, 240 |30, 380 0.00/0.26 0.00/0.42
sierpinski_06 |1,095 2,187 | 0.06|0.34 0.03|0.63 |4elt 15,607 |45, 878 0.52]0.39 0.30/0.62
flower_001 210 |3,057 |47.37|0.67 |45.97|0.47 |cti 16,840 48,232 | 10.19/0.39 10.26|0.71
Grid-40-40 1,600 3,120 | 0.00(0.15 0.00|0.32

length standard deviation (NELD). The values of NELD are obtained by dividing
the edge length standard deviation by the average edge length of each drawing.
We chose FM3 for this comparison for two main reasons: (i) MULTI-GILA is
partially based on distributed implementations of the SOLAR MERGER and of
the SOLAR PLACER algorithms; (i) FM3 showed the best trade-off between
running time and quality of the produced drawings in the experiments of Hachul
and Junger [19]. The results of our experiments are reported in Table 1. The
performance of MULTI-GILA is very close to that of FM3 in terms of CRE.
In several cases MULTI-GILA produces drawings with a smaller value of CRE
than FM3 (see, e.g., ug-380). Concerning the NELD, MULTI-GILA most of the
times generates drawings with larger values than FM3. This may depend on how
the length of the edges is set by the DISTRIBUTED SOLAR PLACER algorithm.
However, also in this case the values of NELD follow a similar trend throughout
the series of graphs. Figure 2 shows a visual comparison for some of the graphs.
Similarly to FM3, MuLTI-GILA is able to unfold graphs with a very regular
structure and large diameter.

The REALGRAPHS and BIGGRAPHS sets contain much bigger graphs than
REGULARGRAPHS, and are used to evaluate the running time of MULTI-GILA,
especially in terms of strong scalability (i.e., how the running time varies on a
given instance when we increase the number of machines). The REALGRAPHS
set is composed of the 5 largest real-world graphs (mainly scale-free graphs)
used in the experimental study of GILA [5]. These graphs are taken from the
Stanford Large Networks Dataset Collection [3] and from the Network Data

(a) 3elt

(e) sierpinski_06

A Distributed Multilevel Force-Directed Algorithm 13

(f) flower_005

Fig. 2. Layouts of some REGULARGRAPHS instances. For each graph, the drawing com-
puted by FM3 (MULTI-GILA) is on the left (right).

Repository [4], and their number of edges is between 121,523 and 1,541, 514. The
B1aGRAPHS set consists of 3 very large graphs with up to 12 million edges, taken
from the collection of graphs described in [28]. Details about the REALGRAPHS
and BIGGRAPHS sets are in Table 2.

Table 2. Left: Details for REALGRAPHS. Right: Details for BIGGRAPHS benchmark.
Isolated vertices, self-loops, and parallel edges have been removed from the original
graphs. The graphs are ordered by increasing number of edges.

NAME n

DESCRIPTION

NaMe

m n m DESCRIPTION
asic-320 121,523 515,300 | circuit sim. problem hugetric-10 6,600,000 | 10,000,000 | Mesh
amazon0302 262,111 899,792 | co-purchasing network | hugetric-20 7,100,000 | 10,700,000 | Mesh
com-amazon 334,863 925,872 | co-purchasing network | delaunay.-n22 | 4,100,000 | 12,200,000 | Triangulation
com-DBLP 317,080 |1,049,866 | collaboration network
roadNet-PA |1,087,562 |1,541,514 | road network

! See also http://www.networkrepository.com/.

http://www.networkrepository.com/

14 A. Arleo et al.

Table 3 reports the running times of MULTI-GILA on the REALGRAPHS
and BIGGRAPHS instances, using increasing clusters of Amazon. Namely, for
the REALGRAPHS instances, 5 machines were always sufficient to compute a
drawing in a reasonable time, and using 15 machines the time is reduced by 35%
on average. For the BIGGRAPHS instances we used a number of machines from
20 to 30, and the reduction of the time going from the smallest to the largest
cluster is even more evident than for the REALGRAPHS set (50% on average).
Figure 3 depicts the trend of the data in Table 3, showing the strong scalability of
MurTi-GIiLA. Figure4 shows some layouts of REALGRAPHS and BIGGRAPHS
instances computed by MULTI-GILA and visualized (rendered) with LAGoO. It
is worth observing that some centralized algorithm may be able to draw quicker
than MULTI-GILA graphs of similar size as those in the REALGRAPHS set (see
e.g. [16]). This is partially justified by the use of a distributed framework such as
Giraph, which introduces overheads in the computation that are significant for
graphs of this size. However, this kind of overhead is amortized when scaling to
larger graphs as those in the BIGGRAPHS set. Also, using an optimized cluster
rather than a PaaS infrastructure may improve the performance of the algorithm.

