
How to Meet Big Data When Private Set
Intersection Realizes Constant Communication

Complexity

Sumit Kumar Debnath(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

sd.iitkgp@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. This paper presents the first PSI protocol that achieves con-
stant (O(1)) communication complexity with linear computation over-
head and is fast even for the case of large input sets. The scheme is
proven to be provably secure in the standard model against semi-honest
parties. We combine somewhere statistically binding (SSB) hash function
with indistinguishability obfuscation (iO) and Bloom filter to construct
our PSI protocol.

Keywords: PSI · SSB hash · iO · Bloom filter

1 Introduction

Electronic information is increasingly often shared among unreliable entities. In
this context, one interesting problem involves two parties that secretly want to
determine intersection of their respective private data sets while none of them
wish to disclose the whole set to other. One can adopt Private Set Intersection
(PSI) protocol to address this problem preserving the associated security and
privacy issues. It is a two-party cryptographic protocol where each party engages
with their private sets. On completion of the protocol either only one of the par-
ticipants learns the intersection and other learns nothing, yielding one-way PSI
or both of them learn the intersection, yielding mutual PSI (mPSI). PSI has
emerged a great attention in the recent research community due to its numerous
applications in real-life such as privately comparing equal-size low-entropy vec-
tors, collaborative botnet detection, testing of fully sequenced human genomes,
affiliation-hiding authentication, social networks, location-based services, privacy
preserving data mining, social networks, online gaming etc.

Our Contribution: Our goal is to construct a PSI whose communication cost
is optimal while the computation cost is comparable with the existing schemes.

In this paper, we design a new PSI protocol based on Bloom filter [2] that
is significantly more efficient than all the existing PSI protocols. We adopt a
novel two-party computation technique and make use of somewhere statistically
binding (SSB) hash function [11,13] along with indistinguishability obfuscation
c© Springer International Publishing AG 2016
K.-Y. Lam et al. (Eds.): ICICS 2016, LNCS 9977, pp. 445–454, 2016.
DOI: 10.1007/978-3-319-50011-9 34

446 S.K. Debnath and R. Dutta

(iO) [1,7]. Starting point of our construction is the approach of [13] of secure
function evaluation (SFE) for “multi-decryption”.

In our protocol, the client B sends SSB hash value of its private input set to
the server A who in turn transmits to B an SSB hash key, obfuscated version
of a hard-coded circuit and a Bloom filter. The use of SSB hash reduces the
communication complexity of our protocol to constant (O(1)) which is due to
only three bit-strings of length m (size of a Bloom filter), p(κ)|C| (size of an
obfuscated circuit) and w�log2 n� (size of an element of Znw), where p(κ) is a
polynomial in security parameter κ, w is a positive integer, n is the product
of two large primes and �n� stands for the largest integer less than or equal
n. On the other hand, the computation overhead of our protocol is O(v + L)
which depends on an SSB hash key computation, a circuit obfuscation, v many
Pseudorandom function (PRF) evaluations by the server A and L many circuit
evaluation by the client B. Our protocol is secure against semi-honest adver-
saries in the standard model. For simplicity, we employ the SSB hash [13] based
on the Damg̊ard-Jurik cryptosystem [4] secure under the Decisional Composite
Residuosity (DCR) assumption. However, any SSB hash can be integrated to
construct our PSI protocol.

Constructing PSI for big data sets is a challenging task while efficiency and
scalability need to be preserved. Our PSI can easily be adopted to solve this
big data issue. To the best of our knowledge, [5,6,16–18] are the most efficient
PSI protocols, among which only [5,17] solve the big data issue. All of these
protocols attain linear computation complexity while none of them achieve con-
stant communication complexity. On a more positive note, our PSI is the first
to achieve constant communication complexity.

