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Abstract. We consider bit security of public key cryptosystem XTR,
presented by Lenstra and Verheul in 2000. Using the list-decoding meth-
od, we prove finding one of its pre-image of XTR if single bit of its
plaintext is predicted with a non-negligible advantage. That is, every
single bit of plaintext of XTR is a hardcore predicate if XTR is one-way.
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1 Introduction

One-way functions (OWFs) are functions that are easy-to-evaluate but hard-to-
invert. It has numerous cryptographic applications. However, its definition does
not say much about the security of a particular predicate over its pre-image.
For instance, how about the most significant bit of the pre-image of one-way
function? If one can guess this bit with a non-negligible advantage beyond 1/2,
one might be able to obtain (partial) secret information that is hidden by this
one-way function. So to prove that some bit is hard to be predicted is of primary
interest. The kind of bit is called hard-core predicate of one-way function and
we also say it is hard.

There are three main methods to study a hardcore predicate in our view: The
first one is the traditional reduction technique, which is based on the multiplica-
tive or additive homomorphism property of some one-way functions. Specifically,
if there exists an oracle with a non-negligible advantage to predict one bit of the
pre-image from ciphertext, then one could construct other ciphertexts and invoke
the oracle to predict the bit of pre-images of the fresh ciphertexts. Thus we could
transform the advantage of oracle into the probability of correctly inverting one-
way function. This method only applies to some one-way functions with homo-
morphism property, such as DL, RSA, Rabin, ECL, Paillier, etc., [1,3,7,8,21],
and that O(log n) bits are simultaneous hard [1,3,22]. All the subsequent works
make efforts to prove the simultaneous or individual security of O(n) bits for
these candidate one-way functions (see [5,17]). The second method is hidden
number problem (HNP) method. If we are given an oracle to predict partial
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relevant information about the secret called hidden number, then we try to find
out the hidden number. In this method, we choose a series of samples uniformly
and randomly to query oracle. The oracle answers partial information about the
hidden number. Then we use these samples and answers of oracle to construct a
lattice. Using the lattice reduction algorithm and bounds of exponential sums, we
could recover the hidden number in probabilistic polynomial time. This method
is uniform but it only shows us there exists a hardcore predicate in a section of
a bit string (see [2,14,19,20] and therein). [11] proved that for every one-way
function there is a predicate that is hard to be predicated, given the value of any
one-way function. The techniques they used indeed is a application of sub-linear
time list-decoding Hadamard code. Following this idea, Akavia et al. [4] pro-
posed the third method, a uniform elegant method called list-decoding method,
to prove that a predicate is hard-to-compute for some one-way functions, which
avoids the cumbersome bit manipulations in 2003. Using it, bit security can be
studied for entire classes of functions. The method relies on the construction of
a code that encodes the pre-images of one-way function we try to invert. That
is, given a one-way function f : X → Y and a predicate P (x) for x ∈ X, we con-
struct a code CP that associates x ∈ X with a codeword CP

x . If we could have
access to a corrupted codeword w (which we can get by an oracle on predicting
the bit), there is a PPT algorithm that computes a list of all x ∈ X such that
CP

x is close to w (usually using Hamming distance). So we can find exact x by
exhausting the list, which show the predicate P is hard-to-compute for one-way
function f . This method has a strong point, that is, since code CP associates
x ∈ X with a codeword CP

x and each codeword is bijective to one pre-image x,
the final list must contain all x corresponding to codeword close to w whether
or not f is an injective function. The method can be used widely to study bit
security of one-way functions, such as RSA, Rabin, EXP, ECDL and so on (see
[4,5,10], etc.). [14,15] studied bit security of LUC function (see [6]) over RSA
modulo and over an extension field of degree 2 respectively.