Table 3. Running time of MULTI-GILA on the REALGRAPHS and BIGGRAPHS
instances, using increasing clusters of Amazon.

Running time (s) Running time (s)
NAME 5 machines | 10 machines | 15 machines | NAME 20 machines | 25 machines | 30 machines
asic-320 1,626 1,102 1,281 hugetric-10 7,923 4,828 3,679
amazon0302 | 2,518 2,696 1,577 hugetric-20 9,891 8,243 4,445
com-amazon | 3,400 3,395 2,242 delaunay.n22 | 8,160 3,301 3,932
com-DBLP 4,000 3,612 2,366
roadNet-PA | 3,813 2,369 2,241
Scalability on REALGRAPHS Scalability on BIGGRAPHS
4000 10000
3000 8000 Py S

2000

1000 F\.’_’_’_a.

seconds

6000 \\
4000

seconds

=X

2000
0

5 10 15 0

machines 20 25 30

machines
—8—asic-320 —&—amazon0302 com-amazon
com-DBLP —»—roadNet-PA —*—hugetric-10 —%—hugetric-20 delaunay
(@ (b)

Fig. 3. Scalability of MULTI-GILA on REALGRAPHS instances.

A Distributed Multilevel Force-Directed Algorithm 15

/
wE
X' &
f 4
Y\\ w g
(a) asic-320 (b) Detail of (a) (c) com—amazon (d) Detail of (¢)

N
R \
\ -
(e) hugetric-10 (f)hugetric-20 (g)delaunay-n22

Fig. 4. Layouts of (a-—d) REALGRAPHS instances and (e-f) BIGGRAPHS instances com-
puted by MULTI-GILA and visualized (rendered) with LAGoO.

5 Conclusions and Future Research

As far as we know, MULTI-GILA is the first multilevel force-directed technique
working in a distributed vertex-centric framework. Its communication protocol
allows for an effective computation of a coarse graph hierarchy. Experiments
indicate that the quality of the computed layouts compares with that of drawings
computed by popular centralized multilevel algorithms and that it exhibits high
scalability to very large graphs. Our source code is made available to promote
research on the subject and to allow replicability of the experiments. In the near
future we will investigate more coarsening techniques and single-level layout
methods for a vertex-centric distributed environment.

References

http://www.geeksykings.eu/multigila/
http://Is11-www.cs.tu-dortmund.de/staff /klein /gdmult 10
http://snap.stanford.edu/data/index.html

http://www.networkrepository.com/

Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: A distributed force-directed
algorithm on Giraph: design and experiments. ArXiv e-prints (2016). http://arxiv.
org/abs/1606.02162

G oo =

http://www.geeksykings.eu/multigila/
http://ls11-www.cs.tu-dortmund.de/staff/klein/gdmult10
http://snap.stanford.edu/data/index.html
http://www.networkrepository.com/
http://arxiv.org/abs/1606.02162
http://arxiv.org/abs/1606.02162

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Arleo et al.

Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: A distributed multilevel force-
directed algorithm. ArXiv e-prints (2016). http://arxiv.org/abs/1608.08522
Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: A million edge drawing for a
fistful of dollars. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411,
pp. 44-51. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27261-0-4

Bartel, G., Gutwenger, C., Klein, K., Mutzel, P.: An experimental evaluation of
multilevel layout methods. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 80-91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18469-7_8
Chae, S., Majumder, A., Gopi, M.: Hd-graphviz: Highly distributed graph visual-
ization on tiled displays. In: ICVGIP 2012, pp. 43: 1-43: 8. ACM (2012)
Chimani, M., Gutwenger, C., Jinger, M., Klau, G.W., Klein, K., Mutzel, P.:
The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook
on Graph Drawing and Visualization, pp. 543-569. CRC, Boca Raton (2013).
http://www.ogdf.net/

Ching, A.: Giraph: large-scale graph processing infrastructure on hadoop. In:
Hadoop Summit (2011)

Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion
edges: graph processing at facebook-scale. PVLDB 8(12), 1804-1815 (2015)
Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks:
algorithmic advances and experimental analysis. Inf. Sci. 260, 185-199 (2014).
http://dx.doi.org/10.1016/j.ins.2013.09.048

Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129-1164 (1991)

Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-
directed layouts of large graphs. Comput. Geom. 29(1), 3-18 (2004)

Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing
on the GPU. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp.
90-101. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00219-9_10

Hachul, S.: A potential field based multilevel algorithm for drawing large graphs.
Ph.D. thesis, University of Cologne (2005). http://kups.ub.uni-koeln.de/volltexte/
2005/1409/index.html

Hachul, S., Jiinger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285-295. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31843-9_29

Hachul, S., Jiinger, M.: Large-graph layout algorithms at work: an experimental
study. J. Graph Algorithms Appl. 11(2), 345-369 (2007)

Hadany, R., Harel, D.: A multi-scale algorithm for drawing graphs nicely. Discrete
Appl. Math. 113(1), 3-21 (2001)

Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph
Algorithms Appl. 6(3), 179-202 (2002)

Hinge, A., Auber, D.: Distributed graph layout with Spark. In: IV 2015, pp. 271—
276. IEEE (2015)

Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica J. 10(1),
37-71 (2005)

Ingram, S., Munzner, T., Olano, M.: Glimmer: Multilevel MDS on the GPU. IEEE
Trans. Vis. Comput. Graph. 15(2), 249-261 (2009)

Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Hand-
book of Graph Drawing and Visualization. CRC Press, Boca Raton (2013)
Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: A system for large-scale graph processing. In: SIGMOD
2010, pp. 135-146. ACM (2010)

http://arxiv.org/abs/1608.08522
http://dx.doi.org/10.1007/978-3-319-27261-0_4
http://dx.doi.org/10.1007/978-3-642-18469-7_8
http://www.ogdf.net/
http://dx.doi.org/10.1016/j.ins.2013.09.048
http://dx.doi.org/10.1007/978-3-642-00219-9_10
http://kups.ub.uni-koeln.de/volltexte/2005/1409/index.html
http://kups.ub.uni-koeln.de/volltexte/2005/1409/index.html
http://dx.doi.org/10.1007/978-3-540-31843-9_29

27.

28.

29.

30.

31.

32.

33.

34.

35.

A Distributed Multilevel Force-Directed Algorithm 17

Mueller, C., Gregor, D., Lumsdaine, A.: Distributed force-directed graph layout
and visualization. In: EGPGV 2006, pp. 83-90. Eurographics (2006)

Rossi, R.A., Ahmed, N.K.: An interactive data repository with visual analytics.
SIGKDD Explor. 17(2), 37-41 (2016). http://networkrepository.com

Sharma, P., Khurana, U., Shneiderman, B., Scharrenbroich, M., Locke, J.: Speeding
up network layout and centrality measures for social computing goals. In: Salerno,
J., Yang, S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011. LNCS, vol. 6589, pp. 244-251.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19656-0-35

Tikhonova, A., Ma, K.: A scalable parallel force-directed graph layout algorithm.
In: EGPGV 2008, pp. 25-32. Eurographics (2008)

Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103-111 (1990)

Vaquero, L.M., Cuadrado, F., Logothetis, D., Martella, C.: Adaptive partitioning
for large-scale dynamic graphs. In: ICDCS 2014, pp. 144-153. IEEE (2014)
Walshaw, C.: A multilevel algorithm for force-directed graph-drawing. J. Graph
Algorithms Appl. 7(3), 253-285 (2003)

Yunis, E., Yokota, R., Ahmadia, A.: Scalable force directed graph layout algorithms
using fast multipole methods. In: ISPDC 2012, pp. 180-187. IEEE (2012)
Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail
rendering of large graphs. IEEE Trans. Vis. Comput. Graph. 18(12), 24862495
(2012)

http://networkrepository.com
http://dx.doi.org/10.1007/978-3-642-19656-0_35

	A Distributed Multilevel Force-Directed Algorithm
	1 Introduction
	2 Background
	3 The Multi-GILA Algorithm
	3.1 Algorithm Overview
	3.2 Coarsening Phase: DISTRIBUTED SOLAR MERGER
	3.3 Placement Phase: DISTRIBUTED SOLAR PLACER
	3.4 Single-Level Layout Phase: The GILA Algorithm

	4 Experimental Analysis
	5 Conclusions and Future Research
	References

