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Abstract. The virtualization capabilities of today’s systems offer rootk-
its excellent hideouts, where they are fairly immune to countermeasures.
In this paper, we evaluate the vulnerability to hypervisor-based rootk-
its of ARM-based platforms, considering both ARMv7 and ARMv8. We
implement a proof-of-concept rootkit to prove the validity of our findings.
We then detail the anatomy of an attack wherein a hypervisor rootkit
and a userspace process collaborate to undermine the isolation properties
enforced by the Linux kernel. Based on our discoveries, we explore the
possibilities of mitigating each attack vector. Finally, we discuss methods
to detect such highly privileged rootkits so as to conceive more effective
countermeasures.
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1 Introduction

In the ongoing malware arms race, adversaries try not only to take over systems
but retain control over the system for as long as possible. As higher privileged
levels implement the abstractions and define the boundaries that all lower priv-
ileged layers have to adhere to, sophisticated attacks always try to infect the
highest privileged layer of a system, ideally a higher privileged layer than the
one used by the defender’s detection mechanism.

Soon after virtualization extensions by Intel and AMD publicly appeared in
2005 King et al. [16] proposed the first VM-based rootkit in 2006. The technique
then became famous under the name Bluepill [19,20], whereby an adversary
installs a malicious hypervisor during normal execution of the OS to take con-
trol over all system resources. On the ARM architecture, just like on the x86
architecture before, the arms race is well underway. A considerable number of
rootkits exist (e.g. [8,22,23]) that infiltrate the OS kernel and maintain con-
trol over the system. However, the question whether the technique of VM-based
rootkits is applicable on the ARM architecture remains open.

In this paper, we want to address the open research question as to whether
the construction of a hypervisor rootkit is feasible on the ARM architecture.
First we are going to answer whether it is possible to install a rootkit into the
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hypervisor mode to subvert a running OS kernel. Moreover, we answer the ques-
tion concerning the detectability of the rootkit. Previous work has thoroughly
discussed the detectability of hypervisors on the x86 architecture [13,15,21,26].
However, because of the fundamental differences in the design of the virtual-
ization extensions between ARM and x86, the earlier findings cannot be simply
extrapolated.

Contribution. We make the following contributions: (1) We determined three
attack vectors on currently deployed Linux systems that allow us to install a
rootkit into the hypervisor mode and subvert the running OS. Each vector is
applicable in a different scenario, which proves the versatility of the attack, and
allows us to attack a broad range of devices. (2) We built a very small rootkit
that is installed into hypervisor mode to gain full system control and optionally
provide malicious services. The rootkit image is a mere 16 kB in size, with 95 %
attributed to page table data and alignment. (3) We evaluated our rootkit and
discuss potential detection mechanisms. We identify a new and reliable way to
detect it by exploiting characteristics of the ARM TLB. (4) We present a number
of mitigation techniques to seal the hypervisor mode and prevent our attack.

2 ARM Virtualization

This section introduces the ARM virtualization extensions as far as needed to
understand the remainder of the paper. Well-experienced readers may skip ahead
but should note our preference for ARMv8 terminology (see below).

Version 7 and earlier versions of the ARM architecture define seven execution
modes. One of these is unprivileged and operates at privilege level 0 (PL0),
whereas the other six are privileged and collectively referred to as privilege level
1 (PL1). ARMv8 combines the privileged execution modes into a single one,
thus allowing for simpler exception and interrupt handler code. It also slightly
changes nomenclature and coins the new term exception level, but leaves the
numbering and their meaning basically unmodified, thus renaming PL0 to EL0
and PL1 to EL1. In addition systems with virtualization extensions have an
additional execution mode. This mode is located in the new privilege level EL2
(PL2 for ARMv7), placed above EL0 and EL1.

The ARM architecture provides an additional separation concept that is
orthogonal to privilege levels. TrustZone [3,6] introduces the notion of a “secure
world”, which mirrors the privilege levels of the classical “non-secure world”.
In addition, a new execution mode, monitor mode (mon), facilitates the switch
between the two worlds. There is one notable difference though between ARMv7
and ARMv8 with respect to TrustZone. As the world switch component was
classically provided by the Secure OS as well, mon mode was added to the
ARMv7 PL1 modes, and switching between secure svc and mon was seamlessly
possible. ARMv8 moved the monitor mode into a level of its own at the top of
the hierarchy, EL3, so that it can no longer be entered freely from the secure
world. This has implications for one of our attack vectors.
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As both terms PL and EL mean virtually the same, we have chosen to stick
with “EL” for the remainder of this paper, i.e. we prefer ARMv8 terminology.
Unless stated otherwise, all statements apply to both ARMv7 (with PL substi-
tuted in place of EL) and ARMv8.