As a generalization of LUC to an extension field of degree 6, XTR is presented
in [16], which takes advantage of traces to calculate and represent powers of
elements of a subgroup of a finite field. Its idea is to gain a secure cryptosystem
basing on discrete logarithms problem in Fp6 while the messages exchanged
and actual computation are performed over Fp2 . It contributes to substantially
savings both in computational and communication cost without compromising
security when being applied in cryptographic protocols. It has been proved that
the security of XTR is computationally equivalent to solving discrete logarithms
in Fp6 (see [9,16]). In this paper, we study the bit security of XTR. We use
list-decoding method based on list-decoding via discrete Fourier transforms and
construct the XTR multiplication code as [15]. We show, if given a probabilistic
polynomial time (PPT) algorithm with a non-negligible advantage to predict
the k-th bit of pre-image x accessing a noisy codeword that can be list-decoded,
we could recover its pre-image of XTR by constructing proper access algorithm
with witness, which results in inverting XTR.
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Related Works: The first hardcore predicate was found by Blum and Micali
[8] for the discrete logarithm problem (DL) over a prime field Fp. Subsequently,
the question of finding hardcore predicates of one-way functions was studied
extensively. For example, [12] showed that every bit of RSA plaintext is hard-to-
compute. Similarly, for exponent function modulo a Blum composite, [13] showed
that all the bits are hard-to-compute. By changing representation of the bits, [18]
showed that almost all of the bits in the DL function modulo a prime are hard-to-
compute. A similar result but independent of the bit representation was proven
in [12]. Each proof of these results need cumbersome bit manipulations and
algebraic techniques, which only applies to a specific one-way function and have
to be significantly modified to be used on another OWF (or even most cannot
be used at all). Thus, finding generic method to study hardcore predicates that
apply to most general collections of one-way functions is highly desirable.

[4] presented a uniform elegant method to prove that a predicate is hard-to-
compute for some one-way functions. This method avoids the cumbersome bit
manipulations. Using it, bit security can be studied for entire classes of functions.
The method relies on the construction of a code that encodes the pre-images of
one-way function we try to invert and can be used to study bit security RSA,
Rabin, EXP and ECDL. Indeed, security of the O(log n) least and most sig-
nificant bits of these functions are proved, where n is the size of pre-image of
one-way function. [17] proved the security of all bits in RSA, Rabin and Paillier
function for RSA moduli using a specific analysis of the Fourier coefficients that
maps an element of ZN to the value of the k-th bit of its corresponding represen-
tative in [0, N − 1]. Bit security of the argument for one-way function based on
elliptic curve also is proved using this method in [3]. [10] defined a very natural
variation of Diffie-Hellman problem over Fp2 and proved the unpredictability of
every single bit of one of the coordinates of the secret DH value is hardcore.

Our Works: It is believed that breaking XTR is computationally equivalent
to solving discrete logarithms in Fp6 . Using hidden number problem method
and tool of lattice, [14] proved that the log1/2 p most significant bits of Diffie-
Hellman type variation of XTR are secure, but specific hardcore predicates could
not be shown. Furthermore, [14] showed that XTR is not a injective function,
so it could not be studied as that of LUC. So far, bit security of XTR should
be more studied. Here, we study the bit security of XTR using the list-decoding
method, and show the k-th bit of x of XTR is a hardcore predicate. But, using
list-decoding method and properties of XTR, we could invert XTR.

Given a PPT algorithm with a non-negligible advantage to predict the k-th
bit of x, we first construct a new multiplication code (XTRMC) such that it is
list-decodable and accessible. Then we use discrete Fourier transforms on abelian
groups to study its Fourier concentration and recoverability, and, based on the
learning algorithm of [4], prove that XTRMC is list-decodable and accessible.
Finally, we give an inverting algorithm to find pre-image of XTR, which results
in inverting XTR. Although XTR is not an injective function, that is, for one
value of XTR, there exists three pre-images x, xp2 and xp4, we can construct
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an access algorithm with witness using Theorem 1 such that its output values
contain a witness Sj(Tr(gx)) = (Tr(g(j−1)x), T r(gjx), T r(g(j+1)x)). For any j′ �=
j, Sj(Tr(gx)) �= Sj′(Tr(gx)) by Sect. 3.2, which assure that access algorithm can
not bring another pre-image into list. Thus, each j is bijective to unique accessed
value. By learning algorithm, a list of characters is output, which contains heavy
characters of corrupted codeword with a high probability. So Inversing algorithm
can use recovery algorithm to find a list containing pre-image x such that x is
uniquely determined.