2 Preliminaries

Throughout the paper, the notations κ, a ← A, x � X and {Xt}t∈N
c≡ {Yt}t∈N

are respectively used to represent “security parameter”, “a is output of the
procedure A”, “variable x is chosen uniformly at random from set X” and “the
distribution ensemble {Xt}t∈N is computationally indistinguishable from the
distribution ensemble {Yt}t∈N ”. Formally, {Xt}t∈N

c≡ {Yt}t∈N means for all
probabilistic polynomial time (PPT) distinguisher Z, there exists a negligible
function ε(t) such that |Probx←Xt

[Z(x) = 1] − Probx←Yt
[Z(x) = 1]| ≤ ε(t). A

function ε : N → R is said to be negligible function of κ if for each constant
c > 0, we have ε(κ) = o(κ−c) for all sufficiently large κ.

Definition 1. Pseudorandom Function [10]: A random instance fk(·) is said
to be Pseudorandom Function (PRF) for a randomly chosen key k, if the value of
the function cannot be distinguished from a random function f̂ : D → E by any
PPT distinguisher Z i.e., |Prob[Zfk(1κ) = 1] − Prob[Z f̂ (1κ) = 1]| is negligible
function of κ.

A PRF fk(·) is an efficiently computable function i.e., one can compute fk(x)
using a PPT algorithm for any given x ∈ D. For example, the PRF of [12]:

PSI with Constant Communication Complexity 447

fk(x) = g1/(k+x) if gcd(k+x, n) is 1, 1 otherwise. The pseudorandom function is
secure under the Decisional Q-Diffie-Hellman Inversion (DHI) assumption [12].

2.1 Damg̊ard-Jurik Cryptosystem [4]

The Damg̊ard-Jurik cryptosystem DJ is a generalization of the Paillier cryp-
tosystem [14] and consists of algorithms (KGen,Enc,Dec) which work as follows:

• DJ.KGen(1κ) → (pk, sk): On input 1κ, a user does the following:
– selects two large primes p, q independently of each other;
– sets n = pq and γ = lcm(p − 1, q − 1);
– chooses an element g ∈ Z

∗
nw+1 for some w ∈ N such that g = (1 + n)jx

mod nw+1 for a known j relatively prime to n and x ∈ ˜G, where Z
∗
nw+1 =

G × ˜G, G being a cyclic group of order nw and ˜G is isomorphic to Z
∗
n;

– computes d using the Chinese Remainder Theorem satisfying that d
mod n ∈ Z

∗
n and d = 0 mod γ;

– sets the public key pk = (n, g, w) and the secret key sk = d;
– publishes pk and keeps sk secret to itself.

• DJ.Enc(pk,m) → (c): Using the public key pk of a decryptor, an Encryptor
encrypts a message m ∈ Znw by selecting r � Z

∗
nw+1 and computing cipher-

text c = gmrnw

mod nw+1.
• DJ.Dec(sk, c) → (m): On receiving the ciphertext c from the encryptor, the

decryptor uses its decryption key sk = d to compute cd mod nw+1. The
decryptor then applies recursive version of the Paillier decryption mecha-
nism [4] to obtain (j · m · d) mod nw and (j · d) mod nw respectively from
a = cd = (1 + n)(j·m·d) mod nw+1 and a = gd = (1 + n)(j·d)xd = (1 + n)(j·d)

mod nw+1. As (j ·d) and (j ·m ·d) are known to the decryptor, it can compute
m = (j · m · d)(j · d)−1 mod nw.

