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Abstract. The linear complexity and k-error linear complexity of
sequences are important measures of the strength of key-streams gen-
erated by stream ciphers. Based on the characters of the set of sequences
with given linear complexity, people get the characterization of 2n-binary
sequences with given k-error linear complexity for small k recently. In
this paper, we put forward this study to get the distribution of linear
complexity and k-error linear complexity of 2n-periodic binary sequences
with fixed Hamming weight. First, we give the counting function of the
number of 2n-periodic binary sequences with given linear complexity and
fixed Hamming weight. Provide an asymptotic evaluation of this count-
ing function when n gets large. Then we take a step further to study
the distribution of 2n-periodic binary sequences with given 2-error linear
complexity and fixed Hamming weight. Through an asymptotic analysis,
we provide an estimate on the number of 2n-periodic binary sequences
with given 2-error linear complexity and fixed Hamming weight.

Keywords: Sequence · Linear complexity · k-error linear complexity ·
Counting function · Hamming weight · Asymptotic analysis

1 Introduction

The linear complexity of an N -periodic sequence is defined by the length of the
shortest linear feedback shift register (LFSR) that can generate the sequence.
By Berlekamp-Massey algorithm [7], we only need the first 2L elements of the
sequence to recover the whole sequence, where L is the linear complexity of the
sequence. For this reason, a secure key stream must has high linear complexity.
But this is not sufficient. If altering a few elements in the sequence can result in
greatly decrease its linear complexity, then the sequence is not cryptographically
strong. This observation gives rise to the study of the stability of sequence [1]
and develops to the concept of k-error linear complexity [11] which is defined
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as the minimum linear complexity of the sequence altering not more than k
elements from the original sequence. A cryptographically strong sequence must
both have larger linear complexity and k-error linear complexity.

Let S = (s0s1 · · · sN−1)∞ be an N -periodic sequence with the terms in finite
field F2. And we denote SN the set of all N -periodic binary sequences. For a
given sequence S ∈ SN , we denote the support set of S by supp(S), which is the
positions of nonzero elements in S, that is, supp(S) = {i : si �= 0, 0 ≤ i < N}.
For i, j ∈ supp(S), we define the distance between i and j as d(i, j) = 2t where
|i − j| = 2tb and 2 � |b. Let wH(S) denote the Hamming weight of sequence S
which is the number of nonzero elements of S in one period.

The linear complexity of S, denoted by LC(S), is given by [1]

LC(S) = N − deg(gcd(xN − 1, S(x))) (1)

where S(x) = s0 + s1x + s2x
2 + ... + sN−1x

N−1 and is called the corresponding
polynomial to S. According to Eq. (1), we can get the following two lemmas:

Lemma 1 [8]. Let S be a 2n-periodic binary sequence. Then LC(S) = 2n if and
only if the Hamming weight of the sequence S is odd.

Lemma 2 [8]. Let S and S′ be two 2n-periodic binary sequences. Then we have
LC(S + S′) = max{LC(S), LC(S′)} if LC(S) �= LC(S′), and LC(S + S′) <
LC(S) for otherwise.

In this paper, we focus on 2n-periodic binary sequences. Based on the observation
x2n − 1 = (x − 1)2

n

, we have

gcd(x2n − 1, S(x)) = gcd((x − 1)2
n

, SL(x) + x2n−1
SR(x))

= gcd((x − 1)2
n

, (SL(x) + SR(x)) + (x + 1)2
n−1

SR(x)),

and according to Eq. (1), we get

LC(S) =

{
2n−1 + LC(SL + SR) if SL �= SR,

LC(SL) otherwise,
(2)

where SL, SR are the left and right half part of the sequence S respectively
and SL(x) = s0 + s1x + · · · + s2n−1−1x

2n−1−1, SR(x) = s2n−1 + s2n−1+1x +
· · · + s2n−1x

2n−1−1. And the summation of two sequences S = (s0s1 · · · sN−1),
S′ = (s′

0s
′
1 · · · s′

N−1) is defined as S + S′ = (u0u1 · · · uN−1) where ui = si + s′
i

for 0 ≤ i < N .
Iterating Eq. (2) on the length of sequence, one can immediately get the

linear complexity of the 2n-periodic binary sequence (note that, for sequence of
length 1, LC((1)) = 1 and LC((0)) = 0). This iteration algorithm is known as
Games-Chan Algorithm developed in [3].

For 0 ≤ k ≤ N , the k-error linear complexity of S, denoted by LCk(S), is
definable by

LCk(S) = min
wH(E)≤k, E∈SN

LC(S + E), (3)

where E is called the error sequences.
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For a given sequence S ∈ SN , denote merr(S) = min{k : LCk(S) < LC(S)},
which is called the first descend point of linear complexity of S. Kurosawa et al.
in [6] derived a formula for the exact value of merr(S).

Lemma 3 [6]. Let S be a nonzero 2n-periodic binary sequence, then the first
descend point of S is

merr(S) = 2wH(2n−LC(S)). (4)

The counting function of a sequence complexity measure depicts the distribu-
tion of the sequences with given complexity. It is useful to determine the expected
value and variance of a given complexity measure of a family of sequences.
Besides, the exact number of available good sequences with high complexity
measure value in a family of sequences can be known. Rueppel [10] determined
the counting function of linear complexity for 2n-periodic binary sequences as
follows:

Lemma 4 [10]. Let N (L) and A(L) respectively denote the number of and the
set of 2n-periodic binary sequences with given linear complexity L, where 0 ≤
L ≤ 2n. Then

N (0) = 1, A(0) = {(00 · · · 0)}, and

N (L) = 2L−1, A(L) = {S ∈ S2n
: S(x) = (1 − x)2

n−La(x), a(1) �= 0} for 1 ≤ L ≤ 2n.