Notations: Let N be the set of natural number and R be the set of real number.
Given an element x ∈ Fq, define [x] as the representative of the class of x in
[0, q − 1] and absq(x) = min{[x], q − [x]}. Let A be a set, then x ∈R A denotes
that x is chosen randomly, uniformly and independently in A.

2 Organization

The paper is organized as follows: Sect. 3 gives some preliminaries. In Sect. 3,
we introduce some basic notions, XTR cryptosystem and properties of discrete
Fourier transforms on abelian groups and also present the learning algorithm
due to Akavia et al. In Sect. 4, we present our main theorem. In Sect. 5, we
summarize our contribution and some extensions are discussed.

3 Preliminaries

3.1 Basic Concepts

Definition 1. A function ν : N → R is called negligible if for every constant
c ∈ R and c > 0, there exists a k0 ∈ N such that |ν(k)| < k−c for all k > k0.
A function ρ : N → R is non-negligible if there exists a constant c ∈ R, c > 0
and a k0 ∈ N such that |ρ(k)| > k−c for infinite number of k > k0.

Definition 2. A function f : X → Y is called one-way if it satisfies that:
(1) Given x ∈ X, one can compute f(x) in polynomial time in log |X|;
(2) For every probabilistic polynomial time in log |X| algorithm A, there exists a
negligible function νA such that Pr[f(z) = y : y = f(x), z = A(y)] < νA(log |X|),
where the probability is taken over random coin tossing of A and choice of x ∈ X
uniform and random. That is, for every PPT in log |X| algorithm A, its advan-
tage of inverting f is negligible.

Definition 3. A Boolean function P : D → {±1} is called a predicate for a
function f if both share a common domain. In order to do with biased predi-
cates, let majP = max

b∈{±1}
Pr

x∈RD
[P (x) = b] and minorP = min

b∈{±1}
Pr

x∈RD
[P (x) = b].

Obviously, majP = 1 − minorP .
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Definition 4. We say an PPT algorithm B efficiently predicts predicate P for
f if there exists a non-negligible function ρ, s.t. Pr[B(f(x)) = P (x)] � majP +
ρ(log |D|), where the probability is taken over random coin tossing of B and
choices of x ∈ D. We say predicate P is hardcore for a one-way function f if it
could not be predicted efficiently.

3.2 XTR

Let F (c,X) = X3 − cX2 + cpX − 1 ∈ Fp2 [X] be an irreducible polynomial for
prime p, then the roots of F (c,X) take the form h, hp2

, hp4
for some h ∈ Fp6

of order dividing p2 − p + 1 and larger than 3. For n ∈ Z, we set c1 = c,
cn = hn + hnp2

+ hnp4
. Thus cn = Tr(hn), where the trace Tr(hn) over Fp2

is Fp2 -linear, and c−n = cn
p . For any g ∈ Fp6 which have order q for a prime

q > 3 and q|p2 − p + 1, its minimal polynomial is F (Tr(g),X). Furthermore,
Tr(gn) ∈ Fp2 and F (Tr(gn), gn) = 0 for all n. It is shown that, for such g,
the trace value fully specifies g’s minimal polynomial, and thus its conjugates,
which gives the fundamental idea of XTR. As shown in [16], if p ≡ 2 mod 3,
then cn can be computed efficiently given c = c1 using a recurrence relation,
and cn−1 and cn+1 are obtained at no extra cost as a side result. It is almost
three times faster than computing gn from g using traditional exponentiation
methods. Thus, in XTR we replace powers of g by their traces, thereby saving
a factor of three both in storage and in computing time. Note that an actual
representation of g is not required, and that it suffices to have its trace Tr(g).