The scheme is additively homomorphic as there exists an operation ⊕ over Znw+1

DJ.Enc(pk,m1; r1) ⊕ DJ.Enc(pk,m2; r2) = DJ.Enc(pk,m1 + m2; r3) for random-
ness r3 = r1r2, where + is over Znw and Znw+1 respectively. We can define homo-
morphic subtraction
 over Znw+1 as DJ.Encpk(m1; r1)
 DJ.Encpk(m2; r2) =
DJ.Encpk(m1 − m2; r4) for randomness r4 = r1

r2
, where the operations − is over

Znw . Furthermore, by performing repeated ⊕ operation, we can implement an
operation ⊗ over Znw+1 as DJ.Encpk(m1; r1) ⊗ m2 = ⊕m2(DJ.Encpk(m1; r1)) =
DJ.Encpk(m1 · m2; r5) for randomness r5 = rm2

1 , where · is over Znw and Znw+1

respectively. The semantic security of the cryptosystem DJ holds under the DCR
[14] assumption defined below:

Definition 2. Decisional Composite Residuosity (DCR) Assumption
[14]: On input 1κ, let RGen be an algorithm that generates an RSA modulus
n = pq, where p and q are distinct large primes. The DCR assumption states
that given an RSA modulus n (without its factorization) and an integer z, it
is computationally hard to decide whether z is an n-th residue modulo n2, i.e.,
whether there exists y ∈ Z

∗
n2 such that z ≡ yn (mod n2).

448 S.K. Debnath and R. Dutta

2.2 SSB Hash [11,13]

A somewhere statistically binding (SSB) hash SSBHash consists of PPT algo-
rithms (Gen,H,Open,Verify) along with a finite block alphabet Σ = {0, 1}lblk ,
output size lhash and opening size lopn, where lblk(κ), lhash(κ), lopn(κ) are fixed
polynomials in the security parameter κ. An SSB hash satisfies the follow-
ing three properties – Correctness, Index Hiding and Somewhere Statistically
Binding. For more details see [11,13]. We describe below the DCR based SSB
hash of [13] which uses Damg̊ard-Jurik cryptosystem as described in Sect. 2.1
and considers Σ = Znw i.e., lblk = �w log2 n�, output domain as Znw i.e.,
lhash = �w log2 n� and opening domain as ×α(Znw) = Znw × . . . ×Znw (α times)
i.e., lopn = α�w log2 n�

• SSBHash.Gen(1κ, 1lblk , L, i) → (hk): Without any loss of generality, we assume
that L = 2α is an integer with L ≤ 2κ. A setup authority runs the key gen-
eration algorithm for Damg̊ard-Jurik cryptosystem DJ on input 1κ to receive
(pk = (n, g, w), sk = d) ← DJ.KGen(1κ). Let (bα, . . . , b1) be the binary repre-
sentation of the index i ∈ {0, . . . , L − 1}. For l = 1, . . . , α, the setup authority
computes gblγnw

l = cl = DJ.Enc(pk, bl; γl), gRnw

l = 1chl
= DJ.Enc(pk, 1;Rl)

and sets hk = (pk, h, 1ch1 , . . . , 1chα
, c1, . . . , cα) as public SSB hash key, where

h : Z∗
nw+1 → Znw is a collision resistant hash function.

• SSBHash.H(hk, s) → (z = Hhk(s)): Let s = (s[0], . . . , s[L − 1]) ∈ ΣL, where
Σ = Znw . Let T be a binary tree of height α with L leaves. A user considers
the leaves as being at level 0 and the root of the tree at level α. The user
inductively and deterministically associates a value ctv at each vertex v ∈ T
in bottom-up fashion as follows:

– If v ∈ T is the j-th leaf node (at level 0), j ∈ {0, . . . , L − 1}, then the
user associates v the value ctv = s[j] ∈ Znw .
– If v ∈ T is a non-leaf node at level l ∈ {1, . . . , α} with children v0, v1
having associated values ct0, ct1 respectively then the user associates v
the value ctv = h(c∗

v), where c∗
v = [ct1 ⊗ cl] ⊕ [ct0 ⊗ (1chl

 cl)] ∈ Znw ,
cl, 1chl

being the ciphertexts and h being the hash function extracted
from hk = (pk, h, 1ch1 , . . . , 1chα , c1, . . . , cα) and ⊗,⊕,
 are operations as
described in the Sect. 2.1. Note that c∗

v is the encryption of ctbl
. The

associated value at the root of T is the final output z = Hhk(s) ∈ Znw .
• SSBHash.Open(hk, s, j) → (π): The user outputs ctv values associated to sib-

lings v of the nodes along the path form the root to the j-th leaf in T . In
other words, if PathNode(j) denotes the set of nodes on the path from the
root to the j-th leaf in T and HangNode(j) is the set of sibling nodes of all
v ∈ PathNode(j), then π =

