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Abstract. The Learning Parity with Noise (LPN) problem is well
understood in learning theory and cryptography and has been found
quite useful in constructing various lightweight cryptographic primitives.
There exists non-trivial evidence that the problem is robust on high-
entropy secrets (and even given hard-to-invert leakages), and the justi-
fied results by Dodis, Kalai and Lovett (STOC 2009) were established
under non-standard hard learning assumptions. The recent progress by
Suttichaya and Bhattarakosol (Information Processing Letters, Volume
113, Issues 14–16) claimed that LPN remains provably secure (reducible
from the LPN assumption itself) as long as the secret is sampled from
any linear min-entropy source, and thereby resolves the long-standing
open problem. In the paper, we point out that their proof is flawed and
their understanding about LPN is erroneous. We further offer a remedy
with some slight adaption to the setting of Suttichaya and Bhattarakosol.
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1 Introduction

Learning Parity with Noise. The computational version of learning parity
with noise (LPN) assumption with parameters n ∈ N (length of secret), q ∈ N

(number of queries) and 0 < μ < 1/2 (noise rate) postulates that it is computa-
tionally infeasible to recover the n-bit secret s ∈ Z

n
2 given (a·s⊕e, a), where a is a

random q×n matrix, e follows Berqμ, Berμ denotes the Bernoulli distribution with
parameter μ (i.e., Pr[Berμ = 1] = μ and Pr[Berμ = 0] = 1−μ), ‘·’ denotes matrix
vector multiplication over GF(2) and ‘⊕’ denotes bitwise XOR. The decisional
version of LPN simply assumes that a · s ⊕ e is pseudorandom (i.e., computa-
tionally indistinguishable from uniform randomness) given a. While seemingly
stronger, the decisional version is known to be polynomially equivalent to its
computational counterpart [4,8,21].
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Hardness of LPN. The computational LPN problem represents a well-known
NP-complete problem “decoding random linear codes” [6] and thus its worst-
case hardness is well understood. LPN was also extensively studied in learning
theory, and it was shown in [15] that an efficient algorithm for LPN would allow
to learn several important function classes such as 2-DNF formulas, juntas, and
any function with a sparse Fourier spectrum. Under a constant noise rate (i.e.,
μ = Θ(1)), the best known LPN solvers [9,25] require time and query complexity
both 2O(n/ log n). The time complexity goes up to 2O(n/ log log n) when restricted
to q = poly(n) queries [26], or even 2O(n) given only q = O(n) queries [28]. Under
low noise rate μ = n−c (0 < c < 1), the security of LPN is less well understood:
on the one hand, for q = n + O(1) we can already do an efficient distinguishing
attack with advantage 2−O(n1−c) that matches the statistical indistinguishability
(from uniform randomness) of the LPN samples ; on the other hand, for (even
super-)polynomial q the best known attacks [5,7,10,24,31] are not asymptoti-
cally better, i.e., still at the order of 2Θ(n1−c). We mention that LPN does not
succumb to known quantum algorithms, which makes it a promising candidate
for “post-quantum cryptography”. Furthermore, LPN also enjoys simplicity and
is more suited for weak-power devices (e.g., RFID tags) than other quantum-
secure candidates such as LWE [30].

LPN-based Cryptographic Applications. LPN was used as a basis for
building lightweight authentication schemes against passive [18] and even active
adversaries [20,21] (see [1] for a more complete literature). Recently, Kiltz et al.
[23] and Dodis et al. [13] constructed randomized MACs based on the hardness of
LPN, which implies a two-round authentication scheme with man-in-the-middle
security. Lyubashevsky and Masny [27] gave an efficient three-round authentica-
tion scheme whose security can be based on LPN or weak pseudorandom func-
tions (PRFs). Applebaum et al. [3] showed how to constructed a linear-stretch
pseudorandom generator (PRG) from LPN. We mention other not-so-relevant
applications such as public-key encryption schemes [2,14,22], oblivious transfer
[11], commitment schemes and zero-knowledge proofs [19], and refer to a recent
survey [29] on the current state-of-the-art about LPN.

