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Abstract. Public Platform-as-a-Service (PaaS) clouds are always multi-
tenant. Applications from different tenants may reside on the same phys-
ical machine, which introduces the risk of sharing physical resources
with a potentially malicious application. This gives the malicious appli-
cation the chance to extract secret information of other tenants via side-
channels. Though large numbers of researchers focus on the information
extraction, there are few studies on the co-residence threat in public
clouds, especially PaaS clouds. In this paper, we in detail studied the
co-residence threat of public PaaS clouds. Firstly, we investigate the
characteristics of different PaaS clouds and implement a memory bus
based covert-channel detection method that works for various PaaS cloud
platforms. Secondly, we study three popular PaaS clouds Amazon Elas-
tic Beanstalk, IBM Bluemix and OpenShift, to identify the co-residence
threat in their placement policies. We evaluate several placement vari-
ables (e.g., application type, number of the instances, time launched, data
center region, etc.) to study their influence on achieving co-residence.
The results show that all the three PaaS clouds are vulnerable to the
co-residence threat and the application type plays an important role
in achieving co-residence on container-based PaaS clouds. At last, we
present an efficient launch strategy to achieve co-residence with the vic-
tim on public PaaS clouds.
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1 Introduction

Cloud computing develops rapidly in recent years and public PaaS cloud plays an
important role in the cloud service market. Report from Synergy Research Group
[1] shows that across six key cloud services and infrastructure market segments,
operator and vendor revenues of 2015 had grown by 28% on an annualized basis.
The report also says public IaaS (Infrastructure-as-a-Service)/PaaS services had
the highest growth rate of 51%, nearly twice the average level. The global market
for PaaS is projected to reach US $7.5 billion by 2020 [2]. PaaS cloud provides
the environment to rapidly develop and deploy applications for the developers.
It saves the developers’ effort to build up the complicated environment each time
and bypasses the maintenance of the underlying infrastructure and services. The
public PaaS clouds are usually multi-tenant due to the resource consolidation
needs of cloud service providers. PaaS cloud often leverages OS-based techniques
such as process protect mechanisms or Linux containers (LXC) to isolate tenants,
which is a light-weighted virtualization and takes less resources compared to
hypervisor-based techniques common in IaaS clouds.

However, multi-tenancy in public clouds enables co-resident attacks [3]. If an
attacker has successfully launched an instance1 co-resident with the victim, i.e.,
on the same physical machine, the attacker can then implement attacks to break
the logical isolation between tenants and extract secret information from the
victim. One of the most notable attacks is the side-channel attack that breaks the
virtualization isolation boundary by actively monitoring shared resource usage,
e.g., utilizing performance degradation [4,5] to influence the victims, or using
Last-Level-Caches (LLCs), local storage disks or memory bus [3,6–10] to obtain
useful information.

To successfully implement co-resident attack, there are two main steps: the
first step is to achieve co-residence with the victim, which includes a launch strat-
egy (to follow some policies when the attacker creates instances) together with
co-residence detection (to detect whether the launched instances have achieved
co-residence with the victim); the second step is the information extraction.
Existing researches focus on the second step of the attack, that is how to exploit
the shared resources to steal other tenants’ secret information, such as private
key [11,12] or password reset link [10]. Recently, researchers have begun to study
the effort made by the adversary to attain co-residence with victim instances.
Varadarajan et al. [8] investigated the placement vulnerabilities of three IaaS
clouds (Amazon EC2, GCE and Microsoft Azure) and quantitatively evaluated
their susceptibility to co-location attacks. Zhang et al. [9] gave a measurement
study on the co-residence threat inside Amazon EC2.

For the multi-tenant public PaaS clouds however, little has been done to
investigate the potential co-residence issue. Although Varadarajan et al. [8]
briefly discussed the co-residence problem of the PaaS cloud Heroku in their

1 In IaaS cloud, “instance” typically refers to an instantiated VM. While in this paper,
it refers to a service unit provided to the tenants by the PaaS cloud providers, which
is usually an application development/runtime environment.
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work, no proof-of-concept prototype has been proposed. Zhang et al. [10] simply
tested the PaaS cloud DotCloud and OpenShift to show it is possible to accom-
plish co-residence but did not give further analysis on co-residence threat, since
the paper mainly focused on the information extraction step of the co-resident
attack. To the best of our knowledge, this is the first study to systematically
assess the co-residence threat of multi-tenant public PaaS clouds.