3 Attack Model

In the following section, we discuss the assumptions and requirements for our
attack as well as the scope and focus of the attacks.

In the considered attack scenario, depicted in Fig. 1, an adversary first gains
control of a user-level process (Fig. 1 1©) and then manages to exploit a kernel
vulnerability (Fig. 1 2©). Vulnerabilities in the Linux kernel appear frequently
enough [9] to make our assumptions sound. Once having kernel access, the adver-
sary is able to manipulate the OS at will, but he is still visible to the OS and
exposed to scanners executing directly in kernel mode or as a highly privileged
process. Therefore, the adversary hides by moving to the more privileged hyper-
visor mode 3©. From there, he can put away the OS into a virtual machine,
eliminating the risks of being detected from an EL1 scanner (Fig. 1 4©). During
the infection phase, the rootkit is briefly exposed to a scanner running in EL1;
however, as we show later in the paper (Sect. 8), the time frame is small.

Fig. 1. From a compromised application ( 1©), an adversary compromises the OS ker-
nel ( 2©). Then he gains hypervisor privileges ( 3©) before the victim OS is put away
into a VM ( 4©).

4 Entering EL2

In the following, we describe several ways to plant code into EL2. The key obser-
vation is that being able to overwrite the exception vector table address for EL2
is sufficient for that end. After the adversary has placed his own base address, he
can easily trigger an exception from EL1 that traps into EL2, executing one of
his planted handler vectors. So each of the following attack vectors manages to
overwrite the value contained in VBAR EL2, thus enabling the adversary to gain
control on the next EL2 intercept.
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We want to note that except for attack vector 3, all described attack vectors
were tested on both an ARMv7 and ARMv8 processor1.

Attack Vector 1 - Linux Hypervisor Stub. Current versions of the Linux kernel
check the EL they are booted into. If they find themselves in EL2, they install a
stub vector table address before dropping down to EL1. The purpose of this stub
is to allow a type-II hypervisor implementation (e.g. KVM) to install its own
vector table, thus gaining the world switch capabilities required for its hypervisor
duties. This stub only consists of four lines of assembly, which provide support
for querying and writing the vector table base address. KVM uses this facility
in the following way. It stores its EL2 vector table at some memory location and
loads the base address into register r0. Then it executes the hvc instruction. The
stub simply copies r0 to VBAR EL2 and returns. All subsequent calls after this
installation procedure are then handled by KVM’s vector table. Thus KVM has
acquired EL2 privileges and can use these to control and switch between virtual
machines.

The installation of the stub vector table depends only on the bootup EL,
Linux provides no way to turn it off. If no KVM module is available or the
adversary can mount his attack before KVM is loaded, this provides easy control
over EL2.

Attack Vector 2 - KVM Hyp Call Function. The KVM hypervisor on ARM uses
“split-mode” virtualization [10,11], i.e., parts of the hypervisor code run in EL1.
Only code that explicitly needs access to functionality that is only present in the
hypervisor mode runs in EL2. The EL1 part is called “high-visor” and the EL2
part is called “low-visor”. The “host” Linux is still running in EL1. When KVM
is loaded, it installs its own VBAR EL2, using the previously mentioned hypervisor
stub. This prevents an adversary from planting his own code. However, KVM
also offers the possibility for the Linux kernel to provide a function pointer to
the “low-visor” running in EL22, i.e. there is no well defined API between low-
and high-visor, but arbitrary code execution in EL2 is always possible. This
mechanism can be used to trivially replace the exception vector table for EL2.

Attack Vector 3 - Migrate Linux to Non-secure (ARMv7 only). Some systems
run their normal world OS completely in the secure world. This simplifies the
system deployment because the bootloader does not have to configure the secure
world and then switch to the normal (non-secure) world. When the system does
not need the secure world, this seems like a valid scenario. In the secure world all,
registers are named exactly the same as their non-secure counterparts. Therefore,
an OS can either run in secure or non-secure EL1 without any changes.