{

ctv
∣

∣v ∈ HangNode(j)
}

.
• SSBHash.Verify(hk, z, j, u, π) → (accept, reject): A verifier can recompute the

associated values of all the nodes in the tree T that lie on the path from the
root to the j-th leaf by utilizing the value u as associated to the j-th leaf node
together with the values in π as the associated values of all the sibling nodes
along the path. The verifier checks whether the recomputed value at the root
is indeed z. If it is z then the verifier outputs accept; otherwise, outputs reject.

PSI with Constant Communication Complexity 449

2.3 Bloom Filter [2]

Bloom filter (BF) is a data structure that represents a set X = {x1, . . . , xv}
of v elements by an array of m bits and uses k independent hash functions
HBloom = {h0, . . . , hk−1} with hi : {0, 1}∗ → {0, . . . ,m − 1} for i = 0, . . . , k − 1
to insert elements or check the presence of an element in that array. Let BFX ∈
{0, 1}m represent a Bloom filter for the set X and BFX [i] denotes its i-th bit,
i = 0, . . . ,m − 1. We describe below three operations that can be performed
using Bloom filter:

– Initialization: Set 0 to all the bits of an m-bit array, which is an empty Bloom
filter with no elements in it.

– Add(x): To add an element x ∈ X ⊆ {0, 1}∗ into a Bloom filter, x is
hashed with the k hash functions in HBloom = {h0, . . . , hk−1} to get k indices
h0(x), . . . , hk−1(x). Set 1 to the bit position of the Bloom filter having indices
h0(x), . . . , hk−1(x). Repeat the process for each x ∈ X to get BFX ∈ {0, 1}m

– the Bloom filter for the set X.
– Check(x̂): Given BFX , to check whether an element x̂ belongs to X with-

out knowing X, x̂ is hashed with the k hash functions in HBloom =
{h0, . . . , hk−1} to get k indices h0(x̂), . . . , hk−1(x̂). Now if atleast one of
BFX [h0(x̂)], . . . ,BFX [hk−1(x̂)] is 0, then x̂ is not in X, otherwise x̂ is probably
in X.

Bloom filter allows false positive whereby an element that has not been inserted
in the filter can mistakenly pass the set membership test. This happens when an
element x̂ does not belong to X but BFX [hi(x̂)] = 1 for all i = 0, . . . , k − 1. On
the contrary, Bloom filter never yields a false negative i.e., an element that has
been inserted in the filter will always pass the test. This is because if x̂ belongs
to X then each of BFX [h0(x̂)], . . . ,BFX [hk−1(x̂)] is 1. Given the number v of
elements to be added and a desired maximum false positive rate 1

2k , the optimal
size m of the Bloom filter is m = vk

ln 2 .

2.4 Indistinguishability Obfuscation [1,7]

Definition 3. Indistinguishability Obfuscation (iO): An indistinguishabil-
ity obfuscator O for a circuit class Cκ is a PPT uniform algorithm satisfying the
following requirements:

– (Correctness): For any circuit C ∈ Cκ, if we compute C ← O(1κ, C) then
C(x) = C(x) for all inputs x i.e., Prob[C ← O(1κ, C) : C(x) = C(x)] = 1
for all inputs x.
– (Indistinguishability): For any κ and any two circuits C0, C1 ∈ Cκ, if
C0(x) = C1(x) for all inputs x then the circuits O(1κ, C0) and O(1κ, C1)
are indistinguishable i.e., for all PPT adversaries Z,

∣

∣Prob[Z(O(1κ, C0)) =
1] − Prob[Z(O(1κ, C1)) = 1]

∣

∣ ≤ ε(κ), where ε(κ) is negligible function of κ.