Given Tr(g) and the order of g, the subgroup 〈g〉 generated by g (unknown)
is called the XTR group, and function f : F

∗
q → Fp2 with f(x) = Tr(gx) is

called XTR one-way function. XTR parameters consists of primes p and q as
the prior, where p ≡ 3 mod 4, and the trace Tr(g) of a generator of the XTR
group. The primes p and q of appropriate sizes can be found using either of the
two methods given in [16]. To find a proper Tr(g), it suffices to find c ∈ Fp2\Fp

such that F (c,X) ∈ Fp2 [X] is irreducible, and c(p2−p+1)/q = 3, and set Tr(g) =
c(p2−p+1)/q. Since the probability that c(p2−p+1)/q �≡ 3 if F (c,X) is irreducible
is only 1/q, usually the irreducible F (c,X) works.

Theorem 1 [14]. Let Sn(c) = (cn−1, cn, cn+1). Given the sum of c of the roots
of F (c,X), there exists an algorithm computing the sum cn of the n-th powers
of the roots which takes 8 log n multiplications in Fp.

3.3 Fourier Transforms

Let G be a finite abelian group and C(G) be the space of all complex valued
functions f : G → R. For any f, g ∈ C(G), their inner product is defined
as 〈f, g〉 = 1

|G|
∑

x∈G f(x)g(x). The �2-norm of function f is ‖f‖2 =
√〈f, f〉.

A character of G is a homomorphism χ : G → R satisfying χ(x + y) = χ(x)χ(y)
for all x, y ∈ G. The set of all characters of G forms a group Ĝ called character
group. Elements of Ĝ form a normal orthogonal base of C(G) (i.e. Fourier basis).
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Then a function f ∈ C(G) can be described by its Fourier expansion f(x) =
∑

x∈G〈f, χ〉χ. So its Fourier transform f̂ : Ĝ → R is defined by f̂(χ) = 〈f, χ〉.
The coefficients f̂(χ) in the Fourier basis {χ}x∈Ĝ are called Fourier coefficients of
f . We can approximate a function f ∈ C(G) using subsets Γ ⊂ Ĝ of characters
via its restriction fΓ =

∑
x∈Γ f̂(χ)χ. When G = Z/nZ, characters of G are

defined by χ(α) = ωαx
n for α ∈ Zn and ωn = e

−2πi
n . Weight of a Fourier coefficient

f̂(χ) is ‖f̂(χ)‖22. So we define heavy characters of a function f .

Definition 5 (Heavy character). Given a function f : G → R and a threshold
τ , Heavyτ (f) denotes a set of characters for which weight of the corresponding
Fourier coefficient of f is at least τ . That is, Heavyτ (f) = {x ∈ Ĝ|‖f̂(χ)‖2 � τ}.
Definition 6 (Fourier Concentration). We say a function f : ZN → R

is Fourier concentrated if, for every ε > 0, there exists a set Γ consisting of
poly(log N/ε) characters, so that ‖f −fΓ ‖22 =

∑
α/∈Γ ‖f̂(α)‖2 � ε. For simplicity,

f is called to be ε-concentrated on set Γ .

The heavy character of f is any character for which the projection of f on it
has a large norm. So, given τ > 0 and f , we set Heavyτ (f) = {χα|‖f̂(α)‖2 � τ}.

3.4 Code and List-Decoding Method

To encode elements of ZN , we will only consider codewords of length N . Thus,
a binary code is a subset C ⊂ {±1}N , and each of codeword Cx is a function
Cx : ZN → {±1} expressed as (Cx(0), Cx(1), · · · , Cx(N − 1)).