However, as the secure EL1 has control over the non-secure EL2, an adversary
running in secure EL1 can manipulate registers belonging to the non-secure EL2.

1 Attack vector 3 only works on the ARMv7 architecture due to changes in the design
of the processor modes (for details refer to Sect. 2).

2 This function is defined as kvm call hyp on both ARMv7 and ARMv8.
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But after installing itself into non-secure EL2, the adversary does not have any
control over the OS yet, because it is still running in secure EL1. So first the
OS has to be migrated from secure EL1 to non-secure EL1. Apart from copying
register values from their secure counterpart, the adversary has to configure the
interrupt controller so that all interrupts arrive in the normal world instead
of in the secure world. After duplicating the processor state and installing his
malicious code, the adversary can resume the execution in the non-secure EL1.
The state duplication is the critical step for this attack vector. Installing code into
EL2 afterwards is trivial because all EL2 registers are writable from secure EL1.

5 EL2 Rootkit Requirements

In order to design a hypervisor-based rootkit (a rootkit that runs in EL2), we
identified three crucial aspects. These are: Resilience, Evading detection and
Availability. Each point is addressed in the following section.

5.1 Resilience

Even though the rootkit executes in EL2, the code pages of the rootkit are mem-
ory pages managed by the victim OS. To prevent the victim OS from modifying
or removing these pages, the rootkit must use a stage 2 page table. This stage 2
page table then contains the entire physical address space, except for the pages
occupied by the rootkit. However, as the victim OS is unaware that these pages
have been repurposed, it might still try to use them. The rootkit must therefore
handle these accesses appropriately. The rootkit can back virtual pages with
identical contents with only one physical page, freeing the duplicates for the
rootkit. This is similar to the well-established Kernel Samepage Merging [7].
Accesses to these pages do not trap and thus perform at native speed; however,
the unexpected side-effects of the duplicity of the page may lead to confusion or
a crash of the victim OS.

Another alternative is to leave its own pages unmapped in the stage 2 page
table. This would lead to a stage 2 data abort, which transfers control to the
rootkit. The rootkit could now return fake data to the victim OS on a read
operation and ignore write operations to these pages. Accesses to these pages
are vastly reduced in performance, and a write test would reveal the fake. How-
ever, timing effects can be hidden and this method could be implemented with
minimum complexity.

5.2 Evading Detection

A sufficiently sophisticated rootkit scanner running in EL1 could detect a rootkit
in EL2 in a number of ways. In this section, we discuss the approaches we could
employ to obfuscate the rootkit and hide it from a scanner.
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Performance Counters. The ARM performance counters [4,5] can be pro-
grammed to specifically count instructions executed in EL2 which would reveal
the presence of a rootkit. However, the ARM architecture allows EL2 to trap
all coprocessor instructions, among them the performance counters. To hide its
presence, the rootkit simply has to trap and emulate the sensitive performance
monitor registers and provide unsuspicious response values. Thus the victim OS
would still be able to use the performance monitor infrastructure, but the pres-
ence of the rootkit would not be revealed.

DMA. Some peripherals have the ability to access memory directly (DMA).
A suspecting victim OS could reprogram hardware peripherals to directly write
to any physical address, effectively bypassing the stage 2 translation. Such a
mechanism threatens the rootkit. On hardware platforms that contain an ARM
System Memory Management Unit (SMMU [18]), the rootkit could easily pre-
vent DMA access to its own pages. It would do so by preventing the victim OS to
manage the SMMU, emulating SMMU accesses by producing fake responses, and
then programming the SMMU to restrict DMA access to those pages still avail-
able to the victim OS. On hardware platforms without an SMMU, the rootkit
would have to emulate every DMA-capable device – third-party DMA controllers
as well as first-party DMA devices, e.g. SD/MMC controllers – to prevent its
memory from being disclosed or overwritten.

System Emulation. Many system control interfaces on ARM platforms are mem-
ory mapped. For example, the interrupt controller interface exposes the current
interrupt configuration state. The victim OS could use this to look for discrep-
ancies to its own expected interrupt state. It could thus discover the EL2 timer,
which the rootkit might employ for its periodic execution. In order to hide these
activities, accesses to the interrupt controller have to be emulated.