Let Ak(L) and Nk(L) denote the set of and the number of 2n-periodic
binary sequences with k-error linear complexity L, Aw(L) and N w(L) denote
the set of and the number of 2n-periodic binary sequences with Hamming weight
w and linear complexity L, and Aw

k (L) and N w
k (L) denote the set of and the

number of 2n-periodic binary sequences with Hamming weight w and k-error
linear complexity L respectively, which can be formally defined as

Ak(L) = {S ∈ S2n

: LCk(S) = L} and Nk(L) = |Ak(L)|,

Aw(L) = {S ∈ S2n

: LC(S) = L and wH(S) = w} and N w(L) = |Aw(L)|,
Aw

k (L) = {S ∈ S2n

: LCk(S) = L and wH(S) = w} and N w
k (L) = |Aw

k (L)|.
By Lemma 4, one can get fully knowledge of the distribution of 2n-periodic

binary sequences with given linear complexity. Based on the characters of A(L)
and using algebraic, combinatorial or decomposing method [2,5,9,13], people
get the counting function Nk(L) for small k. However, under the current state
of art, distribution of 2n-periodic binary sequences with given linear complexity
when fixed Hamming weight remains unclear. In this paper we first provide a
solution to this interesting problem. And then get the distribution of 2-error
linear complexity with fixed Hamming weight which is a more difficult question
to answer. In other words, we study the counting function for the number of
balanced 2n-periodic binary sequences with given values of complexity measure.
As a contribution, we provide asymptotic evaluations as well as the explicit
formulas of the counting functions.
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2 The Characterization of Aw(L)

In this section we discuss the linear complexity distribution of 2n-periodic binary
sequences with fixed Hamming weight.

2.1 Counting Functions for Nw(L)

Let us first review the Games-Chan Algorithm. For a 2n-periodic binary sequence
S, one can use Eq. (2) recurrently on the length of sequence to get the linear
complexity of S. Now to counting the sequences, we reverse this process, namely,
we use a short sequence to construct the long. In this reversed process, we make
the linear complexity of the constructed sequence equal to L step by step. Simul-
taneously, we restrict the Hamming weight of constructed sequences to w to get
the number of sequences which meet the requirements. We begin with a simple
case that is less general than what can actually be said.

Lemma 5. Let N w(L) be the number of 2n-periodic binary sequences with
Hamming weight w and linear complexity L, then one have

N w(2r + 1) =

{
22

r
if w = 2n−1,

0 otherwise,
(5)

N w(2r1 + 2r2 + 1) =

{
22

r2+2r1−1(2r1−1

m

)
if w = 2n−2 + m · 2n−r1 and 0 ≤ m ≤ 2r1−1,

0 otherwise,

(6)

where 0 ≤ r < n and 0 ≤ r2 < r1 < n.

Proof. Let S = (s0s1 · · · sN−1) be binary sequence of linear complexity 2r + 1
and length N with N = 2r+1. According to Eq. (2), we have SL �= SR and
LC(SL + SR) = 1 and then we get si + si+N/2 = 1 for 0 ≤ i < N/2 where
SL and SR denote the left and right half part of S respectively. Therefore, the
number of 2r+1-periodic binary sequences of linear complexity 2r + 1 is 22

r

and
we denote the set of all those sequence by A.

For any sequence S in A, we can construct a sequence S1 of length 2r+2

preserving linear complexity by connecting two S, i.e. S1 = S||S. In the same
way, we can construct a serial sequences Si, 1 < i ≤ n − i, preserving the
linear complexity where the length of Si is 2r+i+1. As a result, we can construct
22

r

sequences of periodic 2n and linear complexity 2r + 1. From Games-Chan
Algorithm we can know that there does not exist sequences of linear complexity
2r + 1 except for those constructed above. Thus, the number of 2n-periodic
binary sequences of linear complexity 2r + 1 is 22

r

and the Hamming weight of
the sequence must be (2r)n−r−1 = 2n−1.

Similarly, there are 22
r2 binary sequences of length 2r2+1 having linear com-

plexity 2r2+1. We can extend those sequences to sequences of length 2r1 using the
same method. It is clear that the Hamming weight of those extended sequences
are 2r1−1 and we denote the set of those sequences by A1.
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For any sequence S in A1, suppose the support set of S is supp(S) =
{i1, i2, · · · , iN1} where N1 = 2r1−1 and 0 ≤ i1 < i2 < · · · < iN1 < 2r1 .
Denote Us = {0, 1, · · · , 2r1 − 1} and U ′

r = Ur − supp(S). Choose m points j1, j2,
· · · , jm from the set U ′

r where 0 ≤ m ≤ 2r1−1 and construct a sequence
S1 = (s0s1 · · · sN2) where N2 = 2r1+1 and siu

+ siu+2r1 = 1, sjv
+ sjv+2r1 = 2

for 1 ≤ u ≤ N1, 1 ≤ v ≤ m and st = 0 for t �∈ {i1, · · · , iN1 , i1 +
2r1 , · · · , iN1 + 2r1 , j1, · · · , jm, j1 + 2r1 , · · · , jm + 2r1}. It can be confirmed that
the linear complexity of S1 is 2r1 + 2r2 + 1 and the Hamming weight of S1 is
2r1−1 + 2m. We use the same method to extend the length of S1 to 2n preserv-
ing the linear complexity. And the Hamming weight of constructed sequences
are (2r1−1 + 2m) · 2n−r1−1 = 2n−2 + m · 2n−r1 . Because for each sequence S

we can construct 22
r1−1 · (

2r1−1

m

)
different sequences S1, then we can construct

22
r2 · 22r1−1 · (2r1−1

m

)
different sequences with Hamming weight 2n−2 + m · 2n−r1

and linear complexity 2r1 + 2r2 + 1. Consequently, we get the counting function
for N w(2r1 + 2r2 + 1) as shown above. �

This argument readily extends to general cases in which binary representation
of L involves an arbitrary number of ones.

Theorem 1. Let N w(L) be the number of 2n-periodic binary sequences with
Hamming weight w and linear complexity L. Then when L = 2r1+2r2+· · ·+2rt+1
and w is even, we have

N w(L) =
∑

∑t−1
j=1 mj ·2n−rj−j+1=w−2n−t, mj≥0

22
rt

t−1∏
j=1

2uj ·
(

2rj − uj

mj

)
(7)

where 0 ≤ rt < rt−1 < · · · < r1 < n, 2 ≤ t < n and ut−1 = 2rt−1−1, uj =
(2mj+1 + uj+1) · 2rj−rj+1−1 for 1 ≤ j < t − 1.