Since the instance isolation mechanisms (e.g., container-based or application-
based) in PaaS clouds can be different from the ones (VM-based) in IaaS clouds,
we believe that the findings about the co-residence threat of IaaS clouds can-
not be simply “borrowed” to summarize the characteristics of PaaS specific co-
residence problem. Also, the placement variables that may influence co-residence
in PaaS clouds are not completely the same with IaaS clouds. For example, the
application type, which is a new feature and may play a key role in co-residence
analysis does not exist in VM-based IaaS clouds. What’s more, due to the rela-
tive small size of the service unit, the co-residence threats in PaaS clouds cannot
be the same with the ones in IaaS clouds. All in all, we believe the PaaS specific
co-residence threats have unique characteristics yet to be uncovered. This work
seeks to provide new understanding about these unique characteristics.

In this paper, we study the co-residence threat of three popular public PaaS
clouds Amazon Elastic Beanstalk [13], IBM Bluemix [14] and OpenShift [15].
A memory bus contention based covert channel is implemented to detect co-
residence. The main contributions of our paper are: (1) We investigate the iso-
lation mechanism of three popular PaaS clouds and identify the co-residence
threat in their placement policies. We find that, for the container-based PaaS
clouds, the application type (e.g., Python or Node.js) plays an important role
in achieving co-residence. (2) We test several other placement variables, such
as the number of the instances, time launched and data center region, to study
their influence on achieving co-residence in PaaS clouds. (3) According to the
experimental results, we propose a launch strategy to achieve co-residence with
the victim using least effort.

The remaining of the paper is organized as follows. Section 2 presents the
background and the problem statement. Section 3 proposes the co-residence
detection technique used in our tests as well as the experimental methodology. In
Sect. 4 we discuss the experimental results. Section 5 describes the related work
and Sect. 6 concludes the paper.

2 Problem Statement

2.1 Public PaaS Clouds

PaaS is a virtualization based cloud that hosts numerous customer programs
in the same machine simultaneously to reduce the overall costs. Since public
PaaS clouds are usually multi-tenant, isolation between tenants is essential for
the security. Two of the common isolation mechanisms are VM-based isolation
and container-based isolation used in a variety of PaaS systems. Some PaaS
clouds give each customer a separate IaaS VM instance, e.g., the Amazon Elastic
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Beanstalk, thereby leveraging the isolation offered by modern virtualization.
However, some PaaS clouds utilize the container to isolate different instances.
A container is always a group of processes that are isolated from other groups
via distinct kernel namespaces and resource allocation quotas (so-called control
groups or cgroups). A popular open-source project, Docker [16], which has been
adopted by several PaaS offerings (e.g., OpenShift, IBM Bluemix, etc.), is built
on top of facilities provided by the Linux kernel and does not require a complete
operating system (OS).

In the PaaS service model, cloud provider offers the customers various exe-
cution environments (e.g., PHP, Ruby, Node.js, Java, etc.). The customers can
upload the applications’ executables or source code to the environment, which
is deployed in a provider-managed OS. This OS may run on a physical machine
or within a guest VM on a public IaaS platform such as Amazon EC2. Before
uploading an application, the customer should first apply for a corresponding
execution environment. For example, if the customer wants to deploy a Python
application to the PaaS clouds, she should first apply for a Python instance on
the cloud and then push her source code into the instance. The host OS manages
the source usage of all the instances deployed on it.

2.2 Motivation

There are mainly three reasons motivating us to study the co-residence threat of
PaaS clouds: (1) Due to the different cloud architectures, the placement policies
of the container-based PaaS cloud may be different from the IaaS clouds. We
have a key observation that containers of the same type usually boot from the
same image while for VMs, each VM must have a separate image. This means
that application types could play a critical role in achieving co-residence. (2)
The co-residency security problems of the PaaS cloud are more serious than the
IaaS cloud. The service unit (e.g., a container or simply an application) of the
PaaS cloud is much smaller than that of the IaaS cloud in most cases, so there
are more chances for instances in the PaaS cloud to achieve co-residence. (3)
The weak isolation mechanisms between PaaS cloud instances introduce more
security problems. For example, in a docker container, the attacker is able to
gain information of the entire system, such as modules, interrupts, memory usage
and etc. These information can be used as logical side-channels for co-residency
detection. Even worse, two containers of the same application type may boot
from the same image, which gives the attacker the chance to launch the flush-
reload attacks [10,11]. In summary, it is necessary to study the co-residence
threat of the PaaS clouds independently rather than simply follow the previous
research results of the IaaS clouds.