Time. As described before, some system control interfaces and peripherals have
to be emulated by the rootkit. However, the increased access latencies due to
emulation can be measured by a scanner in EL1. To prevent this, the rootkit
has to present a virtualized timer to the victim OS. Newer versions of the Linux
kernel already use the ARM EL1 virtual timer interface. This allows the rootkit
to transparently warp the time for the victim OS.

In case the victim OS uses the EL1 physical timer, the rootkit can trap all
accesses to these timer registers and emulate the “time warp” by reporting lower
values. If auxiliary timers (like additional ARM SP804 [2] peripherals) exist on
the system, the rootkit has to emulate accesses to those as well. Since the victim
OS has no access to an independent clock source on the system, it cannot reliably
determine how much wall time has passed since its last measurement. The only
chance for a scanner to detect the rootkit is with the reference of an external
time source. To reveal the presence of a rootkit in EL2 using an external time
source, a sophisticated scanner could induce a large amount of traps into EL2.
This could be done by accessing coprocessor registers which are emulated by the
rootkit. Also, the victim OS could trigger large amounts of interrupts that have
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to be handled by the rootkit. Due to the time warping the discrepancy between
the local time and the external time grows with each entry in EL2. Section 8
discusses the effectiveness of such a scanner in more detail.

Cache and TLB. ARM allows SoC designers to use several levels of caches, but
most common are just two levels, a dedicated L1 cache for each core and a L2
cache shared among all cores. Since the cache is shared between all privilege
levels, a scanner could notice a performance slow down because not all cache
lines are available to the victim OS.

As described in Sect. 5.1, the rootkit would want to use a stage 2 page
table to prevent the victim OS from accessing the memory pages of the rootkit.
The stage 2 page table translations are cached in a dedicated part of the TLB
(Translation Lookaside Buffer), the IPA (Intermediate Physical Address) cache.
The IPA cache is transparent and fetches translation just like the normal TLB
(for stage 1 translations), but only for stage 2 page table translations. Thus,
a scanner could exploit this fact and try to measure artifacts originating from
IPA cache hits or misses.

5.3 Availability

To perform its malicious tasks, a rootkit must gain control. A rootkit can run in
two different modes of operation, which we have termed proactive and reactive.
Whether a rootkit operates in reactive or proactive mode has implications on
detectability, runtime and implementation complexity.

Proactive execution requires a time source to periodically gain control. A peri-
odic timer interrupt that is routed to EL2 can be configured in such a way that
the rootkit can perform its malicious operation. ARM’s interrupt controller,
however, does not provide a mechanism to selectively route interrupts to EL1 or
EL2. Therefore, in the proactive model, all interrupts have to be intercepted by
the rootkit. The rootkit then has to filter out its EL2 timer events and deliver all
other interrupts to the victim OS. This approach is more complex to implement
and increases interrupt latency. However, it is perfectly suited for data exfiltra-
tion attacks where keystrokes or other user actions are monitored during phases
of platform activity and later transmitted to an external command-and-control
entity when the platform would otherwise be idle.

Reactive execution is a less invasive approach because the rootkit would only
react to certain stimuli from within the victim OS. Inside the victim OS, the
adversary would want to run an unsuspiciously looking program in EL0 (without
any specific user permissions) that communicates directly with the rootkit in
EL2. However, most traps that can be configured to target EL2 can only originate
in EL1 (and not EL0), e.g. the hvc instruction. Execution of such an instruction
in EL0 is considered undefined and would simply be reported to EL1. This
makes it difficult for a program running in EL0 to communicate directly with
the rootkit in EL2, without notifying the victim OS in EL1.
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One of the few exceptions are the deprecated Jazelle3 instructions. These
instructions can be executed in EL0 and directly trap into EL2. ARMv7 man-
dates that any system implementing the ARM virtualization extensions must
provide an empty Jazelle implementation. This implementation only includes a
few Jazelle control registers and the bxj instruction. The specification also man-
dates that this bxj instruction must behave exactly like a bx instruction. Even
though the Jazelle implementation is not fully implemented anymore, the HSTR
register still provides the option to trap accesses to Jazelle functionality to EL2.
Thus, in the reactive execution mode, the rootkit would enable trapping of the
Jazelle instructions into EL2. Now an EL0 application is able to trigger EL2
traps by executing a bxj instruction without notifying the victim OS in EL1.