Proof. The proof of Lemma 5 applies verbatim here.
First we construct 22

rt sequences of length 2rt+1 and linear complexity 2rt+1,
and at the same time all those sequences have Hamming weight 2rt . Denote the
set of those sequences by At. For any sequence St in At, we extend the length
of it to 2rt−1 in the same way as we did in the previous proof, and denote
the extended sequence by S′

t. It is apparent that the Hamming weight of S′
t is

2rt−1−1.
Suppose the support set of S′

t is supp(S′
t) = {i1, i2, · · · , iNt−1} where Nt−1 =

2rt−1−1. Denote Ut−1 = {0, 1, · · · , 2rt−1 − 1} and U ′
t−1 = Ut−1 − supp(S′

t). By
choosing mt−1 points j1, j2, · · · , jmt−1 from U ′

t−1, we can construct a sequence
St−1 = (s0s1 · · · sNt−1) where Nt−1 = 2rt−1+1 and siu

+ siu+2rt−1 = 1,
sjv

+ sjv+2rt−1 = 2 for 1 ≤ u ≤ Nt−1, 1 ≤ v ≤ mt−1 and sk = 0 for
k �∈ {i1, · · · , iNt−1 , i1+2r1 , · · · , iNt−1+2rt−1 , j1, · · · , jmt−1 , j1+2rt−1 , · · · , jmt−1+
2rt−1}. We can confirm that the constructed sequence has linear complexity
2rt−1 + 2rt + 1 and Hamming weight 2rt−1−1 + 2 · mt−1. For each S′

t we can
construct 22

rt−1−1(2rt−1−1

mt−1

)
different St−1 of linear complexity 2rt−1 +2rt +1 and
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the same Hamming weight by choosing different mt−1 points from the set U ′
t−1.

Denote the set of those constructed sequences by At−1,mt−1 .
For any sequence St−1 in At−1,mt−1 , we extend the length of it to 2rt−2 and

preserving the linear complexity at the same time, which results in a sequence
S′

t−1. It can be verified that Hamming weight of S′
t−1 is ut−2 = (2rt−1−1 +

2mt−1) · 2rt−2−rt−1−1.
Suppose the support set of S′

t−1 is supp(S′
t−1) = {i1, i2, · · · , iut−2}. Denote

Ut−2 = {0, 1, · · · , 2rt−2 − 1} and U ′
t−2 = Ut−2 − supp(S′

t−1). In the same vein,
by choosing mt−2 points j1, j2, · · · , jmt−2 from the set U ′

t−2, we can construct a
sequence St−2 = (s0s1 · · · s2rt−2+1) where siu

+siu+2rt−2 = 1, sjv
+sjv+2rt−2 = 2

and sk = 0 for 1 ≤ u ≤ ut−2, 1 ≤ v ≤ mt−2 and k �∈ {i1, · · · , iut−2 , i1 +
2rt−2 , · · · , iut−2 +2rt−2 , · · · , j1, · · · , jmt−2 , j1+2rt−2 , · · · , jmt−2 +2rt−2}. For each
S′

t−1 we can construct 2ut−2 · (
2rt−2−ut−2

mt−2

)
different St−2 of linear complexity

2rt−2 + 2rt−1 + 2rt + 1 and Hamming weight ut−2 + 2mt−2 by choosing differ-
ent mt−2 points from U ′

t−2. Denote the set of those constructed sequences by
At−2,mt−2 .

For each sequence St−2 in At−2,mt−2 , we extend it length to 2rt−3 and pre-
serving its linear complexity, which results in a sequence S′

t−2.
Proceeding in precisely the same manner as the previous process by recur-

rence, we can eventually extend the length of a sequence St in At to 2n and make
the final constructed sequence have linear complexity 2r1 + 2r2 + · · · + 2rt + 1
step by step. For each St in At we can get the set At−1,mt−1 by adding mt−1

points to S′
t and similarly for each sequence St−1 in At−1,mt−1 we can get the

set At−2,mt−2 by adding mt−2 points to S′
t−1. In this way, we can construct

22
rt ·∏1

j=t−1 2uj
(
2rj −uj

mj

)
sequences of linear complexity L and Hamming weight

(u1 +2m1) · 2n−r1−1 where ut−1 = 2rt−1−1 and uj = (uj+1 +2mj+1) · 2rj−rj+1−1

for 1 ≤ j < t − 1.
As a result, for given linear complexity L and Hamming weight w, the number

of sequences of linear complexity L and Hamming weight w is the summation
of 22

rt · ∏1
j=t−1 2uj

(
2rj −uj

mj

)
for all m1,m2, · · · ,mt−1 such that w = (u1 + 2m1) ·

2n−r1−1 =
∑t−1

i=1 mi · 2n−ri−i+1 + 2n−t and from here, we achieve Eq. (7). �

Furthermore, we observe that when rt = 0 the linear complexity L = 2r1 +
2r2 + · · · 2rt + 1 has the form L = 2r1 + 2r2 + · · · 2rt′+1 where 0 ≤ rt < rt−1 <
· · · < r1 < n, t < n, and rt′−1 − rt′ > 1, rj − rj+1 = 1 for t′ < j ≤ t. In this
case, we can use a similar method to construct sequences with linear complexity
L and length 2n from sequences with linear complexity 2rt′ and length 2rt′ .

Corollary 1. Let N w(L) be the number of 2n-periodic binary sequences with
Hamming weight w and linear complexity L. When L = 2r1 + 2r2 + · · · + 2rt , we
have

N w(L) =

2rt∑
m=1,m is odd

∑
∑t−1

j=1 mj ·2n−rj−j+1
=w−m·2n−rt−t+1

(2rt

m

)
·

t−1∏
j=1

2um,j ·
(2rj − um,j

mj

)

(8)
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where 0 < rt < rt−1 < · · · < r1 < n, 2 ≤ t < n and um,t−1 = m·2rt−1−rt , um,j =
(2mj+1 + uj+1) · 2rj−rj+1−1 for 1 ≤ j < t − 1.

