
Private Boolean Query Processing
on Encrypted Data

Hoang Giang Do(B) and Wee Keong Ng

School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

do0004ng@e.ntu.edu.sg, wkn@pmail.ntu.edu.sg

Abstract. Outsourcing the data to the clouds offers an opportunity to
drastically reduce costs of storing and processing data. On the other
hand, it deprives the data owners of direct control over their data and
that introduces new privacy risks. Data encryption has been introduced
to tackle the data confidentiality issue. However, data encryption also
brings a new challenge of query processing over encrypted data. Recently,
solutions for supporting query over encrypted data have been developed.
However, they are either failing to support complex queries or insecure
regarding certain security requirements (i.e. access patterns, query pri-
vacy). In this paper, we propose a novel privacy-preserving query process-
ing framework to support boolean queries over encrypted data. Our
framework utilizes Bloom filter and additive homomorphic encryption to
systematically derive the query evaluation results in a privacy-preserving
manner. We theoretically and empirically analyze the performance of the
proposed protocols and demonstrate their practical values.

1 Introduction

The cloud computing paradigm has offered the user an opportunity to drastically
reduce costs of storing and processing data. Outsourcing data storage as well as
data management to the clouds is useful in many services including law enforce-
ment, finance, healthcare, etc. However, data outsourcing deprives the data own-
ers of direct control over their data, and it brings new crucial security risks.

Since there are many possibilities for data leakage to occur at the server side,
the user should not fully trust the clouds for data privacy. One possibility comes
from corrupted employees who do not follow privacy policies. They may inten-
tionally or unintentionally reveal sensitive information such as personal health
records, financial transaction, or personal voice, etc. Even when the cloud ser-
vice provider claims to enforce sufficient policies on such privacy violence, there
are still chances that cloud computing systems may be vulnerable to external
malicious attacks. Once intrusions take place, any single detail of these sensitive
data will be publicly exposed. Finally, due to privacy regulations of different
countries, the cloud data may be required to be shared with a certain third
party. Therefore, storing plaintext data in the cloud might lead to full exposure
of your data.
c© Springer International Publishing AG 2016
K.-Y. Lam et al. (Eds.): ICICS 2016, LNCS 9977, pp. 321–332, 2016.
DOI: 10.1007/978-3-319-50011-9 25



322 H.G. Do and W.K. Ng

Data encryption has been introduced to tackle the problem of data confiden-
tiality on the clouds. However, at the same time, it also creates a new challenge of
data usability over remotely encrypted data. While the data owner should have
the ability to query and obtain useful data when needed, the simple encryption
method is insufficient for the basic requirement. There are different approaches
to address this problem of privacy preserving encrypted data retrieval in the
clouds. They include (i) downloading the entire dataset and doing a local search
on the decrypted data or (ii) encrypting the data by a searchable encryption
method and performing searching over the encrypted data with the aid of the
cloud server. Since the first approach is not feasible as it incurs heavy communi-
cational and computational cost on the end-user, the latter has gained significant
attention in recent years. Following this direction, various methods have been
proposed for evaluating search queries over encrypted data. However, most of the
existing works focus on the problem of single keyword matching and inherently,
are not suitable to execute complex queries.

In this paper, we study the problem of supporting an important class of
complex search operations: boolean keyword retrieval. We consider a scenario
where an encrypted dataset contains a number of encrypted documents. Each
document is associated with a certain set of keywords. An authorized user is
able to perform search queries which are the combination of logic predicates on
the keyword set. The output of the query processing is the index set of satisfied
documents and nothing else to the data consumer. During the query processing,
not only the outsourced data are kept private from the clouds, but also the user’s
input query remains in confidentiality.

We organize the paper as follows: In the next section, we review the existing
works on secure query processing over encrypted data. Section 3 describes our
problem statement, data model, and query model as well as the requirements for
the designed framework. Section 4 reviews the necessary building blocks which
are Bloom Filters and additively homomorphic public-key encryption scheme
(i.e. the Pailliers encryption scheme). The proposed solution for complex boolean
query processing on encrypted data is presented in Sect. 5. The section system-
atically discusses four stages of the solution. Section 6 presents our experimen-
tal evaluations of the proposed sub-protocols. The final section discusses future
works and concludes the paper.