The Error in [32] and Our Contributions. In the standard LPN, the secret
vector is assumed to be generated uniformly at random and kept confidential.
However, for the version where the secret vector is sampled from some arbitrary
distribution with sufficient amount of min-entropy, its hardness is still unclear.
In the paper [32], the authors claimed a positive answer on the open question.
More specifically, they show that if the l-bit secret is of min-entropy k = Ω(l),
then the LPN problem (on such a weak secret) is hard as long as the standard
one is (on uniform secrets). Unfortunately, we find that the claim in [32] is flawed.
Loosely speaking, the main idea of [32, Theorem 4] is the following: denote by
D a distribution over Z

l
2 with min-entropy k = Ω(l) and let n = k − 2 log(1/ε)

for some ε negligible in the security parameter1, sample B
$←− Z

m×n
2 , C

$←− Z
n×l
2 ,

1 The security argument in [32] is quite informal: it defines a number of parameters
without specifying which one is the main security parameter. We assume WLOG
that the security parameter is l (the length of the secret).
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E ← Berm×n
α , F

$←− Z
n×l
2 and e ← Bermβ , and let A = BC ⊕ EF . The authors of

[32] argue that As ⊕ e is computationally indistinguishable from uniform even
conditioned on A and that A is statistically close to uniform. Quantitatively, the
standard LPN

n, 12− (1−α)n

2
assumption implies LPND

1
2−( 1

2−β)(1−α)n . We stress that
the proofs are incorrect for at least the following reasons:

1. For a reasonable assumption, the noise rate should be bounded away from
uniform at least polynomially, i.e., (1 − α)n/2 ≥ 1/poly(l). Otherwise, the
hardness assumption is trivial and useless as it does not imply any efficient
(polynomial-time computable) cryptographic applications.

2. A = BC ⊕ EF is not statistically close to uniform. BC is sampled from a
random subspace of dimension n < k ≤ l and thus far from being uniform
over Z

m×l
2 (recall that m � l). Every entry of matrix EF is distributed to

Ber1/2−(1−α)n/2 for (1 − α)n/2 ≥ 1/poly(l) (see item 1 above). Therefore, the
XOR sum of BC and EF never amplifies to statistically uniform randomness.

3. There are a few flawed intermediate statements. For example, the authors
prove that every entry of EF is distributed according to Ber1/2−(1−α)n/2 and
then conclude that EF follows Berm×l

1/2−(1−α)n/2, which is not true since there’s
no guarantee that the entries of EF are all independent.

We fix the flaw using the “sampling from random subspace” technique [16,33].

2 Preliminaries

Notations and Definitions. We use [n] to denote set {1, . . . , n}. We use
capital letters (e.g., X, Y ) for random variables and distributions, standard
letters (e.g., x, y) for values, and calligraphic letters (e.g. X , E) for sets and
events. The support of a random variable X, denoted by Supp(X), refers to the
set of values on which X takes with non-zero probability, i.e., {x : Pr[X = x] >
0}. For set S and binary string s, |S| denotes the cardinality of S and |s| refers to
the Hamming weight of s. We use Berμ to denote the Bernoulli distribution with
parameter μ, i.e., Pr[Berμ = 1] = μ, Pr[Berμ = 0] = 1 − μ, while Berqμ denotes
the concatenation of q independent copies of Berμ. For n ∈ N, Un denotes the
uniform distribution over Z

n
2 and independent of any other random variables in

consideration, and f(Un) denotes the distribution induced by applying function
f to Un. X∼D denotes that random variable X follows distribution D. We use
s ← S to denote sampling an element s according to distribution S, and let
s

$←− S denote sampling s uniformly from set S.

Entropy Definitions. For a random variable X and any x ∈ Supp(X), the
sample-entropy of x with respect to X is defined as

HX(x) def= log(1/Pr[X = x])

from which we define the Shannon entropy and min-entropy of X respectively, i.e.,

H1(X) def= Ex←X [ HX(x) ], H∞(X) def= min
x∈Supp(X)

HX(x).
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Indistinguishability and Statistical Distance. We define the (t,ε)-
computational distance between random variables X and Y , denoted by X ∼

(t,ε)
Y ,

if for every probabilistic distinguisher D of running time t it holds that

| Pr[D(X) = 1] − Pr[D(Y ) = 1] | ≤ ε.

The statistical distance between X and Y , denoted by SD(X,Y ), is defined by

SD(X,Y ) def=
1
2

∑

x

|Pr[X = x] − Pr[Y = x]| .

Computational/statistical indistinguishability is defined with respect to distrib-
ution ensembles (indexed by a security parameter). For example, X

def= {Xn}n∈N

and Y
def= {Yn}n∈N are computationally indistinguishable, denoted by X

c∼ Y , if
for every t = poly(n) there exists ε = negl(n) such that X ∼

(t,ε)
Y , and they are

statistically indistinguishable, denoted by X
s∼ Y , if SD(X,Y ) = negl(n).