Proof. This corollary can be derived from Eq. (7) by exchanging the order of
summations. We can also give a constructive proof similar to the one used
for Theorem 1 and get the equation directly. Firstly, the number of sequences
with length 2rt , linear complexity 2rt and Hamming weight m is

(
2rt

m

)
where

m must be odd. And denote the set of those sequences by Am,t. For sequence
St in Am,t we can extend the length to 2n and make the linear complexity to
be L using a similar method to the one in the proof for Theorem 1 step by
step. And we can get the number of 2n-periodic binary sequences with lin-
ear complexity L and Hamming weight w = (um,1 + 2m1) · 2n−r1−1 which
is

(
2rt

m

) ∑
um,1+2m1=w

∏t−1
i=1 2um,i

(
2ri −um,i

mi

)
where um,t−1 = m · 2rt−1−rt and

um,i = (um,i+1 + 2mi+1) · 2ri−ri+1−1 for 1 ≤ i < t − 1. Then by enumerat-
ing all possible value of m and we can get Eq. (8). �

Because w =
∑t−1

i=1 mi · 2n−ri−i+1 + 2n−t and 2n−r1 ≤ 2n−rj−j+1 for 1 <
j ≤ t − 1, thus 2n−r1 |w. Combine with the fact that w is in range from 2n−t to
2n − 1, we have

Corollary 2. Let S be a 2n-periodic binary sequence, if the linear complexity
of S is L = 2r1 + 2r2 + · · · + 2rt + 1, where 0 ≤ rt < rt−1 < · · · < r1 < n
and t < n, then the Hamming weight of S only can be 2n−1 + l · 2n−r1 and
2r1−t − 2r1−1 ≤ l ≤ 2r1−1 − 2r1−t.

To get the exact value of N w(L), we need to get all solutions of equation∑t−1
j=1 mj · 2n−rj−j+1 = 2n−1 − 2n−t. This may turns out to be impossible to

solve when n is large. Thus, the result for N w(L) in this subsection is perhaps
not too useful for grasping the number of the sequence when n gets large, so
that asymptotic analysis is called for.

To this end, we make asymptotic analysis of N w(L), provide lower bound
and upper bound of its value in the following subsection.

2.2 Asymptotic Analysis for Nw(L)

Suppose L = 2r1 + 2r2 + · · · + 2rt + 1 with 0 ≤ rt < rt−1 < · · · < r1 < n in the
sequel.

Let us begin with a simple case in which t = 3, and w = 2n−1. According to
Eq. (7), when L = 2r1 + 2r2 + 2r3 + 1, 0 ≤ r3 < r2 < r1 < n and w = 2n−1, we
have

N w(L) = 22
r3+2r2−1+2r1−2 ·

2r2−1∑
m=0

2m·2r1−r2

(
2r2−1

m

)(
3 · 2r1−2 − m · 2r1−r2

3 · 2r1−3 − m · 2r1−r2−1

)
.

(9)
The following lemma provides an asymptotic estimate for this case.
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Lemma 6. Let N w(L) be the number of 2n-periodic binary sequences with Ham-
ming weight w and linear complexity L. Then when L = 2r1 +2r2 +2r3 +1 where
0 ≤ r3 < r2 < r1 < n and w = 2n−1, we have

N w(L) ≥ 22
r3+2r2−1+2r1−0.5r1−0.9107(1 + 2

0.7213
3·2r2−2 )2

r2−1
,

N w(L) ≤ 22
r3+2r2−1+2r1−0.5r1−0.9107(1 + 2

1.1887
3·2r2−2 )2

r2−1
.

(10)

Proof. From Stirling’s formula

n! =
√

2πn(
n

e
)ne

θn
12n , 0 < θn < 1, (11)

it implies that

(2n
n

)
=

(2n)!

n!n!
=

√
2π · 2n( 2n

e
)2ne

θ2n
24n

(
√
2πn(n

e
)ne

θn
12n )2

= 22n−0.5 log n−0.5 log π+ θ
3n = 22n−0.5 log n−0.8257+ θ

3n ,

(12)
where −0.7214 < θ < 0.1084.

Accordingly, the logarithmic transformation of the number of combinations(
3·2r1−2−m·2r1−r2

3·2r1−3−m·2r1−r2−1

)
yields:

log
( 3 · 2r1−2 − m · 2r1−r2

3 · 2r1−3 − m · 2r1−r2−1

)
= 3 · 2r1−2 − m · 2r1−r2 − 0.5 log(3 · 2r1−2 − m · 2r1−r2 ) − 0.3257 + ε

= 3 · 2r1−2 − m · 2r1−r2 − 0.5r1 +
log e

2

m

3 · 2r2−2
(1 +

∞∑
i=2

1

i
(

m

3 · 2r2−2
)i−1) − 0.9107 + ε

where ε = θ
3(3·2r1−2−m·2r1−r2 )

and −0.7214 < θ < 0.1084.
By observing that 0 ≤ m

3·2r2−2 ≤ 2
3 , and θ

9·2r1−2 < ε < θ
3·2r1−2 , we have

log
( 3 · 2r1−2 − m · 2r1−r2

3 · 2r1−3 − m · 2r1−r2−1

)
≥ 3 · 2r1−2 − 0.5r1 + (

0.7213

3 · 2r2−2
− 2r1−r2 ) · m − 0.9107,

log
( 3 · 2r1−2 − m · 2r1−r2

3 · 2r1−3 − m · 2r1−r2−1

)
≤ 3 · 2r1−2 − 0.5r1 + (

1.1887

3 · 2r2−2
− 2r1−r2 ) · m − 0.9107.

Altogether, the asymptotic evaluation of N w(L) is well summarized by
Lemma 6. �

By completing a similar yet much harder analytic task, we next provide the
asymptotic form of N w(L) for more general case.

Theorem 2. Let N w(L) be the number of 2n-periodic binary sequences with
Hamming weight w and linear complexity L. Then when L = 2r1+2r2+· · ·+2rt+1
with 0 ≤ rt < rt−1 < · · · < r1 < n, 3 < t < n and w = 2n−1, we have

N w(L) ≥ 22
rt+2r1−0.5r1−0.3257+ 0.7213

2t−1

t−1∏
j=2

b2
rj

j (
2
bj

)2
rj−t+j

N w(L) ≤ 22
rt+2r1−0.5r1−0.3257+ 1.2203

2t−1

t−1∏
j=2

a2rj

j (
2
aj

)2
rj−t+j

(13)
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where a1 = 21− 1.2203
2r1 , b1 = 21− 0.7213

2r1 and aj = 1 +
∏j−1

i=1 ( 2
ai

)2
ri−rj+i−j+1

, bj =

1 +
∏j−1

i=1 ( 2
bi

)2
ri−rj+i−j+1

for 1 < j < t.