Definition 7 (Hamming distance). The normalized Hamming distance
between two functions g, h : ZN → {±1} is Δ(g, h) = Prx∈ZN

[g(x) �= f(x)].

Definition 8 (List-decodable code). A code C = {Cx : ZN → {±1}} is
list-decodable if there exists a PPT algorithm which, given access to a cor-
rupted codeword w and on input a threshold δ, ε, and 1N , returns a list
L ⊇ {x|Δ(w,Cx) < minorCx

− ε} with a probability 1 − δ.

Definition 9 (Concentration). We say a code C is concentrated if each of its
codewords Cx ∈ C is Fourier Concentrated.

Definition 10 (Accessibility). For each n ∈ N, assume In ⊆ {0, 1}n be a
countable set and I = (In)n∈N. Let P = (Pi)i∈I be a collection of predicates and
F = {fi|Di → {±1}∗}i∈I be a family of one-way functions. We say that P is
accessible with respect to F if there exists a PPT access algorithm A such that
for all i ∈ In, CPi is accessible to fi, namely

1. Code access: ∀x, j ∈ Di, A(i, fi(x), j) returns fi(x′) such that CPi
x (j) =

Pi(x′);
2. Well spread: For uniformly distributed CPi

x ∈ CPi and j ∈ Di, the distrib-
ution of x′ satisfying fi(x′) = A(i, fi(x), j) is statistically close to uniform
distribution on Di;
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3. Bias preserving: For a non-negligible fraction of codeword CPi
x , |Pr[CPi

x (j) =
1|j ∈ Di] − Pr[Pi(z) = 1|z ∈ Di]| � ν(n), where ν is a negligible function.

Now we give a sufficient conditions that a code is list-decodable and its
detailed explanation can be found in [4].

Theorem 2 (List-decoding method). Let C = {Cx|Cx : ZN → {±1}} be a
concentrated and recoverable code, then C is list-decodable.

3.5 The Learning Algorithm

[4] extends the algorithm of learning heavy Fourier coefficients of a function
f : {0, 1}k → {0, 1} to the function f : Zk

N → R. Specifically, they devise an
efficient search procedure to find fewer relevant characters.

Theorem 3 [4]. There is an algorithm A that, given query access to g : ZN →
{±1}, τ > 0 and δ ∈ (0, 1), outputs a list L of O(1/τ) characters (each can be
encoded in log N bits), that contains Heavyτ (g) with a probability at least 1− δ;
and its running time is Õ(log N) · ln2(1/δ)/τ5.5.

Remark. Õ(·) indicates that terms of complexity which is a polynomial in
log(1/τ), log N or ln ln(1/δ) have been omitted. The theorem implies that if we
could access a function defined on an abelian group, then it is computationally
feasible to obtain a list of all the Fourier coefficients. It is helpful for us to
construct the recovering algorithm for XTRMC (see Subsect. 4.1).

4 Main Theorem

Throughout, we set bits values to be {±1} instead of {0, 1}. That is, we take
values (−1)b for b ∈ {0, 1}. For Fp, let P : Fp → {±1} be the predicate defined by
P (x) = Bi(x), where Bi(x) denotes the i-th bit of an element x. We show it is a
hardcore predicate for XTR one-way function f : F∗

q → Fp2 with f(x) = Tr(gx).

Definition 11. Let p, q be two primes selected by XTR cryptosystem, g ∈ Fp6

have order q dividing p2−p+1 and larger than 3. We say that A has a advantage
ρ ∈ (0, 1) of predicting the predicate P of the argument of XTR one-way function
f : F∗

q → Fp2 with f(x) = Tr(gx) if |Pr [A(f(x), z) = P (x)] − majP | > ρ. The
probability is taken over x ∈ F ∗

q chosen uniformly and randomly, and random
coins z of A. When ρ is a non-negligible function, let 1/ρ = poly(log q).