2 Related Work

There are two general approaches that tackle the problem of secure query
processing over encrypted data without downloading the entire dataset. The
first approach deploys tamper-proof trusted hardware (which is either trusted
or certified by the clients) on the cloud-side. The hardware provides a secure
environment that allows the cloud to perform secure operations over the data in
critical query processing stages. Along this direction, Bajaj and Sion [1] lever-
aged the existence of trusted hardware to design TrustedDB, an outsourced
database prototype that allows a client to execute SQL queries with privacy and



Private Boolean Query Processing on Encrypted Data 323

under regulatory compliance constraints. However, the secure hardware is very
expensive and may not be suitable for general cloud computing paradigm which
typically makes use of cheap commodity machines.

The second approach makes use of cryptographic protocols to perform oper-
ations over the encrypted data. Song et al. [14] proposed the first searchable
symmetric-key encryption. Goh [9] provided the first security definition for
searchable symmetric encryption and presented a Bloom-filter based solution
with linear complexity. Curtmola et al. [5] introduced the notion of adaptive
semantic security for symmetric searchable encryption together with a sub-linear
time and sub-linear space constructions. These techniques only support single
keyword search, and not suitable for complex queries.

Boneh and Waters [3] presented a new cryptographic primitive called hidden
vector encryption that allows evaluating conjunctive queries over encrypted data.
The method also supports general subset and range queries. However, it is worth
to note that their technique is very expensive when data domain is large and
complex to implement. Do and Ng [7] proposed another scheme that can handle
conjunctive keywords search and multidimensional range queries by performing
prefix encoding before encryption. We note that the methods are only suitable for
conjunctive queries, but not directly applicable to disjunctive queries. Moreover,
almost all existing techniques fail to provide rigorous privacy protection due to
access pattern leakage. Islam et al. [11] showed that data access pattern leakage
could lead to the disclosure of a significant amount of sensitive information. In
our proposed protocol, we design a secure protocol that not only preserves query
privacy but also keep the access patterns in confidentiality.

3 Definitions and Assumptions

3.1 Problem Statement

In our problem settings, we consider three different parties: the data owner, the
cloud and the data consumer. Let D denote Alice’s data with n documents. Each
document is associated with a certain set of keywords that enable to search or
retrieve it efficiently. We assume that the data owner wishes to encrypt D using
his/her own key and outsources the encrypted data to a cloud so that latter an
authorized data consumer is able to search on the encrypted data. The input query
is represented by a logical combination (i.e. negation, conjunction, and disjunc-
tion) of the keyword predicates. At the same time, several security issues should
be addressed such as data confidentiality, the privacy of query content, etc.

Formally, let W = {0, 1}∗ be a universe of words and D ⊆ W be corpus. Let
Kw = {w1, · · · , wn} denote a set of searchable keywords. The keyword set Kw
is publicly known (hence it is called a common reference keyword set). While
Kw can be any the searchable property set of the corpus D, for simplicity, we
assume the problem as a general boolean keyword search. That means Kw ⊆ D
and the predicate d(wi) = 1 if and only if the document d contains the keyword
wi. Otherwise, d(wi) = 0.



324 H.G. Do and W.K. Ng

A boolean query qK contains keyword predicate and a set of logical expres-
sions ∧,∨,¬. Let dC = {d(1), . . . , d(n)} be n documents stored in a server C.
With a set of keywords K ⊆ Kw, we define a query qK : d → {0, 1} that takes
a document d as input and outputs 1, if and only if d matches the criteria.

3.2 Security Assumptions

In this paper, we assume that the data owner, the cloud and the data consumer
are semi-honest. The cloud server will correctly follow the protocol specification,
however, at the same time, it is also curious about stored data as well as the query
content. In general, a secure complex boolean query should meet the following
privacy requirements:

– Data Confidentiality. The data are encrypted by a provably secure cryptosys-
tem. Besides, during the query processing, the cloud should not gain any new
knowledge on the stored data.

– Query Privacy. At any point of time, the data consumer’s query should never
be revealed to the cloud and the data owner.

– Access Pattern Privacy. Data access patterns of the data consumer should
not be disclosed to the cloud and the data owner. Data access patterns are
the information of the documents satisfy the query (even the attackers do not
know the query content).