Proof. Recall that ut−1 = 2rt−1−1 and uj = (2mj+1 +uj+1) ·2rj−rj+1−1 for 1 ≤
j < t − 1, there follows:

u1 = (u2 + 2m2) · 2r1−r2−1

= · · ·

=
t−1∑
j=2

mj · 2r1−rj−j+2 + ut−1 · 2r1−rt−1−t+2

=
t−1∑
j=2

mj · 2r1−rj−j+2 + 2r1−t+1.

Compared with
∑t−1

j=1 mj · 2n−rj−j+1 = 2n−1 − 2n−t, we get

m1 = 2r1−1 − u1/2.

It is evident that the value of u1 can take the maximum only when all mj take
the maximum value 2rj − uj . Let mj = 2rj − uj for 1 ≤ j ≤ t − 1, then

uj = (2mj+1 + uj+1) · 2rj−rj+1−1

= (2(2rj+1 − uj+1) + uj+1) · 2rj−rj+1−1

= 2rj − uj+1 · 2rj−rj+1−1,

thus
uj · 2−rj = 1 − 1

2
uj+1 · 2−rj+1 .

Then by recursive substitutions, we obtain

u1·2−r1 = 1−1
2
u2·2−r2 = · · · =

t−3∑
j=0

(−1
2
)j+(−1

2
)t−2ut−1·2−rt−1 =

2
3
(1−(−2)−t)

which provides the maximum value of u1:

max{u1} =
1
3
(1 − (−2)−t) · 2r1+1.

Obviously, u1 ≥ 2r1−t+1, and consequently we have

1
2t−1

≤ u1

2r1
≤ 2

3
(1 − (−2)−t). (14)

Again, utilizing Stirling’s formula, we obtain

log
(

2r1 − u1

m1

)
= 2r1 − u1 − 0.5 log(2r1 − u1) − 0.3257 + ε

= 2r1 − 0.5r1 − u1 +
0.7213u1

2r1
(1 +

∞∑
i=2

1
i
(
u1

2r1
)i−1) − 0.3257 + ε

where ε = θ
3(2r1−u1)

and −0.7214 < θ < 0.1084.
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We only consider the cases in which t > 3 and r1 is large, say r1 > 12. In
these cases, 0 ≤ u1

2r1 ≤ 11
16 and ε < 0.0001. Thus

log
(

2r1 − u1

m1

)
≥ 2r1 − 0.5r1 + (

0.7213
2r1

− 1)u1 − 0.3257,

log
(

2r1 − u1

m1

)
≤ 2r1 − 0.5r1 + (

1.2203
2r1

− 1)u1 − 0.3257.

(15)

From here, we are ready to evaluate the upper bound of N w(L). The deriva-
tions are as follows:

N w(L) =
∑

∑t−1
j=1 mj ·2n−rj−j+1

=2n−1−2n−t

22
rt

t−1∏

j=1

2uj ·
(
2rj − uj

mj

)

= 2
∑t

j=1 2
rj−t+j

2
rt−1−ut−1∑

mt−1=0

· · ·
2r2−u2∑

m2=0

(
2r1 − u1

m1

)

·
t−1∏

j=2

(2
∑j−1

k=1 2
rj−k−rj−k+1

)mj

(
2rj − uj

mj

)

≤ 2
∑t

j=2 2
rj−t+j

+2r1−0.5r1−0.3257+ 1.2203
2t−1

2
rt−1−ut−1∑

mt−1=0

· · ·
2r2−u2∑

m2=0

a
−(
∑t−1

i=2 mi2
r1−ri−i+2)

1 ·
t−1∏

j=2

(2
∑j−1

k=1 2
rj−k−rj−k+1

)mj

(
2rj − uj

mj

)

= 2
∑t

j=2 2
rj−t+j

+2r1−0.5r1−0.3257+ 1.2203
2t−1

2
rt−1−ut−1∑

mt−1=0

· · ·
2r3−u3∑

m3=0

a
−(
∑t−1

i=3 mi2
r1−ri−i+2)

1 a2r2−u2
2 ·

t−1∏

j=3

(2
∑j−1

k=1 2
rj−k−rj−k+1

)mj

(
2rj − uj

mj

)

= 2
∑t

j=2 2
rj−t+j

+2r1−0.5r1−0.3257+ 1.2203
2t−1 a2r2−2r2−t+2

2

2
rt−1−ut−1∑

mt−1=0

· · ·
2r3−u3∑

m3=0

a
−(
∑t−1

i=3 mi2
r1−ri−i+2)

1 a
−(
∑t−1

i=3 mi2
r2−ri−i+3)

2 ·
t−1∏

j=3

(2
∑j−1

k=1 2
rj−k−rj−k+1

)mj

(
2rj − uj

mj

)

= · · · · · ·

= 2
2rt+2r1−0.5r1−0.3257+ 1.2203

2t−1

t−1∏

j=2

a2
rj

j (
2

aj
)2

rj−t+j

.



The Linear Complexity and 2-Error Linear Complexity Distribution 117

Estimate of the lower bound can be obtained via a similar derivation, and
we finally achieve that

N w(L) ≥ 22
rt+2r1−0.5r1−0.3257+ 0.7213

2t−1

t−1∏
j=2

b2
rj

j (
2
bj

)2
rj−t+j

where a1 = 21− 1.2203
2r1 , b1 = 21− 0.7213

2r1 and aj = 1 +
∏j−1

i=1 ( 2
ai

)2
ri−rj+i−j+1

, bj =

1 +
∏j−1

i=1 ( 2
bi

)2
ri−rj+i−j+1

for 1 < j < t. �
Denote the upper and lower bounds of N w(L) by Upper(N w(L)) and

Lower(N w(L)) respectively. Then we find

Upper(N w(L))
Lower(N w(L))

≤
(
2r1−u1

m1

)
max(

2r1−u1
m1

)
min

= 2(1.2203−0.7213)u1/2r1 ≤ 20.4990· 1116 = 1.2684.

This implies that the upper and lower bounds of N w(L) are larger and smaller
than N w(L) at most 26.84% and 1 − 1/1.2684 = 21.16% respectively.