We state the main theorem:

Theorem 4. Let ρ ∈ (0, 1) be a non-negligible function, both p and q be primes
as above. Let f : F∗

q → Fp2 with f(x) = Tr(gx) be a XTR one-way function.
If there exists an algorithm A to predict P with a non-negligible advantage ρ in
time poly(log q), where ρ(log q) > 0. Then there exists an algorithm INV that
inverts f(x) in time poly(log |q|, 1/ρ) for at least ρ

2 |F∗
q | of x.
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4.1 Proof of Main Theorem

Before we prove the main theorem, we first construct multiplication code of XTR
function (XTRMC).

Definition 12 (XTRMC). Let p, q, g and Bi(x) be defined as above. We
define multiplication code CP = {CP

x : F∗
q → {±1}}x∈F∗

q
, where CP

x (j) = P (j · x
mod q), x is the argument of XTR one-way function f . We denote the code
C = CP = {CP

x }.
Lemma 1. Let P : F∗

q → {±1} be a predicate and CP be accessible to f . If there
exists a PPT algorithm Ak that predicts P from f with advantage ρ′, then there
exists a set S and |S| � ρ′

2 |CP | such that ∀CP
x ∈ S, given f(x), we have query

access to a corrupted codeword wx satisfying Δ(wx, CP
x ) � minorCP

x
− ρ(k),

where ρ is a non-negligible function and k = log q.

Proof. Since CP is accessible with regard to f , there exists an access algorithm
D satisfying D(f(x), j) = f(x′). Let wx(j) = Ak(D(f(x), j))) and set αx,j ∈ F

∗
q

such that f(αx,j) = D(f(x), j). By the construction of D, there is only j here.
Since the code is well spread and Ak has an advantage ρ′(k) to predict P ,
Pr[Ak(f(αx,j)) = P (αx,j)] � majP + ρ′(k), where the probability is taken over
random coin tosses of Ak and random choice of CP

x ∈ CP and j ∈ F
∗
q .

Let S be a set satisfying Pr[Ak(f(αx,j)) = P (αx,j)] � majP + ρ′(k)
2 for all

CP
x ∈ S. Then |S| � ρ′(k)

2 |CP |, s.t. ∀CP
x ∈ S, Pr[Ak(f(αx,j)) = P (αx,j)] �

majP + ρ′(k)
2 . Note that the code is bias preserving, |majCP

x
− majP | � ν′(k),

where ν′ is a negligible function. So Ak has a non-negligible function ρ(k) =
ρ′(k)
2 − ν′(k) s.t. ∀CP

x ∈ S, Pr[Ak(f(αx,j)) = P (αx,j)] � majP + ρ(k). Namely,
∀CP

x ∈ S, Δ(wx, CP
x ) � minorCP

x
− ρ(k). This completes the proof.

Fourier Concentration of XTRMC. In order to bound the size of the fourier
coefficients P̂ (α) and sieve the heavy ones, we could use the method of [17] to
obtain a careful analysis of function P (x) and find out the concentrated set of
XTRMC accurately.

Let q = r2i+1 ± m for m ∈ (0, 2i). For α ∈ [− q−1
2 , q−1

2 ] and function

g(x) = P (x+2i)+P (x)
2 , its Fourier transform coefficient is ĝ(α) = w2iα

q +1

2 P̂ (α),
where wp = e

2πi
q . For both x ∈ [(r−1)2i+1 +2i −m, (r−1)2i+1 +2i −1] and x ∈

[2i+1r, 2i+1r + m − 1], we compute ĝ(α) respectively and obtain in both cases

|P̂ (α)|2 = 1
q2 · sin2(mαx

q )

sin2(αx
q ) sin2( 2iαx

q )
. So |P̂ (α)|2 � 1

π2(1−π2/12)2 · abs2
q(mα)

abs2
q(α)abs2

q(2
iα−q/2) .