The placement policies of the cloud determine how hard it is to achieve co-
residence. In this paper, we plan to study the co-residence threats residing in
the placement policies of PaaS clouds from the following aspects: (1) How much
effort is needed to achieve co-residence with a single target or a set of targets
in both container-based and VM-based PaaS clouds? Is it cheap or expensive?
(2) Does application type really play a critical role in container-based PaaS



A Comprehensive Study of Co-residence Threat 365

clouds’ co-residence threat analysis? (3) How do the control knobs (number of
the instances, launch time, etc.) identified by IaaS co-residence threat analysis
influence the PaaS cloud? (4) Is there any chance for the attacker to achieve
co-residence with the victim using less effort?

2.3 Threat Model

To achieve co-residence with the victim there are two steps: a launch strategy to
create attacker’s instances and a co-residence detection. We do not consider the
following information extraction attack after attaining co-residence. The focus
of our work is to search for the launch strategies that an adversary can follow
to increase the chance of co-residency with the victim instances. We assume
the victim instances provide external service interfaces to the customers and
the attacker has normal right to use the public PaaS clouds just like any other
regular customers. Also, we assume the cloud providers and the cloud platforms
are trusted.

3 Experimental Methodology

3.1 Co-residence Detection

Memory Bus Contention Based Co-residence Detection. We adopt the
memory bus contention technique [7] to detect co-residence in this paper. The
contention of the memory bus is used as a covert channel. If one of the instance
locks the memory bus regularly, it slows down other instances of using the bus,
such as fetching data from the DRAM. Processors always lock the memory bus
through atomic memory operations. However, modern x86 processors support
atomic memory operations and maintain their atomicity using cache coherence
protocols, which may not need to lock the memory bus. But when an atomic
memory operation extends across two cache-lines, the x86 processor will lock the
memory bus [17]. We utilize this feature to implement the detection to ensure
the detection works on different CPU architectures.

In our implementation, the memory bus covert channel is between a lock
process and a probe process. The two processes run in separate instances. The
lock process creates a memory buffer and uses pointer arithmetic to force atomic
operations on unaligned memory addresses, which will cause atomic operations
across two cache-lines regularly. This indirectly locks the memory bus even on all
modern processor architectures [7]. The probe process creates a memory buffer,
accesses it frequently, and measures the time taken to access the memory. Before
accessing the buffer, it first flushes the memory using the clflush2 instruction.
The clflush instruction evicts the specific memory line from all the cache hierar-
chy, including the L1, L2 and the shared LLC. This ensures the following probe
operation will hit the memory and use the memory bus. Thus, if the memory
2 The clflush instruction takes a virtual address as the operand and will flush all

cachelines with the corresponding physical address out of the entire cache hierarchy.
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bus is locked, the probe process will take longer time to finish probing the buffer
memory. Otherwise, the time is shorter. We combine the memory bus contention
and the clflush instruction to make the detection more accurate. It works even
when the cache size of the machine is unknown.

Threshold. We use a threshold to determine when the change in the probe
process performance indicates co-residency. In each test, we run the probe process
in one instance and keep the lock process idle at first. The performance measured
by this run is the baseline performance without contention. Then the probe
process and the lock process are run together. We test the public PaaS cloud
Amazon Elastic Beanstalk, IBM Bluemix, OpenShift as well as a local machine.
The configurations of the physical machines are shown in Table 1 and the test
results are shown in Table 2.