We next turn our attention to the cases in which w takes other values.
According to Corollary 2, it is effortless to see that the Hamming weight of

sequence of linear complexity L = 2r1 + 2r2 + · · · 2rt + 1 must be w = 2n−1 +
l · 2n−r1 . This leads to m1 = w

2n−r1 − u1
2 = 1

2 (2r1 − u1) + l. For small l we can
easily transform the binomial coefficient

(
2r1−u1

m1

)
to

(
2r1−u1

1
2 (2

r1−u1)

)
. For instance,

when l = ±1, we get m1 = 1
2 (2r1 − u1) ± 1 and

(
2r1−u1

m1

)
= 2r1−u1

2r1−u1+2

(
2r1−u1

1
2 (2

r1−u1)

)
.

Utilizing Eq. (14), we get(
2r1 − u1

m1

)
≥ (1 − (−2)1−t) · 2r1

(1 − (−2)1−t) · 2r1 + 6

(
2r1 − u1

1
2 (2r1 − u1)

)
,

(
2r1 − u1

m1

)
≤ (1 − 21−t) · 2r1

(1 − 21−t) · 2r1 + 2

(
2r1 − u1

1
2 (2r1 − u1)

)
.

Adopting a calculation analogous the one used for deriving Theorem2, we
can get the bounds of N w(L) for the cases in which w = 2n−1 ± 2n−t as follows.

Corollary 3. Let N w(L) be the number of 2n-periodic binary sequences with
Hamming weight w and linear complexity L. Then when L = 2r1+2r2+· · ·+2rt+1
with 0 ≤ rt < rt−1 < · · · < r1 < n, 3 < t < n and w = 2n−1 ± 2n−r1 , we have

N w(L) ≤ (1 − 21−t) · 2r1

(1 − 21−t) · 2r1 + 2
· 22

rt+2r1−0.5r1−0.3257+ 1.2203
2t−1

t−1∏
j=2

a2rj

j (
2
aj

)2
rj−t+j

,

N w(L) ≥ (1 − (−2)1−t) · 2r1

(1 − (−2)1−t) · 2r1 + 6
· 22

rt+2r1−0.5r1−0.3257+ 0.7213
2t−1

t−1∏
j=2

b2
rj

j (
2
bj

)2
rj−t+j

,

(16)
where a1 = 21− 1.2203

2r1 , b1 = 21− 0.7213
2r1 and aj = 1 +

∏j−1
i=1 ( 2

ai
)2

ri−rj+i−j+1
, bj =

1 +
∏j−1

i=1 ( 2
bi

)2
ri−rj+i−j+1

for 1 < j < t.
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From here, the counting problem for the number of 2n-periodic binary
sequences of given linear complexity and with fixed Hamming weight is solved.

3 The Characterization of Aw
2 (L)

In this section, we turn our attention to the counting problem for the num-
ber of 2n-periodic binary sequences of 2-error linear complexity and with fixed
Hamming weight.

Let A′
2(L) denote the set of 2n-periodic binary sequences of 2-error linear

complexity L and linear complexity smaller than 2n, and let N ′
2(L) denote the

size of set A′
2(L), which can be formally defined as

A′
2(L) = {S ∈ S2n

: LC2(S) = L and LC(S) < 2n} and N ′
2(L) = |A′

2(L)|.
(17)

Let us first briefly introduce how to get N ′
2(L). It is clear that, if there is a

sequence S with 2-error linear complexity L then there must be another sequence
S′ of linear complexity L which satisfy that the Hamming distance between S
and S′ being no more than 2. According to Lemma 1, which states that the
linear complexity of sequences with odd Hamming weight are 2n, we get

A′
2(L) ⊆ A(L)

⋃
A(L) + E2 (18)

where E2 = {E ∈ S2n

: wH(E) = 2}.
From Lemma 4, it is apparent that for any sequence S in A(L), the corre-

sponding polynomial of S satisfies that S(x) = (x − 1)2
n−La(x) and a(1) �= 0.

Combined with Eq. (1): LC(S) = N − deg(gcd(xN − 1, S(x))), we can easily
verify the following two lemmas.

Lemma 7 [4]. Let A(L) be the set of 2n-periodic binary sequences of linear
complexity L and E, E′ be two error sequences, then we have

A(L) + E = A(L) + E′ or (A(L) + E)
⋂

(A(L) + E′) = ∅. (19)

Lemma 8. Let E, E′ be two error sequences in E, then A(L)+E = A(L)+E′

if and only if there exist two sequences S, S′ in A(L) such that S +E = S′ +E′.

Next, we devote to characterize the set A′
2(L) and evaluate its size N ′

2(L)
based on the properties provided in the above two lemmas. This problem has
already received a treatment in [5,12], here we provide a more concise formula
and proof.

Lemma 9. Let A′
2(L) and N ′

2(L) denote the set of and the number of 2n-
periodic binary sequences with 2-error linear complexity L and linear complexity
less than 2n respectively, then we have
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– if L = 2n − 2r, 0 ≤ r < n, then A′
2(L) = ∅ and N ′

2(L) = 0.
– if L = 2n − (2r1 + 2r2), 0 ≤ r2 < r1 < n, then

A′
2(L) = A(L)

⋃
(A(L) + E) and

N ′
2(L) = (1 + 2r1(2r1+1 − 3 · 2r1−r2−1 − 1)) · 2L−1

(20)

where E = {{i, j} : 0 ≤ i < j < 2r1+1, 2r2 < d(i, j) < 2r1 and i + j <
2r1+1 or 0 < d(i, j) < 2r2}.

– if L = 2n − (2r1 + 2r2 + x), 0 < r2 < r1 < n and 0 < x < 2r2 then

A′
2(L) = A(L)

⋃
(A(L) + E) and

N ′
2(L) = (1 + 2r1(2r1+1 − 2r1−r2−1 + 2r2−r1+1 − 1)) · 2L−1

(21)

where E = {{i, j} : 0 ≤ i < j < 2r1+1, d(i, j) = 2r1 and 0 ≤ i <
2r2+1 or 2r2 < d(i, j) < 2r1 and i + j < 2r1+1 or 0 < d(i, j) ≤ 2r2}.

Proof. According to Lemma 7, to get the size of A′
2(L), it is sufficient to get the

maximum subset of error sequences set E0

⋃
E2 in which for any pair of error

sequences E, E′ it satisfies that A(L) + E ⊆ A′
2(L) and (A(L) + E)

⋂
(A(L) +

E′) = ∅. Next, we proceed the proof case by case.