To be asymptotic |P̂ (α)|2 closer, we set 2iα = q−1
2 + δα + qλα such that

δα = 2iα− q−1
2 mod q and λα ∈ [0, 2i−1−1] for α ∈ [0, q−1

2 ]; and δα = 2iα+ q−1
2

mod q and λα ∈ [0, 2i−1 − 1] for α ∈ [− q−1
2 , 0], where λα is integer.

Proposition 1. For all α ∈ F ∗
p , we have absq(α) = (2λα + 1) ± μα, where λα

is define as above and μα ∈ [0, r] is a integer. Furthermore, |P̂ (α)|2 < O( 1
λ2

αμ2
α
).
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Proof. ∀α ∈ F ∗
q , absq(α) = krr±μr, where μr ∈ [−r/2, r/2]. If kr = 2k+1, then

absq(α) = (2k + 1)r ± μr. So we can set λα = k and μα = μr. Else, if kr = 2k,
then absq(α) = (2k+1)r−(r−μr) for μr > 0 and absq(α) = (2k−1)r+r−μr =
(2(k + 1) − 1)r − (r − μr) for μr < 0. So λα and μα can be set. Furthermore,
since abs2q(α)abs2q(2

iα − q−1
2 ) � λ2

α · μ2
α · r2 · 22i+2 · 1/4, |P̂ (α)|2 < O( 1

λ2
αμ2

α
).

Lemma 2. Let P be a predicate defined as above. Then P is τ -concentrated on
Γ = {χα|λα < O(1/τ), μα < O(1/τ)}.

Proof. The proof is almost identical to Theorem 7 in [17], we present it here for
completeness. At first, we give an injective map

π :
[− q−1

2 , q−1
2

] → [
0, 2i−1 − 1

] × [0, r] × {±1} × {±1}
α → (λα, μα, sα, sδ)

where sδ = sgn(δ), sα = sgn(α) for sign function sgn(·).
All characters of ZN consists of Γ ∪ Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ = {χα|λα � O(1/τ), μα � O(1/τ)}, Γ0 = {χα|λα = 0, μα � O(1/τ)},
Γ1 = {χα|λα � O(1/τ), μα = 0}, Γ2 = {χα|λα � 1, 1 � μα � O(1/τ)},
Γ3 = {χα|μα � 1, 1 � λα � O(1/τ)}, Γ4 = {χα|λα � O(1/τ), μα � O(1/τ)}.
We bound the sum of |P̂ (α)|2:
∑

χα∈Γ0

|P̂ (α)|2 � O(m2)
∑

χα∈Γ0

1

abs2
N

(2iα− N−1
2 )

< O(m2)
∑

χα∈Γ0

1
(2iμα)2

< O(τ),

∑

χα∈Γ1

|P̂ (α)|2 � O(r2)
∑

χα∈Γ1

1
abs2

N
(α)

< O(r2)
∑

χα∈Γ1

1
λ2

α
< O(τ) and

∑
χα∈Γ2

|P̂ (α)|2 +
∑

χα∈Γ3
|P̂ (α)|2 +

∑
χα∈Γ4

|P̂ (α)|2
�

∑

1�μα�k

1
μ2

α
(
∑

λα>k

1
λ2

α
) +

∑

1�λα�k

1
λ2

α
(
∑

μα�k

1
μ2

α
) +

∑

μα�k

1
μ2

α
(
∑

λα>k

1
λ2

α
) � O(τ)

So the predicate is τ -concentrated on Γ = {χα|λα < O(1/τ), μα < O(1/τ)}.

Recoverability of XTRMC. We have proved CP is τ -concentrated on Γ . To
prove CP is list-decodable, we need CP is recoverable. Namely, there exists a
PPT recovery algorithm on input a character χβ and a threshold parameter τ
to output a list L containing x ∈ F ∗

q such that χβ ∈ Heavyτ (CP
x ).

Lemma 3. For any prime q, CP is recoverable.