450 S.K. Debnath and R. Dutta

We consider only polynomial-size circuits i.e., the circuit class Cκ consists
of circuits of size at most κ. This circuit class is denoted by P/poly and the
first candidate iO for this circuit class was introduced by Garg et al. [7]. Their
construction is secure in generic matrix model. Following this, a single instance-
independent assumption based iO for P/poly were proposed by [8,15].

3 Protocol

Protocol Requirements: The protocol computes the intersection of the server
A’s private input set Y = {y1, . . . , yv} and the client B’s private input set
X = {x0, . . . , xL−1}. Without any loss of generality we may assume that
X,Y ⊆ Znw . If not, we can choose a collision resistant hash function ha :
{0, 1}∗ → Znw to make the elements of X,Y as members of Znw . Auxiliary
input includes the size L of B’s input set, the security parameter κ, the Bloom
filter parameters (m,HBloom = {h0, . . . , hk−1}). Without any loss of generality
we can assume that L = 2α for some integer α ≤ κ. If not, we can add 0’s as
the members of the set X to make its cardinality of the form 2α. We integrate
Bloom filter presented in Sect. 2.3, indistinguishability obfuscation (iO) scheme
O described in Sect. 2.4 together with an SSB hash function SSBHash with alpha-
bet Σ = Znw i.e., lblk = �w log2 n�, output domain Znw i.e., lhash = �w log2 n�
and opening domain ×α(Znw) i.e., lopn = α�w log2 n�, where n = pq is the
product of two large primes p and q, and w is a positive integer. We require a
circuit C = C[hk, z, ke] as defined in Fig. 1. We also assume that C includes some
polynomial-size padding to make it sufficiently large. Furthermore, we define an
augmented circuit Caug = Caug[hk, z, ke, k̄, i∗] as in Fig. 2 which will be used in
Sect. 3.1 for the security proof of our scheme. We need the padding in C to match
its size with Caug.

Construction: The protocol completes in two phases: off-line phase and online
phase. In the off-line phase, the server A generates a SSB hash key hk and
makes hk public. On the other hand, online phase consists of three algorithms:
PSI.Request, PSI.Response and PSI.Complete. The client B runs PSI.Request algo-
rithm to generate a SSB hash value of its input set X with the SSB hash key
hk and sends it to A who in turn runs PSI.Response algorithm to generate an
obfuscated circuit C, a Bloom filter BFY and sends these to B. The client
B then runs the algorithm PSI.Complete to get the intersection of X and Y .

Constraints: Hash key hk, hash value z, PRF key ke.
Input: i ∈ {0, ..., L − 1}, x ∈ Znw , π ∈ ×α(Znw).
Output: 0 or PRF fke(x).
1. Check whether SSBHash.Verify(hk, z, i, x, π) is accept or reject. If reject, then output
0.
2. Otherwise, output fke(x).

Fig. 1. Description of circuit C[hk, z, ke](i, x, π)

PSI with Constant Communication Complexity 451

Constraints: Old values (hash key hk, hash value z, PRF key ke), New values (PRF
key k̄, i∗ ∈ {0, ..., L − 1})
Input: i ∈ {0, ..., L − 1}, x ∈ Znw , π ∈ ×α(Znw).
Output: 0 or PRF fke(x) or PRF fk̄(x).
1. Check whether SSBHash.Verify(hk, z, i, x, π) is accept or reject. If reject, then output
0.
2. Otherwise, if i ≥ i∗, then output fke(x), else if i < i∗ output fk̄(x).