– End-user’s Privacy. At the end of the query processing protocol, only the
satisfied results should be revealed to the data consumer and nothing else.

4 Building Blocks

4.1 Bloom Filter

Bloom filter [2] provides a way to probabilistically represent set membership of
elements using a small amount of space, even when the universe set is large. It
represents a set S = {s1, . . . , sn} of n element by a space-efficient m-element
array B = {B[1], B[2], . . . , B[m]}. A random set of hash functions h1, . . . , ht,
where each function hi : {0, 1}∗ → [0, . . . ,m] are chosen to associate with the
Bloom filter B.

The filter algorithm is constructed as follows. The bit array B is initially
set to 0. For each element si ∈ S, the bits corresponding to the positions
h1(si), h2(si), ..., ht(si) are set. The same bit in the array may be set several
times without any restriction. Figure 1 depicts how an element is inserted into a
Bloom filter.

After the Bloom filter is constructed, membership queries can be easily
answered. To determine whether an element x belongs to the set S, we check all
the bits corresponding to the positions h1(s), h2(s), ..., ht(s). If at least one bit
is 0, then x �∈ S for sure. Otherwise, we conclude that x ∈ S. Actually, a false
positive may occur when an element x �∈ S is recognized as an element of the set.
However, mathematical analysis shows that the probability when the algorithm
returning 1 for x �∈ S is approximately (1 − e

−tn
m )t, which is small enough for

the practical use.



Private Boolean Query Processing on Encrypted Data 325

Fig. 1. Bloom filter insertion

4.2 Additive Homomorphic Encryption

A homomorphic encryption scheme is a cryptosystem that allows arithmetic
operations to be performed on the cirphertext without decryption or knowing
the actual values. Consider two operators × and + on the ciphertext and plain-
text domain, respectively, if m1 and m2 are two plaintext elements, an additive
homomorphic scheme Enc satisfies

Enc(m1) × Enc(m2) = Enc(m1 + m2).

Efficient additive homomorphic cryptosystems have been proposed such as
the Pallier cryptosystem [12], or the Damgard and Jurik cryptosystem [6] which
is length-flexible Paillier’s encryption scheme. We emphasize that any additive
homomorphic encryption scheme that satisfies the above properties can be uti-
lized to implement our proposed framework. However, for simplicity, we assume
that the additive homomorphic encryption we are using in this paper is the Pail-
lier cryptosystem. The security of the Paillier encryption scheme relies on the
computational hardness assumption of a novel mathematical problem called the
composite residuosity. The decision version of this problem class assumes that
no polynomial time algorithms can distinguish N -th residues modulo N2 with
non-negligible probability. We refer to the reader [12] for more details.

4.3 Oblivious Transfer and OT Extension

Oblivious transfer (OT) is a major building block for designing a number of
secure computation protocols. The protocol consists of two parties: the receiver
and the sender. The basic 1-out-of 2 OT 2

1 allows the receiver choose either one
from two input of the senders without learning anything regarding the other.
OT 2

1 was introduced by Even et al. [8] as a generalization of Rabin “oblivious
transfer” [13]. Brassard et al. [4] further extended OT 2

1 to 1-out-of n OTn
1 where

the receiver is able to obtain one from n messages possessed by the sender.
Since then, many efficient protocols for OT with different security assumptions
have been proposed over the years. k-out of n OT k

n scheme is the final form of
OT schemes and the one we make use in our solution. In it, from n encrypted
messages sent by the sender, the chooser can obtain k of them which he had



326 H.G. Do and W.K. Ng

chosen without the senders knowledge about which part of the messages can be
obtained by him. While it is clear that OT k

n can be constructed by applying
k repetitions of OTn

1 , there have been more efficient protocols. Wu et al. [15]
introduced two-lock cryptosystems to improve the efficiency of OT k

n protocol
from O(kn) to O(k + n). Recently, Guo et al. [10] proposed a cryptographic
concept called subset membership encryption and applied it to construct two
round OT k

n protocol against semi-honest adversaries. The algorithm only requires
the communication cost of O(n) for the sender and O(k) for the receiver.

5 Proposed Framework

5.1 System Overview

As mentioned in Sect. 3, the data owner outsources a corpus D of encrypted
documents so that later the data consumer is able to perform complex boolean
keyword queries. A query is represented by logical expressions ∧,∨,¬ of boolean
keyword predicates qk. The results of the query are the indices of satisfied
documents.