Proof. By Lemma 2, CP is τ -concentrated in Γ ′ = {χβ |β = α·x mod q, χα ∈ Γ},
where Γ = {χα|λα < O(1/τ), μα < O(1/τ)}. The recovery algorithm (Table 1)
will output a list containing x ∈ F ∗

q such that χβ ∈ Heavyτ (CP
x ).

As CP
x is τ -concentrated in Γ ′, χβ ∈ Heavyτ (CP

x ) implies χβ ∈ Γ ′ and thus
β = α · x mod q for λα < O(1/τ) and μα < O(1/τ). The algorithm outputs list
L = {x|x = β/α mod q, χα ∈ Γ} containing all x such that χβ ∈ Heavyτ (CP

x ).
Since we can choose parameter 1/τ ∈ poly(log q), the length of list and running
time of the recovery algorithm will be in poly(log q/τ).

Combining Lemmas 2 and 3, we prove CP is list-decodable for any q.
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Table 1. The recovery algorithm

Accessibility w.r. to XTR. Assuming discrete logarithm problem in Fp6 is
intractable, we have XTR collection of one-way functions

XTR = {XTR(p,q,g)(x) = Tr(gx)}(p,q,g)∈I ,

where I = {(p, q, g)| Both p, q are primes, g ∈ Fp6 of order q s.t q|p2 − p + 1}.

Lemma 4. The code CP = {CP
x }x∈F∗

q
is accessible to XTR one-way function.

Proof. We construct the access algorithm D:
On input p, q, g, j and XTRp,q,g(x) For j ∈ F

∗
q , we can use Theorem 1

to compute Sj(Tr(gx)) = (Tr(g(j−1)x), T r(gjx), T r(g(j+1)x)) ∈ F
3
p2 and return

Tr(gjx). Output Tr(gjx) and Sj(Tr(gx)) as its witness.
Fixed x ∈ F

∗
q and j, for any j′ ∈ {1, p2, p4}, both Tr(gxj′

) = XTRp,q,g(x′) =
Tr(gjx) and Sj(Tr(gx)) = Sj′(Tr(gx)) should hold. Since Sj(Tr(gx)) �=
Sj′(Tr(gx)) for j �= j′, the other two choices is discarded. So the distribution of
x′ on F

∗
q is close to uniform, and the code is well-spread and bias-preserving.

Continuing to Prove Theorem 4. Since CP is list-decodable and there exists
a non-negligible codewords wx which is accessible, by Theorem 2, the predicate
P is a hardcore for the XTR one-way function. Indeed, if there exists an oracle
A which has a non-negligible advantage to predict P (x) = Bi(x), then we could
construct a PPT algorithm INV (see Table 2) which returns a list with a high
probability containing at least one pre-image of XTR. Using A, we can have
access to CP and there are at least ρ

2

∣
∣F∗

q

∣
∣ of x by Lemma 1. Since the learn-

ing algorithm in step 3 runs in time Õ(log q) · ln2(1/δ)/τ5.5 and the recovery
algorithm in step 4 runs in time poly(log q/τ), the INV algorithm runs in time
poly(log q, 1/ρ). This completes the proof of Theorem4.
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Table 2. XTR OWF inverse algorithm

5 Remark and Conclusion

In [14], DH-type XTR was only studied by HNP, but it is much rougher than list-
decoding method. In this paper, we study the bit security of the XTR one-way
function by the list-decoding method. Although XTR is not injective, using XTR
inverse algorithm (Table 2), the pre-image z can be found such that f(z) = y.
Indeed, the access algorithm we constructed have an output with a witness.
It is the witness that assures that pre-images are bijective to codewords such
that exact pre-image could be found when it is list-decoded correctly. Thus we
prove that the individual bit is hardcore for XTR one-way function, which is
also considered as a supplement to the work of the Akavia et al. For bit security
of XTR variation of Diffie-Hellman problem, this method is also applied.
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