Fig. 2. Description of circuit Caug[hk, z, ke, k̄, i∗](i, x, π)

A high level description of our PSI protocol is presented in Fig. 3. We now
describe below the off-line and online phases of our protocol.
Off-line Phase: On input 1κ, the server A does the following:

(i) Runs the algorithm SSBHash.Gen on input 1κ, 1lblk , L = 2α, 0 to generate
a SSB hash key hk ← SSBHash.Gen(1κ, 1lblk , L, 0), where lblk = �w log2 n�,
where hk = (pk, h, 1ch1 , . . . , 1chα

, c1, . . . , cα), pk = (n, g, w) h : Z
∗
nw+1 →

Znw is a collision resistant hash function, 1chl
= DJ.Enc(pk, 1;Rl) and cl =

DJ.Enc(pk, 0; γl).
(ii) Makes hk public.

Online Phase: It consists of the following three algorithms:

• PSI.Request(hk) → z : The client B proceeds as follows:
(i) Sets s[i] = xi ∈ Σ = Znw , for i = 0, .., L − 1, where X = {x0, . . . , xL−1}

⊆ Znw is B’s private input set.
(ii) Computes z = Hhk(s) ← SSBHash.H(hk, s). Note that z ∈ Znw .
(iii) Finally, sends z to A.

• PSI.Response(z) → (C,BFY): The server A, on receiving the request z from
B, does the following:
(i) Chooses a PRF key ke � Z

∗
n for PRF fke(x) = g1/(ke+x) if gcd(ke+ x, n)

is 1, 1 otherwise, where x ∈ {0, 1}Q, ke ∈ Z
∗
n and Q = �w log2 n�.

(ii) Designs a circuit as described in Fig. 1.
(iii) Constructs an obfuscated circuit C ← O(1κ, C) of C.
(iv) Generates a Bloom filter BFY of the set Y = {fke(y1), . . . , fke(yv)}, where

fke(yj) = g1/(ke+yj) for j = 1, . . . , v and Y = {y1, . . . , yv} ⊆ Znw is A’s
private input set.

(v) Sends the obfuscated circuit C together with BFY to B.
• PSI.Complete(C,BFY) → (X = X ∩ Y): On receiving (C,BFY) from A, the

client B starts with an empty set X and does the following
(i) For each i = 0, . . . , L − 1

– generates opening πi = SSBHash.Open(hk, s, i) ∈ ×α(Znw) using
the already computed values ctv’s during the calculation of z ←
SSBHash.H(hk, s) and computes PRF values fke(xi) ← C(i, xi, πi).
Note that s, xi are known to B.

452 S.K. Debnath and R. Dutta

Common input: hk = (pk, h, 1ch1 , ..., 1chα , c1, ..., cα)
Auxiliary input: L = 2α, κ, m, HBloom = {h0, ..., hk−1}

A’s private input: B’s private input:
Y = {y1, ..., yw} X = {x0, ..., xL−1}

z = Hhk(s) ← PSI.Request(hk),
where s = (s[0], ..., s[L − 1]),
s[i] = xi, for i = 0, ..., L − 1

z←−−−−−
(C,BFY) ← PSI.Response(z),

where Y = {fke(y1), ..., fke(yv)},

ke � Z
∗
n, C ← O(1κ, C),

C = C[hk, z, ke](i, x, π)
C,BF

Y−−−−−→
output X = X ∩ Y ← PSI.Complete(C,BFY),

where X =
{
xi ∈ X

∣
∣fke(xi) ∈ BFY

}

with fke(xi) ← C(i, xi, πi),
πi = SSBHash.Open(hk, s, i), for i = 0, ..., L − 1

Fig. 3. Communication flow of our PSI

– checks whether fke(xi) is in the set Y corresponding to the Bloom
filter BFY . If yes, then xi is included in X.

(ii) Outputs the final X as the intersection of the sets X and Y .