The reactive approach is much easier to implement than the proactive model,
and it has almost zero overhead during regular system activity. However, it
is more suited for externally triggered attacks. For example, an unsuspicious
application with network connectivity could allow an adversary to invade the
platform, quickly elevate his privileges by activating the rookit, steal sensitive
pieces of information, and deprivilege itself again all by signalling the rootkit
with the previously described Jazelle functionality.

6 EL2 Rootkit Implementation

Based on the previously defined requirements on resilience, detectability and
availability, we implemented a rootkit, which we called rHV. Of course, a real
attack would comprise the transition from EL0 to EL1 first, which would rely on
a real vulnerability in the Linux kernel. For simplicity, we implemented a kernel
module to load our rHV code directly into EL1. The kernel module provides a
device node where we supply our rHV binary, along with a number to signal the
kernel module which attack vector to use. The kernel module then exploits the
specified attack vector to deploy rHV.

Once rHV is deployed, its execution is split into two parts. The initialization
phase starts immediately when rHV is loaded. Depending on the attack vector,
the initialization phase starts in secure EL1 (Attack vector 3) or directly in EL2
(Attack vectors 1 and 2). After the initialization phase, rHV enters runtime
phase, where rHV provides its malicious service.

Initialization Phase. In the initialization phase, rHV checks whether the proces-
sor’s current security state is secure. If this is the case, Attack vector 3 - Migrate
Linux to non-secure (see Sect. 4) is used. To do this, rHV copies a number of
registers from the secure to their non-secure counterpart. Additionally, the inter-
rupt controller is configured in such a way that all interrupts are routed to the
non-secure world.

3 Jazelle is a special processor instruction set for native execution of Java bytecode
found in earlier ARM cores.
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As discussed in Sect. 5.1, for a rootkit to be resilient, it has to control accesses
to main memory. For rHV, we decided to stick with the solution to trap accesses
to pages which are occupied by rHV itself and emulate read/write accesses to
these pages. So the second step of the initialization code, after the migration is
finished, is to setup a stage 2 page table. In our experiments, we tested different
stage 2 page table layouts (from a single 1 GByte mapping entry for the entire
address space up to 4 KBytes entries) to verify the impact through the stage 2
page table and the IPA cache on the overall system performance. Results with
the different stage 2 page table layouts are provided in Sect. 8. Once the stage 2
page table is constructed and activated, rHV jumps to the third step of the
initialization phase.

As already described in Sect. 5.2, certain performance monitoring registers
can be configured to reveal the presence of rHV. Therefore, we configured the
hardware so that all accesses to these registers trap into EL2. We implemented
emulation code to reflect the real values of the registers but ignored write accesses
to them.

We implemented two versions of rHV, one for the reactive mode and one
for the proactive mode, because the mode has influence on the layout of the
stage 2 page table. In reactive mode, rHV does not need access to the interrupt
controller, so it can just forward the interfaces to the victim OS. No additional
entries in the stage 2 page table are necessary. In proactive mode, however,
rHV has to handle timer interrupts. Thus, accesses from the victim OS to the
interrupt controller must be prevented. Instead, the stage 2 page table gets an
entry for a virtual interrupt controller interface, which is presented to the victim
OS. Finally, rHV also enables the EL2 timer to gain periodic control.

Runtime Phase. As discussed in Sect. 5.3, we implemented both modes of opera-
tion reactive and proactive. The implications on the overall system performance
based on the execution mode are provided in Sect. 8.

Independent from the fact whether rHV runs in proactive or reactive mode,
a number of operations need to be done. First, the cycles the CPU spends in
EL2 mode must not be visible to the victim OS. Recent versions of the Linux
kernel already use the virtual timer infrastructure, which makes it easy to warp
the time for the victim OS. rHV warps the guest timer in the following manner:
upon each entry into EL2, the current time value is saved. Upon exiting EL2, the
rHV again reads the current time value. The difference of these values is then
stored in the appropriate offset register (CNTVOFF). The ARM virtualized timer
infrastructure automatically subtracts the value of this offset register whenever
the victim OS reads its (“virtual”) time. Thus, the time spent in EL2 mode is
no longer detectable from EL1.