– Case 1. L = 2n−2r, 0 ≤ r < n. In this case, it can be observed that merr(S) =
2 for any sequence S in A(L), which follows A(L)

⋂ A′
2(L) = ∅. Suppose

the support set of error sequence E in E2 is supp(E) = {i, j}. For each E
in E2, we can construct an error sequence E′ of which the support set is
supp(E′) = {i, j′} and d(j, j′) = 2r. Then we have LC(E + E′) = 2n − 2r =
L, that is to say LC2(S + E) ≤ LC(S + E + E′) < L. Therefore we have
(A(L) + E2)

⋂ A′
2(L) = ∅. As a result, we have A′

2(L) = ∅ and N ′
2(L) = 0.

– Case 2. L = 2n − (2r1 + 2r2), 0 ≤ r2 < r1 < n. In this case, one can observe
that merr(S) = 4, which follows A(L) ⊆ A′

2(L). For any error sequence E in
E2, suppose the support set of E is supp(E) = {i, j}. If d(i, j) > 2r1 , for any
sequence S in A(L) we have LC(S + E) = L that is to say S + E ∈ A(L).
According to Lemma 8, we have A(L)+E = A(L). If d(i, j) = 2r1 then we can
construct an error sequence E′ of which the support set is supp(E′) = {i′, j′}
such that d(i, i′) = d(j, j′) = 2r2 . Then LC(E + E′) = L and LC2(S + E) ≤
LC(S + E + E′) < L, thus we have (A(L) + E)

⋂ A′
2(L) = ∅. Similarly, when

d(i, j) = 2r2 , we also have (A(L)+E)
⋂ A′

2(L) = ∅. Suppose 2r2 < d(i, j) < 2r1

or 0 < d(i, j) < 2r2 . We construct an error sequence E′ of which the support
set is supp(E′) = {i′, j′} where i′ = i mod 2r1+1 and j′ = j mod 2r1+1.
Then we have (E + E′)(x) = xi + xj + xi′

+ xj′
= (x + 1)2

r1+1
b(x) or 0 and

(S + E + E′)(x) = (x + 1)2
r1+2r

2a(x) + (x + 1)2
r1+1

b(x) = (x + 1)2
n−L((x +

1)tb′(x) + a(x)) or equal to S(x) itself where b(x) �= 0 and t > 0. Thus
S′ = S + E + E′ ∈ A(L) and S + E = S + E′. According to Lemma 8, we
have A(L) + E = A(L) + E′. Therefore we only need to consider those error
sequences in E2 with support set {i, j} where 0 < i < j < 2r1+1 and 2r2 <
d(i, j) < 2r1 or 0 < d(i, j) < 2r2 . If 2r2 < d(i, j) < 2r1 , we construct error
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sequence E′ with support set supp(E′) = {i′, j′} where |i′ − i| = |j′ − j| = 2r1 .
Similarly we have S′ = S + E + E′ ∈ A(L) and thus A(L) + E = A(L) + E′.
Consequently, there are half of those error sequences in the set {{i, j} : 0 ≤
i < j < 2r1+1, 2r2 < d(i, j) < 2r1} satisfying the requirements and we can
choose this half part of the set which denoted by SubE1 = {{i, j} : 0 ≤ i <
j < 2r1+1, 2r2 < d(i, j) < 2r1 and i+j < 2r1+1}. Denote SubE2 = {{i, j} : 0 ≤
i < j < 2r1+1, 0 < d(i, j) < 2r2 . It is easy to verify that for any error sequences
E and E′ in SubE1

⋃
SubE2 they satisfy that (A(L) + E′)

⋂
(A(L) + E′) = ∅

and A(L) + E ⊆ A′
2(L). By combinatorial theory, we can state that the size

of SubE1 and SubE2 are
(
2r2+1

1

)(
2r1−r2−1

2

) · 22/2 = 2r1(2r1−r2−1 − 1) and(
2r2

2

)(
2r1−r2+1

1

)2
= 22r1−r2+1(2r2 −1) respectively. As a consequence, we obtain

that

A′
2(L) = A(L)

⋃
(A(L)+E) and N ′

2(L) = (1+2r1(2r1+1 −3 ·2r1−r2−1 −1)) ·2L−1

where E = {{i, j} : 0 ≤ i < j < 2r1+1, 2r2 < d(i, j) < 2r1 and i + j <
2r1+1 or 0 < d(i, j) < 2r2}.

– Case 3. L = 2n−(2r1 +2r2 +x) where 0 < r2 < r1 < n and 0 < x < 2r2 . Similar
to the analysis for Case 2, we can get A(L) ⊆ A′

2(L) and only need to consider
those error sequences in E2 with support set {i, j} which satisfy that 0 ≤ i <
j < 2r1+1. If d(i, j) = 2r1 , we construct an error sequence E′ with support set
supp(E′) = {i′, j′} where i′ = i mod 2r2+1 and j′ = j mod 2r2+1. It can be
verified that S′ = S + E + E′ ∈ A(L) and then A(L) + E = A(L) + E′. Thus,
for the error sequences set E = {{i, j} : 0 ≤ i < j < 2r1+1 and d(i, j) = 2r1}
we only need to consider its subset SubE3 = {{i, j} : 0 ≤ i < 2r2+1 and j =
i+2r1}. Denote SubE4 = {{i, j} : 0 ≤ i < j < 2r1+1 and d(i, j) = 2r2}. Similar
to the analysis for Case 2, it can be verify that for any error sequences E and E′

in SubE1

⋃
SubE2

⋃
SubE3

⋃
SubE4 they satisfy that (A(L)+E′)

⋂
(A(L)+

E′) = ∅ and A(L)+E ⊆ A′
2(L), where SubE1 and SubE2 are mentioned in the

analysis for Case 2. By combinatorial theory, we can state that the size of E3

and E4 are 2r2+1 and
(
2r2

1

)(
2r1−r2

1

)2
= 22r1−r2 respectively. As a consequence,

we obtain that

A′
2(L) = A(L)