This paper explicitly assumes that each document di is associated with a
subset S(i) ⊆ K of keywords. For simplicity, we assume that each document
has the same number of associated keywords. For each document, we represent
these associated keywords by a Bloom-filter of size m. Let {h1, h2, . . . , ht} be
independently keyed hash functions. A keyed hash function hi inputs a secret
key from key space K and a keyword k and outputs an integer in the range of
[1, . . . ,m]. The preprocessing stage when the data owner prepares the data and
uploads them to the cloud is described as follows:

1. The data owner generates a secret pseudorandom function F mapping an
integer to a random key in the key space K.

2. For each document d(i), the data owner does the following:
– Generating a key for hash functions: k(i) ← F (i).
– Creating a Bloom-filter B(i) associated the documents.
– Inserting the document keyword set S(i) into Bloom-filter B(i) with

the hash functions: h1, h2, ..., ht using the key k(i). Concretely, for each
keyword w

(i)
j of the document d(i), we set the bit h1(k(i), w

(i)
j ), . . . ,

ht(k(i), w
(i)
j ) in Bloom-filter B(i).

– Encrypting the content of the document by a standard cryptosystem (i.e.
AES).

3. The data owner sends the encrypted dataset as well as the Bloom-fiters for
all encrypted documents to the cloud server.

4. The data owner shares the secret function F with the authorized data
consumer.

Let D
′
denote the outsourced data of the data owner. D

′
consists of multiple

records and each of them has the following form:
〈
Document index, Encrypted content, Bloom Filter data

〉



Private Boolean Query Processing on Encrypted Data 327

Two arbitrary documents have two different Bloom filters which are generated by
two different sets of hash functions (i.e. different keys for keyed hash functions).
Moreover, the keys are generated by a pseudorandom function F . The input of
F is the index of the document. Hence, with the view of Bloom filters data, the
cloud cannot make any conclusion about the associated keyword sets.

Now consider an authorized data consumer (which would typically be autho-
rized by the data owner) who wants to securely retrieve data from D

′
in the

cloud. The satisfied documents are defined by his/her private boolean query.
The query phase consists of three stages as the following:

– Secure Single Keyword Evaluation - In this stage, the data consumer evaluates
a single keyword query for each encrypted document. The output of this stage
is the encryption of either 1 or 0, depending on whether the document contains
the keyword.

– Secure Complex Boolean Query Evaluation - Based on the results of the pre-
vious stage, the data consumer collaborates with the cloud to compute the
result of the complex logical combination of boolean predicates. Again, the
output of this stage is the encryption of either 1 or 0 depending on whether
the document satisfies the input query.

– Retrieval of Output Data - At this stage, the data consumer collaborates with
the cloud to securely retrieve the indices of satisfied documents, and obtains
the final documents by private information retrieval or oblivious RAM with
known indices.

5.2 Secure Single Keyword Evaluation

We consider the scenario of evaluating a single boolean predicate qk(d) for each
document d in the encrypted data corpus D

′
. More concretely, we propose an

algorithm to answer the query whether a particular encrypted document d con-
tains a given keyword k.

We denote Alice, S, Bob be the data owner, the cloud, and the data con-
sumer respectively. Let (pk, sk) be the Paillier key pair of S, and Enc(·) be the
encryption under public key pk. Protocol 1 describes the algorithm that inputs
an index i, and a keyword w and outputs an encrypted bit b. b = 1 if the doc-
ument contains the keyword and 0 otherwise. The result is held by Bob but
remains encrypted under S’s public key pk.

In line 5 of Protocol 1, Bob and S collaboratively compute the mulitpli-
cation operation on the encrypted data. In this protocol (i.e. SecMul), Bob
holds two private encrypted inputs (Enc(x), Enc(y)) and S keeps the Paillier
secret key sk, where x and y are unknown to both two parties. The output of
SecMul(Enc(x), Enc(y)) is Enc(x × y) and revealed only to Bob. The proto-
col SecMul is presented in Protocol 2. Regarding the definition of SecMul (i.e.
Protocol 2 ), Bob iteratively computes the product of

∏
Enc(B(i)[hj(k,w)] in

the encrypted form for j = 1, . . . , t. The product equals to 1 if any only if all
the bits of {Enc(B(i)[hj(k,w)]} are set and 0 otherwise. Hence, the correctness
of the protocol follows that observation.