In order to measure the effectiveness of the memory bus covert channel we
run tests in our local machine. The result shows that the blocking of the memory
bus can significantly slowdown the probe process of accessing the memory. The
performance degradation is as high as 5.4x (Table 2). The local hardware archi-
tecture has multi sockets (Table 1). We didn’t pin the process to a particular
CPU or core. We run as many as 100 samples in the test to let the processes
have the chance to run on the same socket or on different sockets. The results
do not demonstrate obvious difference. That means the detection method works
even when the co-resident instances are running on cores on different sockets,
which is also concluded by Varadarajan et al. [8].

Also, across these hardware configurations (Table 1) on the public clouds, we
repeat the test for 100 times and find no obvious difference either. We observed
a performance degradation of at least 3.2x (Table 2) compared to not running
memory locking process (i.e., a baseline). The following tests in this paper are
started with a conservative threshold of 4x for Amazon Elastic Beanstalk, 3.5x
for Bluemix and 2.5x for OpenShift to minimize false positives.

Table 1. Machine configurations.

Cloud provider Machine architecture Clock (GHz) LLC (MB) Cores/CPU Socket

Local machine Intel xeon E5-4610 2.40 15 6 2

Elastic beanstalk Intel xeon E5-2670 v2 2.50 25 10 2

Bluemix Intel xeon E5-2690 v3 2.60 30 12 2

OpenShift Intel xeon E5-2670 v2 2.50 25 10 2

Reducing Noise. The sources of noise come from the neighboring instances
of the attacker or victim. Any noise could affect the performance of the probe
process with and without the block signal and result in misdetection. To reduce
the noise, we switch between with and without the block signal in each test and
compare the difference to determine co-residency. Also, we take 20 samples of
each measurement and only when the time difference is stable all the time, the
instances can be detected as co-resident.
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Table 2. Memory probing tests with/without the block process. Times rep-
resent the ratio of co-residency time to the baseline. The time unit is 107 CPU cycles.

Cloud provider Isolation Baseline Co-resident Times

Local machine Process 112 610 5.45

Elastic beanstalk Xen VM 109 556 5.46

Bluemix Docker container 121 516 4.26

OpenShift Docker container 115 372 3.23

3.2 Experimental Design

The success of the co-residence attack refers to the fact that there is at least
one attack instance achieves co-residence with the victim instances. There are
several placement variables such as cloud provider, application type, number
of the instances, time launched and data center region that may influence the
success of the attack. We study the effect of each placement variable on the
premise of the other variables.

When studying the effect of application types, we choose Python and Node.js
applications for OpenShift and Amazon Elastic Beanstalk, while for the Bluemix,
we use two different docker images to launch containers. When studying the effect
of number of instances, we varies the number of victim instances as well as the
number of attack instances. Since many clouds support auto scaling to ensure
load balance when running an application, e.g., a web server, the attacker has
the chance to enforce the victim to launch more instances through increasing
the workload of the application.

The delay from the time when the victim has finished launching its instances
to the time when the attacker begins to launch instances is used to define the time
interval between attacker and victim. For example, if the attack instances are
created exactly at the time when the victim has finished his instances’ creation,
the time interval is 0; if the attack instances are created 1 h later after the
victim instances are created, the time interval is 1 h. We use the default instance
sizes in our tests, that is t2.small on Amazon Elastic Beanstalk, small gear
on OpenShift and docker container on Bluemix, because co-residence detection
doesn’t need too much resource. The default data center regions are: us-east-1
for OpenShift, us-west-1a for Amazon Elastic Beanstalk, US South for Bluemix,
unless otherwise noted.

We use the APIs of the PaaS clouds to implement auto test. Each cloud has
the CLI tools running in Linux, e.g., eb for Amazon Elastic Beanstalk, rhc for
OpenShift, cf for Bluemix. We used a single, local Intel Core i5-3470 machine to
launch instances, log instance information and run the co-residency detection test
suite. We crafted several scripts to implement auto creation, deletion and test
of the instances. All these experiments were conducted over 2 months between
April 2016 to June 2016.
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4 Co-residence Threat Study

In this section, we present our measurement on placement and quantification of
achieving co-residence in PaaS cloud Amazon Elastic Beanstalk, IBM Bluemix
and OpenShift. At first, we test the three clouds for the threat of co-residence
(Sect. 4.1). Then we investigate whether the application type plays an important
role in achieving co-residence in container-based PaaS clouds (Sect. 4.2). Next
up, we study how the other placement variables influence co-residence attacks
(Sects. 4.3, 4.4 and 4.5) and finally summarise our findings (Sect. 4.6).