Correctness: The correctness of our protocol follows from the following fact in
the PSI.Complete phase executed by B:
fke(xi) passes the check step of BFY ⇔ fke(xi) ∈ Y except with negligible prob-
ability 1

2k ⇔ there exists yj ∈ Y such that fke(xi) = fke(yj) ⇔ xi = yj as fke(·)
is a one-to-one ⇔ xi ∈ X ∩ Y ⇔ X = X ∩ Y (by the construction of X).

Complexity: In our construction, size of the public parameter hk is (2α +
1)�w log2 n�+log2 n+ |h| bit and 2α exponentiations are required to generate hk.
The communication complexity includes three bit-strings of length m, �w log2 n�
and m + poly(κ)(|C|), where |h|=length of the hash function h : Znw+1 → Znw

and m = kv
ln 2 , |C|=length of the circuit C = C[hk, z, ke](i, x, π). The computation

complexity of our PSI is displayed in Table 1.

Table 1. Computation complexity of our PSI protocol

Exp Inv HBF HSSB EC FHEEnc FHEDec FHEEval

A PSI.Response v v kv 2η(2M + 5)2 + 4(2M + 5)

B PSI.Request 3(L − 1) L − 1 L − 1

B PSI.Complete kL 2L L 2L

α = log2 L, M = 2η + 5, η= length of oblivious matrix branching program, η ≤ 4d, d= depth of
the circuit C, Exp= number of exponentiations, Inv= number of inversions, HBF= number of hash
operations for Bloom filter, HSSB= number of hash operations for SSB hash

PSI with Constant Communication Complexity 453

3.1 Security

Theorem 1. If H is an SSB hash based on DJ encryption, O is an iO scheme
and the associated PRF fke(·) is secure then the protocol presented in Sect. 3
between a server A and a client B is a secure computation protocol in the semi-
honest adversarial model [5,9] except with negligible probability 1

2k .

Proof. Due to limited space, proof will appear in the full version.

4 Conclusion

In this work, we introduce the idea of constructing PSI utilizing SSB hash, Bloom
filter and iO. Compared to the existing PSI schemes, our PSI is the most efficient
PSI scheme. More significantly, it is the first to achieve constant communication
complexity with linear computation cost. Our protocol works fast even for big
data sets. Security of our scheme is analyzed in the semi-honest setting without
any random oracles.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of 3rd Innovations in Theo-
retical Computer Science Conference, pp. 309–325. ACM (2012)

4. Damg̊ard, I., Jurik, M.: A generalisation, a simpli.cation and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2 9

5. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: Proceedings of 2013 ACM SIGSAC Conference
on Computer & Communications Security, pp. 789–800. ACM (2013)

6. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29(1), 115–155 (2016)

7. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp.
40–49. IEEE (2013)

8. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 151–170. IEEE
(2015)

9. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2009)

http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44586-2_9

454 S.K. Debnath and R. Dutta

10. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

11. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Proceedings of 2015 Conference on Innovations in
Theoretical Computer Science, pp. 163–172. ACM (2015)

12. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00457-5 34

13. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48797-6 6

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

15. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 28

16. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX
Security 2015), pp. 515–530 (2015)

17. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security, vol. 14, pp. 797–812 (2014)

18. Shi, R.-H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: An efficient quantum scheme for
private set intersection. Quantum Inf. Process. 15(1), 363–371 (2016)

http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-642-00457-5_34
http://dx.doi.org/10.1007/978-3-662-48797-6_6
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://dx.doi.org/10.1007/978-3-662-44371-2_28

	How to Meet Big Data When Private Set Intersection Realizes Constant Communication Complexity
	1 Introduction
	2 Preliminaries
	2.1 Damgård-Jurik Cryptosystem [5]
	2.2 SSB Hash [17,15]
	2.3 Bloom Filter [13]
	2.4 Indistinguishability Obfuscation [1,9]

	3 Protocol
	3.1 Security

	4 Conclusion
	References