In addition to the time warping, which is necessary in both modes of oper-
ation, in proactive mode, rHV also has to handle interrupts. In order to use a
dedicated timer for EL2, all interrupts must be trapped into EL2. Upon each
interrupt, rHV checks whether the interrupt originated from the EL2 timer or
not. In the latter case, the interrupt is simply forwarded to the victim OS; oth-
erwise rHV handles the interrupt itself and performs its malicious operation.
Afterwards, execution is resumed in the victim OS.
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7 Malicious Service

Once rHV has taken control of EL2, it can provide services to adversary-controll-
able EL0 services. We implemented a simple privilege escalation service as a
proof-of-concept to show the feasibility of the approach. However, more sophis-
ticated services are conceivable as rHV’s power over the system is unconfined.

Our malicious service consists of a combination of code that executes in EL2
(residing in rHV) and a malicious app running in EL0. The idea is that the
malicious app, which executes with normal user privileges, requests elevation to
root, performs modifications to the installed OS or extracts sensitive information,
and is deprivileged again. In the proactive case, rHV uses the dedicated EL2
timer to gain control and uses this timeslot to check whether the malicious EL0
process is currently running. We use the kernel structure reconstruction method
to search for the task struct of our malicious app. When its presence is detected
by comparing certain identifiers, e.g., the process name, the rHV replaces the
UID of the task with zero, thus granting root privileges.

A process that suddenly executes with root privileges might raise suspicion.
A component in EL1 might recognize this change; therefore, the rHV resets the
UID to its original value when the next interrupt occurs. With this mechanism,
we make sure that no reschedule happens while the malicious process is executing.

In the reactive model, rHV is invoked with the bxj instruction. If the general
purpose registers contain the correct magic values, rHV uses the same method
as mentioned before to find the task struct and then sets the UID to zero.
Otherwise, the instruction is simply emulated as bx.

8 Evaluation and Countermeasures

The effectiveness of any rootkit heavily depends on the stealthiness. As described
in Sect. 5, some transitions from EL1 into EL2 are inevitable. Thus, in this
section, we evaluate how long certain operations take and discuss the effective-
ness of scanners trying to detect the presence of rHV. We also analyze the
overhead of the two-stage MMU translation process. All tests were conducted
on a Cubieboard 2 [1].

A rootkit scanner could try to uncover rHV through the induced perfor-
mance overhead (e.g., when rHV runs proactive all interrupts cause the CPU
to trap into EL2). Also the 2 stage page table translations introduce overhead
that a scanner could try to measure. To estimate the effectiveness of such a
scanner, we performed a number of standard system benchmarks. With the
lmbench [17] benchmarking suite, we measured rHV’s impact on these low level
operations. Table 1 shows the results. Column 1 describes the performed bench-
mark, the other columns show the results in the respective setups. We performed
each benchmark 50 times and calculated the mean values and their respective
standard deviation. The mean values show a slight, but noticeable performance
overhead in the rHV setups. However, the high standard deviation values render
the mean value difference almost undetectable. In order to further analyze the
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Table 1. lmbench benchmarks (results are in microseconds).

Benchmark Linux rHV (proactive) rHV (reactive)

mean std. dev mean std. dev mean std. dev

lat ctx 2 58.1050 4.8200 59.2100 5.6957 58.8400 4.6556

lat ctx 4 64.3100 4.3080 65.8950 5.3935 65.8300 4.3352

lat ctx 8 66.0458 4.4091 68.2240 5.1715 67.6644 4.3407

lat syscall 0.2785 0.0018 0.2787 0.0007 0.2785 0.0014

lat read 0.6623 0.0015 0.6628 0.0015 0.6625 0.0015

lat write 0.4779 0.0009 0.4788 0.0010 0.4781 0.0009

lat pipe 12.5509 0.6583 12.6093 0.7291 12.8524 0.8827

lat select 15.7479 0.0061 15.7526 0.0074 15.7502 0.0076

detectability, we verified that the measurement results indeed follow a Gaussian
distribution by running 500 iterations of the lmbench context switch benchmark.
We then extrapolated Gaussian curves from the mean values and standard devi-
ations from Table 1 and compared native against rHV-controlled execution (see
Fig. 2).