4.1 The Effort Taken to Achieve Co-residence with a Particular
Target

In this section, we test the effort needed by an adversary to obtain co-residence
with a single victim instance. After a target victim instance was launched,
the adversary launched attack instances one-at-a-time sequentially until one
obtained co-residence with the victim as indicated by the detection method.
The attack instances and the victim instance have the same application type.
In this test, there is a chance that the attack will never succeed if the machine
where the victim instance runs has reached its upper limit. We treat the result
as valid only if the co-residence is achieved within 200 attack instances (the
valid rate with varying thresholds will be studied in the future). We repeat the
trials until ten valid results are obtained. Table 3 shows the number of attack
instances needed to obtain co-residence with a single victim. From the experi-
ment results we can see that, co-residence phenomenon with one single victim
commonly happens on all the three popular PaaS clouds. In Bluemix, only a few
attack instances are needed to obtain co-residence. The results also show that
Bluemix has the smallest variance of the results, while Amazon Elastic Beanstalk
and OpenShift’s variance is relatively higher, which means higher randomness
in the number of attack instances.

Table 3. Distribution of the number of attack instances that are needed to
obtain co-residence with a single victim. Results are ten times of test on each
cloud. The time interval is 0.

Cloud provider Value of ten tests Mean S.D Min Median Max

Bluemix 1 5 2 2 4 2 2 4 1 2 2.5 1.35 1 2 5

OpenShift 37 37 15 11 36 18 17 32 27 31 26.1 9.97 11 29 37

Amazon 56 37 13 53 23 44 4 8 15 21 27.4 18.82 4 22 56

4.2 Effect of the Type of Instances

The victim instance could have the same application type with the attacker (all
Python) or different (e.g., victim instance is Node.js and attack instances are
Python). We study how the application types influence co-residence in this part.
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Fig. 1. The average number of attack instances needed to obtain co-residence
with a single victim. Same means the victim and the attackers are the same applica-
tion type. Different means the victim and the attackers are different application types.
Results are the average of ten tests on each cloud. The time interval is 0.

Bluemix and OpenShift are container-based PaaS clouds while Amazon Elastic
Beanstalk is a VM based PaaS cloud. Figure 1 shows the average number of
attack instances needed to obtain co-residence with a single victim. From the
experiment results we can see that, for Bluemix and OpenShift, it is obviously
easier to achieve co-residence with the victim using the same application type
than different application types. While for the Amazon Elastic Beanstalk, there
is no obvious difference. The reason should be the different isolation mechanisms
between instances. This indicates that using the instances of the same application
type as the victim to attack will increase the chance of co-residence in container-
based PaaS clouds.

Bluemix has the weakest resistance to co-resident attack of the three clouds.
Sometimes only one attack instance is enough. Since it is too easy for Bluemix to
achieve co-residence, it can be predicted that in the following experiments (ten
victim instances or more), the co-residency achievement will be much easier. So
we will not talk about the Bluemix in the following experiments any more.

4.3 Effect of the Number of Instances

We observe the placement behavior varying the number of victim and attacker
instances in this part. Intuitively, we expect the chances of co-residence to
increase with the increasing number of attack or victim instances. All the tests
use the same application type (Python) and the time interval is 0. The experi-
ment results are the average of ten times tests.

At first, we keep all the placement variables constant including the number of
attack instances (fixed to 30) and then vary the number of victim instances (10,
20, 30) to observe how the number of victim instances influences the results of
co-residency. As is shown in Fig. 2-(a), for both OpenShift and Amazon Elastic
Beanstalk we observe that, the more victim instances, the higher co-residency
chance. Similarly, we also see an increase in the chances of co-residency with
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(a) Vary the number of victim instances

(b) Vary the number of attack instances

Fig. 2. Chances of co-residency with varying number of instances. (a) Fixing
the number of attack instances to 30 and varying the number of victim instances; (b)
Fixing the number of victim instances to 30 and varying the number of attack instances.
All these results are from one data center region (OpenShift: us-east-1, Amazon Elastic
Beanstalk: us-west-1a).

increasing number of attack instances (10, 20, 30) across both of the cloud
providers (as shown in Fig. 2-(b)). So we can conclude that, the chance of co-
residency increases as the increase of the number of attacker or victim instances.