⋃
(A(L) + E) and

N ′
2(L) = (1 + 2r1(2r1+1 − 2r1−r2−1 + 2r2−r1+1 − 1)) · 2L−1

where E = {{i, j} : 0 ≤ i < j < 2r1+1, d(i, j) = 2r1 and 0 ≤ i < 2r2+1 or 2r2 <
d(i, j) < 2r1 and i + j < 2r1+1 or 0 < d(i, j) ≤ 2r2}. �

From Corollary 2, we can know that the Hamming weight w of sequence S
in A(L) satisfy that 2n−r1 |w where L = 2r1 + 2r2 + · · · + 2rt + 1, t < n and
0 ≤ rt < rt−1 < · · · < r1 < n (Notice that, in Lemmas 9 and 10, we used
a different expression form of L, which is actually determined by the binary
representation of n − L). Thus, when r1 �= n − 1, the Hamming weight of S in
A(L) can be 2n−1 but must not be 2n−1 ± 2. Now, let us first consider a simple
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case: r1 �= n − 1 and w = 2n−1 and try to get the value of Aw
2 (L) based on the

properties of A′
2(L).

Lemma 10. Let N w
2 (L) be the number of 2n-periodic binary sequences with

2-error linear complexity L and Hamming weight w, then we have

– if L = 2n − 2t, 0 ≤ t < n, then N w
2 (L) = 0.

– if L = 2n−1 − 2t, 0 ≤ t < n − 1 and w = 2n−1, then

(22n−2 − 3 · 22n−t−3 + 1)N w(L) ≤ N w
2 (L) ≤ (22n−2 + 1)N w(L).

– if L = 2n−1 − 2t − x, 0 ≤ t < n − 1, 0 < x < 2t and w = 2n−1, then

(22n−2 − 22n−t−3 + 2t+1 + 1)N w(L) ≤ N w
2 (L) ≤ (22n−2 + 1)N w(L).

Proof. It is obvious that Aw
2 (L) = ∅, and N w

2 (L) = 0 when L = 2n −2t and 0 ≤
t < n. According to Corollary 2, the Hamming weight of sequences in A(L) can
not be 2n−1±2, then Aw

2 (L) ⊆ Aw(L)
⋃

(Aw(L)+E) based on Eq. (20) where E is
defined in Eq. (20). Then the main problem of getting Aw(L) is how to eliminate
those sequences with Hamming weight w ± 2 or preserving the Hamming weight
when adding an sequence E to S where E ∈ E and S ∈ A. For any sequence S
in Aw(L), there are at most

(
w
1

)(
2n−w

1

)
= 22n−2 possibilities when we adding a

sequence E in E to it and preserving the Hamming weight of S. And it is clear
that there are at most

(
w
2

)
=

(
2n−1

2

)
and

(
2n−w

2

)
=

(
2n−1

2

)
possibilities when we

adding a sequence E in E to S and changing the Hamming weight of S to w − 2
and w + 2 respectively. Therefore there are at most 22n−2N w(L) and at least
(|E| − 2

(
2n−1

2

)
)N w(L) sequences with Hamming weight w in the set Aw(L) +E.

Thus we get

(22n−2 − 3 · 22n−t−3 + 1)N w(L) ≤ N w
2 (L) ≤ (22n−2 + 1)N w(L).

if L = 2n−1 − 2t − x, 0 ≤ t < n − 1, 0 < x < 2t follows an analysis analogous the
one used for the previous case and we thus omit it here. �

Let L = 2n − (2r1 + 2r2 + · · · 2rt) and w = 2n−1 where 0 ≤ rt < rt−1 < · · · <
r1 < n, when r1 < n − 1, according to A2(L) ⊆ A(L)

⋃
(A(L) + E2) we have

Aw
2 (L) ⊆ Aw(L)

⋃
(Aw(L) + E2)

⋃
(Aw−2(L) + E2)

⋃
(Aw+2(L) + E2). (22)

A similar analysis to the one in Lemma 10 provides the following theorem.

Theorem 3. Let N w
2 (L) denote the number of 2n-periodic binary sequences with

2-error linear complexity L and Hamming weight w, then we have

– if L = 2n − 2r, 0 ≤ r < n, then N w
2 (L) = 0.

– if L = 2n − (2r1 + 2r2), 0 ≤ r2 < r1 < n and w = 2n−1, then

N w
2 (L) ≥(22r1 − 3 · 22r1−r2−1 + 1)N w(L) +

(22r1 − 3 · 22r1−r2−1 − 4)(N w+2(L) + N w−2(L)),

N w
2 (L) ≤(22r1 + 1)N w(L) + (22r1 − 4)(N w+2(L) + N w−2(L)).
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– if L = 2n − (2r1 + 2r2 + x), 0 < r2 < r1 < n, 0 < x < 2r2 and w = 2n−1, then

N w
2 (L) ≥(22r1 − 22r1−r2−1 + 2r2+1 + 1)N w(L) +

(22r1 − 22r1−r2−1 + 2r2+1 − 4)(N w+2(L) + N w−2(L))

N w
2 (L) ≤(2r1 + 1)N w(L) + (22r1 − 4)(N w+2(L) + N w−2(L)).

Based on the above theorem and combining the bounds of N w(L), N w±2(L)
provided in inequalities (13) and (16), we can get the bounds of N w

2 (L).

4 Conclusions

In this paper, we devote to get the distribution of linear complexity and k-error
linear complexity of 2n-periodic binary sequences with fixed Hamming weight.
First, we use short sequence to construct special longer sequence in a manner
similar to the reversed process of the Games-Chan algorithm. And we get the
explicit formula of the number of sequences with given linear complexity L and
Hamming weight w. Besides, we provide an asymptotic evaluation of this count-
ing function when n gets large. Particularly, we analyze the bounds of counting
function of the number of balance sequences with given linear complexity. And
extend those bounds to the case of some special Hamming weight. Secondly,
we characterize the 2-error linear complexity of 2n-periodic binary sequences
using a simple method. And then based on those characters we get the bounds
of the number of 2n-periodic balance binary sequence with fixed 2-error linear
complexity. By further analyzing the bounds of the number of sequences with
given Hamming weight, using our method can get the bounds of the counting
functions of the k-error linear complexity of 2n-periodic binary sequences with
special Hamming weight and for some large k. Along this line of study, one
can get evaluations on the number of sequences of other period or/and of other
values of complexity measures and with fixed Hamming weight.
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