From these graphs, it is evident that a scanner would require a vast number
of measurements and exact knowledge of the distribution parameters of both
clean and infected systems to reliably discern whether rHV is indeed running on
a platform.

latl 2xtcatl 2xtcat ctx 2 latl 4xtcatl 4xtcat ctx 4

latl 6xtcatl 6xtcat ctx 6 latl 8xtcatl 8xtcat ctx 8

latl 01xtcatl 01xtcat ctx 10
Native Linux
rHV (proactive mode)
rHV (reactive mode)

Fig. 2. Comparison of the distributions of context switch benchmarks.

Clock Drift. Another approach is to measure the clock drift that is induced by
rHV. As described in Sect. 5.2, rHV hides the clock cycles that the CPU spends
in EL2. In combination with an external time source, a scanner could exploit
this effect to reveal the discrepancy between the local clock and the external
clock source. Since the scanner can not know when rHV actually executes,
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it would enforce traps into EL2 to reveal the clock drift. This could be done
by e.g. multiple executions of a bxj instruction in the reactive setup or by uti-
lizing a peripheral to trigger a large number of interrupts in the proactive setup.
Figure 3 depicts the drift of the local clock compared to an external clock, e.g.
NTP. Assuming an NTP accuracy of ∼5 ms over an internet connection the clock
drift introduced by rHV becomes visible after 60.000 traps into EL2, which could
be either an execution of bxj or an interrupt handled by rHV.

In both cases, a huge number of events is necessary in order to build a
scanner that could reliably discern between a native and an rHV -infected system.
Although not implemented by us, we argue that rHV could be retrofitted with
an “alarm mechanism” that detects unusually large numbers of EL2 traps and
activates appropriate countermeasures to evade detection (e.g. switching from
proactive to reactive execution).
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Fig. 3. Detectability of rHV in reactive execution based on time drift.

Stage 2 MMU. As mentioned in Sect. 5.2, rHV might employ a stage 2 page table
to hide itself. This two-step translation process costs additional time, which rHV
cannot hide, as there is (quite intentionally) no trap. In order to illustrate and
quantify this effect, we built a separate bare-metal setup. We chose two sets of
sixteen memory locations each, one of them pathological to the TLB due to its
limited associativity on the Cortex-A7. These sixteen locations are then accessed
in a tight loop and the total time is measured, flushing the TLB before the first
iteration. The resulting graph is shown in Fig. 4.

We can observe that for low loop iteration counts, the major contributing
factor is the stage 2 page table walk caused by the initial TLB flush. However we
will have to assume that the IPA cache is warm when the scanner operates, so
we cannot assume that this effect will be directly visible. The figure shows that
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for higher loop iteration counts, the access times average out, even for a stage
2 pagetable consisting of 2 MBytes entries. If, on the other hand, the scanner
knows and exerts an access pattern that requires continuous walks, the effect
is indeed detectable, regardless of the current TLB state, as the “s2 2m pat”
curve shows. This pattern is however highly dependent on the stage 2 entries
and requires e.g. for 2 MBytes mappings access to locations that are at least
512 MBytes apart.
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Fig. 4. Memory access times with different stage 2 parameters (s2 and no s2), different
mapping sizes (1g and 2 m mappings) and pathological and non-pathological access
patterns (pat and nopat).

As this is an intrinsic effect, rHV could only evade this by resorting to a
different hiding strategy or by employing more complex paging schemes, e.g.
adaptive mechanisms as discussed by Wang et al. in [24].

9 Attack Vector Prevention

In this section, we describe several ways to prevent rHV or any other malware
from occupying EL2. In general, the countermeasures are different depending on
whether our attack should be prevented in an already deployed system or if it is
possible to replace components with recompiled versions.

If the user has full control over the platform, and the system firmware boots
into secure EL1, the SCR.HCE could be set to zero, disabling the hvc instruction.
The bootloader could also directly switch to EL1 mode in the non-secure world,
giving Linux no chance to install its hyp stub vectors into EL2. This way, EL2
is sealed and cannot be entered directly anymore. However, these fixes require
changes to the boot chain, which is usually under vendor control. Additionally,
boot software would have to know whether virtualization extension lockdown is
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desired, which requires development of an appropriate mechanism, e.g., a flag
in the EL1 OS image, or a runtime EL3 service which irrevocably disables EL2
until reset.

If EL2 is still unsealed when EL3 (or secure EL1 on ARMv7) has been left
and the general purpose OS starts up, it is complicated to get EL2 sealed. It is
remarkable that EL2 itself offers no way to disable hvc functionality. In these
cases where disabling EL2 is impossible, the best bet is to make it unusable.