4.4 Effect of the Time Interval

In this section, we want to find the answer to the questions that how quickly
an attacker should launch her instances after the victim instances are launched,
and whether there is any increase in chance associated with the time interval or
whether the result can help an adversary to design better launch strategies? We
launch 20 victim instances at the beginning and after every certain time delay
(e.g., 0 h, 1 h, 2 h, etc.), we launch 20 attack instances and do the co-residency
detection and then remove them. We keep the other placement variables constant
and repeat the test for ten times.

Figure 3 shows the chances of co-residency with varying delays between victim
and attack instance launches. The experimental results have no obvious regular-
ity. For OpenShift, the success rate reaches maximum at time interval 0 h, 1 h
and 8 h while minimum at time interval 32 h. For Amazon Elastic Beanstalk,
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Fig. 3. Chances of co-residency with varying delays between victim and
attacker instances launches. All these results are from one data center region
(OpenShift: us-east-1, Amazon Elastic Beanstalk: us-west-1a).

the success rate reaches maximum at time interval 32 h, while minimum at time
interval 8 h. With smaller interval (within 1 h), the adversary has relatively high
chance to attack successfully. We did not find the chance of co-residency drops
to zero during the detection. We speculate that the reason could be that some
neighboring instances on the victim’s machine were terminated though some
may be created.

4.5 Effect of the Data Center Region

We only compared the different regions of Amazon Elastic Beanstalk (the us-
west-1a and ap-northeast-1a) in this section since OpenShift is built on Amazon
EC2 and we believe they have the same regularity. All the tests use the same
application type (Python) and the delay is 0. The experiment results are the
average of ten times tests. Ap-northeast-1a is less popular than us-west-1a and
has relatively fewer machines, so we expect higher success rate. Figure 4 shows
that, no matter at any circumstances, attack instances in ap-northeast-1a have
the same or more chance of achieving co-residence with the victim instances than
the ones in us-west-1a, as we expected.

4.6 Summary of the Co-residence Threat

Through the experiment results we can find that: (1) All three clouds examined
by us show weak resistance against co-resident attacks. In the Bluemix PaaS
cloud, only a few attack instances are needed to obtain co-residence with a
particular target. Even in the worse observed cases, one hundred attack instances
are always sufficient in Amazon and OpenShift. This indicates the cost of such
co-resident attack can be really low. In fact, we spend only a little money for
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Fig. 4. Chances of co-residency with varying number of instances in different regions
of Amazon Elastic Beanstalk.

Amazon Elastic Beanstalk during the tests. For the other two PaaS clouds, we
can finish all the tests for free by applying a number of accounts. (2) Application
types really play a critical role in achieving co-residence in container based PaaS
clouds. When an adversary uses the instances of the same application type as
the victim to attack in container-based PaaS clouds Bluemix and OpenShift, the
success rate is higher. (3) In the study of the other placement variables that may
influence co-residence possibility we find that, increasing the number of victim
instances or attack instances will help increase the chance of co-residency in
clouds OpenShift and Amazon. Besides, though in the long term of time delay
we did not find any regularity in the chance of achieving co-residence, we find
that in the delay within 1 h the adversary has relatively higher chance to attack
successfully. Also in the less popular region of Amazon with less physical servers,
the attacker has more chance achieving co-residence with the victim.

Therefore, to improve the success rate in co-resident attacks, the adversary
should launch instances of the same type as the victim and try to increase the num-
ber of victim or attack instances. Also a smaller region and shorter time interval
will help the attack. The adversary can first trigger a scale-up event on target vic-
tim by increasing its workload, which will cause more victim instances to launch.
Afterwards, the adversary can launch multiple instances and may observe some
of them achieve co-residence with the newly launched victim instances.