Simplifying Notations. To simplify the presentation, we use the following
simplified notations. Throughout, n is the security parameter and most other
parameters are functions of n, and we often omit n when clear from the context.
For example, q = q(n) ∈ N, t = t(n) > 0, ε = ε(n) ∈ (0, 1), and m = m(n) =
poly(n), where poly refers to some polynomial.

We will use the decisional version of the LPN assumption which is known to
be polynomially equivalent to the computational counterpart.

Definition 1 (LPN). The decisional LPNμ,n problem (with secret length n
and noise rate 0 < μ < 1/2) is hard if for every q = poly(n) we have

(A, A·X⊕E)
c∼ (A,Uq) (1)

where q × n matrix A ∼ Uqn, X ∼ Un and E ∼ Berqμ. The computational
LPNμ,n problem is hard if for every q = poly(n) and every PPT algorithm D we
have

Pr[ D(A, A·X⊕E) = X ] = negl(n),

where A ∼ Uqn, X ∼ Un and E ∼ Berqμ.

Lemma 1 (Leftover Hash Lemma [17]). Let (X,Z) ∈ X × Z be any joint
random variable with H∞(X|Z) ≥ k, and let H = {hb : X → Z

l
2, b ∈ Z

s
2} be a

family of universal hash functions, i.e., for any x1 
= x2 ∈ X , Pr
b

$←−Zs
2

[hb(x1) =

hb(x2)] ≤ 2−l. Then, it holds that

SD

(
(Z,B, hB(X)) , (Z,B,Ul)

)
≤ 2l−k,

where B ∼ Us.
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3 Correcting the Errors

3.1 The Main Contribution of [32]

In the standard LPN, the secret is assumed to be generated uniformly at random
and kept confidential. However, it remains open whether or not the hardness
of the LPN can still hold when secret is not uniform but sampled from any
distribution of linear entropy (in the secret length). The recent work [32] claims
a positive answer on the open question. More specifically, the authors show that
the standard LPN

n, 12− (1−α)n

2
assumption implies LPND

1
2−( 1

2−β)(1−α)n for any D
of min-entropy k = Ω(l) and n = k − 2 log(1/ε).

3.2 How the Proof Goes Astray

The statement in [32, Theorem 4] does not hold. We recall that the setting
of [32]: let D be any distribution over Z

l
2 with min-entropy k = Ω(l) and let

n = k − 2 log(1/ε) for some negligible ε, sample B
$←− Z

m×n
2 , C

$←− Z
n×l
2 , E ←

Berm×n
α , F

$←− Z
n×l
2 and e ← Bermβ , and let A = BC ⊕EF . As we pointed out in

Sect. 1, there are a few flaws in their proof. First, the noise rate 1/2− (1−α)n/2
is too strong to make any meaningful statements. Second, the matrix A is far
from statistically uniform and there’s not even any evidence that it could be
pseudorandom. Third, the claim that EF follows Berm×l

1/2−(1−α)n/2 is not justified
since they only show that each entry of EF follows Ber1/2−(1−α)n/2. It remains
to show that entries of EF are all independent, which is less likely to be proven.
Notice that here machinery such as two-source extraction does not help as the
extracted bits are biased.

3.3 The Remedy

Now we give an easy remedy using the techniques from [16,33]. Let D ∈ Z
l
2 be

any distribution with min-entropy k = Ω(l), n = k − ω(log l), let B
$←− Z

m×n
2 ,

C
$←− Z

n×l
2 , A = BC and e ← Bermα , According to Leftover Hash Lemma, we

have
(C,C · s)

s∼ (C,Un),

which in turn implies

(BC, (BC) · s ⊕ e)
s∼ (BC,B · Un ⊕ e).

Note that the standard LPNn,α implies

(B,B · Un ⊕ e)
c∼ (B,Um).

It follows that
(BC, (BC) · s ⊕ e)

c∼ (BC,Um)

and therefore completes the proof. This also simplifies the proof in [32] by elimi-
nating the need for matrices E and F . Notice that we require that A is sampled
from a random subspace of dimension n, instead of a uniform distribution.
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4 Remarks on the Applications

In [32], the authors apply their result to the probabilistic CPA symmetric-key
encryption scheme in [12], where the secret key is sampled from an arbitrary
distribution with sufficient min-entropy. However, the noise rate 1

2 − (1−α)n

2 is
either statistically close to uniform (and thus infeasible to build any efficient
applications), or it does not yield the desired conclusion due to flawed proofs.
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