One approach might be to set VBAR EL2 to an invalid location. As hvc itself
cannot be enabled, this still leaves an opportunity for a denial of service attack,
as execution of that instruction would then lead to an endless exception loop. An
improved attempt might thus install a “nop” vector table, which just executes
eret (exception return) for every EL2 trap it receives. This strategy suffers from
the problem that the vector table has to be located in physical memory, and all
of physical memory is accessible to EL1. Thus an adversary could again find the
location of this vector table, overwrite its entries, and gain EL2 control again.

Finally, the defender could create a stage 2 page table of his own to protect
his lockdown EL2 vector table from being manipulated from EL1. Accesses to
this range would then either result in stage 2 page faults, which the lockdown
hypervisor could reflect to EL1, or could be backed by invalid physical addresses
or emulated so that EL1 just sees garbage data.

The Linux hyp stub was added to the kernel soon after Linux kernel release
v3.6. Many Android devices still run kernel versions lower then v3.6 (e.g. v3.0 or
v3.4). These devices then have a completely uninitialized EL2 mode. To prevent
an adversary from exploiting this entry (Sect. 4), an administrator or a user can
seal EL2 as described for attack vector 1.

10 Related Work

Soon after Intel and AMD released their respective virtualization extensions
King et al. [16] proposed a new form of malware that resides in a virtual machine.
The suggested malware, dubbed VMBR (Virtual Machine Based Rootkit), runs
in a VM on top of an existing hypervisor, such as Virtual PC or VMWare Work-
station. With the help of the underlying hypervisor, they implemented a number
of malicious services to spy on a victim OS. In the same year, Rutkowska [19]
set out the Bluepill concept. Her attack leverages AMD’s virtualization exten-
sion to move the operating system into a virtual machine on-the-fly. In 2008,
Wojtczuk and Rutkowska [20,25] also showed how to attack Xen using different
DMA capable devices (e.g. network card), which are controlled by the privileged
domain Dom0. They use these devices from Dom0 to overwrite parts of the Xen
hypervisor, installing a backdoor.

A number of mitigation techniques have been proposed to detect and prevent
the subversion of system software (OS or hypervisor) on x86 based processors.
Garfinkel et al. [15] discuss the detectability of hypervisors from within a guest.
Based on a number of discrepancies (CPU interface, timing, resources, etc.),
they argue that the prevention of detecting a hypervisor from within a guest
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OS is infeasible and fundamentally in conflict with the technical limitations of
virtualized platforms. In the same year, Franklin et al. [14] proposed a technique
to detect the presence of a hypervisor on a target system. Their approach exploits
hypervisor timing dependencies to elicit measurable hypervisor overhead.

On the ARM architecture, David et al. [12] and Zhang et al. [27] proposed
hardware-assisted rootkits. Both leverage architectural features to hide their
rootkits. The Cloaker rootkit [12] uses an alternative VBAR address to regularly
gain control. On every exception that traps into a privileged mode, the rootkit
gains control. As soon as the rootkit has performed its malicious task, it jumps to
the original exception vector to stay stealthy. The CacheKit rootkit, as described
in [27], uses the ARM cache lockdown feature to solely stay in the L2 cache. The
authors claim that rootkit scanners that only scan the main memory are unable
to detect the rootkit.

11 Conclusion

In this paper, we showed that an adversary can gain control over the EL2 proces-
sor mode on ARM to install a highly privileged rootkit. This EL2 rootkit is
very hard to detect and to remove because it has full control over all system
resources and can easily spy on the OS kernel as well as user applications. In a
proof-of-concept implementation, we showed what a malicious service utilizing
the capabilities of rHV could look like. We evaluated our rootkit and showed
that most of the obvious detection mechanisms (e.g. time drift, memory access
times, etc.) would not work on such a EL2 rootkit. However, with the IPA cache
we identified a unique and reliable a way to detect it nevertheless. We also dis-
cussed a number of mechanisms to seal the EL2 mode and to prevent malicious
software from installing itself into EL2 entirely.

We believe that EL2 should be sealed if an operating system does not intend
to make use of the virtualization capabilities of the device. This ensures that
no malware can gain higher privileges than the OS kernel itself and thus escape
detection.
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