4.7 Discussion

Although the test is done in a way that we control both the attack instances
and the target instances, we believe the results can reflect the real placement
policy of the PaaS clouds. Also, the co-residence detection can be implemented
without controlling the victim instances. For example, the attacker can run lock
process in the attack instance and then trigger the victim to access the memory
by requesting large size web pages from the target web application as described
in [8]. Through analyzing the response time of the web requests the attacker
can infer whether he has achieved co-residence with the victim instance or not.
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What’s more, there are other placement variables that we haven’t test in this
paper, such as the time of the day, the size of the instances, the threshold of
valid results (mentioned in Sect. 4.1) and other PaaS cloud platforms. We plan
to investigate their effects on co-resident attack in our future work.

5 Related Work

Co-residence Detection. Techniques for co-residency detection have been
studied by many pioneers. They categorize these techniques into two classes: the
side-channel detection and covert-channel detection [8].

The side-channel detection is done by the attacker without the help of the
victim. There are network based side-channel detection method, for example,
network round-trip timing side-channel was used by Ristenpart et al. [3] to detect
co-residency, Bates et al. [18] proposed a side-channel for co-residency detection
by causing network traffic congestion in the host NICs from attacker-controlled
VMs. There are also time based side-channel detection, e.g., Zhang et al. [19]
developed a system called HomeAlone to enable VMs to detect third-party VMs
using timing side-channels in the last level caches, Varadarajan et al. [8] used a
timing side-channel based on memory bus blocking to detect co-residency when
study placement vulnerability in different clouds.

Unlike the side-channel detection, the covert-channel detection needs the vic-
tim’s cooperation. Ristenpart et al. [3] use coarse-grained covert-channels in CPU
caches and hard disk drives for co-residency confirmation. Xu et al. [6] estab-
lished covert-channels in shared LLC between two colluding VMs in the public
clouds. Zhang et al. [10] also use the LLC as the covert-channel to detect co-
residency on PaaS clouds. There are also researches [7–9] exploited memory bus
as a covert-channel on modern x86 processors, in which the sender issues atomic
operations on memory blocks spanning multiple cache lines to cause memory
bus locking or similar effects on recent processors. Inci et al. [20] compared three
co-residence detection methods LLC software profiling, LLC covert channel and
memory bus locking for their efficiency on detecting co-location and showed
that the LLC software profiling technique worked no matter with or without the
cooperation from the victim. We use the memory bus as the covert-channel in
our paper, by adding a clflush instruction to the receiver to ensure the always
hitting of the memory without thinking about the cache size.

Co-residence Threat Studies. The co-residence problem was first proposed
by Ristenpart et al. [3], which showed that a malicious cloud tenant may place
one of his VMs on the same machine as a target VM. Their study was followed
by Xu et al. [6] and further extended by Herzberg et al. [21]. Xu et al. [9]
investigated how Amazon EC2 evolved in VM placement, network management,
and Virtual Private Cloud (VPC), conducted a systematic measurement study
of co-residence threats in Amazon EC2. Varadarajan et al. [8] studied placement
vulnerabilities in the context of VPC on EC2, as well as on Azure and GCE.
There are also studies about new VM placement policies, Han et al. [22,23] and
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Azar et al. [24], which are used to defend against placement attacks. However,
all of these researches focus on IaaS clouds placement problems.

Varadarajan et al. [8] have briefly mentioned the placement problem of the
PaaS clouds. They take Heroku as an example in their work and use logical
side-channel to determine co-residency. Zhang et al. [10] also simply tested the
PaaS cloud DotCloud and OpenShift to show it is not too difficult to accomplish
co-residency. However, none of them gave further analyse of the co-residence
threat in public PaaS clouds, which is just our purpose of this paper.

6 Conclusion

In this paper we studied the co-residence threat of the multi-tenant public
PaaS clouds. We analyzed the characteristics of different public PaaS clouds
and implemented a memory bus based covert-channel co-residency detection
method. Using the detection method we investigated three popular public PaaS
clouds Bluemix, OpenShift and Amazon Elastic Beanstalk to identify the poten-
tial co-residence threat. We find that it is straightforward and cost-efficient to
achieve co-residence on the three public PaaS clouds. It even costs no money to
achieve co-residence in Bluemix and OpenShift. Also application type plays a
critical role in container-based PaaS clouds’ co-residence threat analysis. Finally,
based on our finding, we presented the strategy to achieve co-residence with least
effort.
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