328 H.G. Do and W.K. Ng

Protocol 1. Secure Single Keyword Evaluation
Input: Integer i denotes the index of document d(i), keyword w, pk is Pailier

public key of S
Output: Encrypted bit Enc(b), where b = q(w, d(i)) - whether d(i) contain w

1 S encrypts each bit in the Bloom filter B(i) by its Pailier public key;
2 Bob generates key k = F (i);
3 S and Bob perform (t,m) oblivious transfer to send encrypted

{Enc(B(i)[hj(k,w)])} to Bob, j = 1, t;
4 Bob computes r = Enc(1) ;
5 For each correspoding bit hj(k, w), Bob computes

r = SecMul(r,Enc(B(i)[hj(k,w)])) ;
6 Bob outputs r.

Regarding in line 1, 2 of Protocol 1, S is required to encrypt the Bloom filter
sets each time for a single keyword evaluation. However, since a complex boolean
query normally contains multiple of keyword evaluations, one time Bloom filters
encryption and communication for a query are sufficient. The protocol requires
n encrypted bit transfers for the Bloom filter and 2 × t encrypted integer com-
munication for t Secure Multiplication rounds.

Protocol 2. Secure Multiplication
Input: Bob holds (Enc(x), Enc(y)), and S holds the private key sk
Output: Bob holds Enc(x × y)

1 Bob generates two random number r, s;
2 Bob computes Enc(x + r), Enc(y + s) sends them to S;
3 S decrypts and obtains x + r, y + s;
4 S computes (x + r)(y + s) and send Enc((x + r)(y + s)) to Bob;
5 Bob computes

Enc(x × y) = Enc((x + r)(y + s)) − Enc(x × s) − Enc(y × r) − Enc(r × s).

The computations at line 2, 5 of Protocol 2 are simply performed by the
homomorphic property of Paillier encryption. During the protocol, Bob only
works on encrypted data, while the server receives two random numbers. Hence,
no information regarding x and y is gained by Bob and S. The correctness of the
protocol is trivial as (x+ r)(y + s) = x× y + x× s+ y × r + r × s. The protocol
requires 2 encrypted integer transfer for communication cost. Bob has to perform
5 multiplicative operations and 5 exponential operations in the ciphertext space.

5.3 Secure Complex Boolean Query Evaluation

At this stage, Bob holds the encrypted result of the evaluation for each document
with each keyword appearing in the private query. This sub-section discusses



Private Boolean Query Processing on Encrypted Data 329

three basic primitives that operate on the encrypted inputs of the stage. With
these primitives, Bob has the capability to compute the encryption of the desired
bit result for each document’s query evaluation. The output of this stage is a
single encrypted bit for each document. That single bit indicates whether the
document satisfied the query.

Inputs of the three primitives are either one single encrypted bit (NOT oper-
ation) or two encrypted bits (AND and OR operations). The descriptions of
them are presented as follows:

1. ¬ (NOT ) - It is straightforward to derive the formula for bit negation opera-
tion: Enc(¬x) = Enc(1)−Enc(x). Clearly, the operation leaks no information
regarding the encrypted bit x to both the cloud S and Bob. It requires 1 expo-
nential operation and 1 multiplicative operation. Clearly, the protocol leaks
no information to Bob and S, since S receives no more data while Bob only
works on his inputs which are encrypted data.

2. ∧ (AND) - Because x ∧ y = x × y for any two bits x, y. The primitive is
exactly the same with the description of SecMul (Protocol 2). The proto-
col requires 5 multiplicative operations and 5 exponential operations in the
ciphertext space. The security of the protocol follows the analysis of Secure
Multiplication (i.e. Protocol 2).

3. ∨ (OR) - Since x ∨ y = x + y − x × y, we can derive the definition of the
OR primitive as in the Protocol 3. The protocol requires 7 multiplicative
operations and 6 exponential operations in the ciphertext space. During the
protocol, the data that Bob and S receive are exactly the same with those
received during Protocol 2, hence, Bob and S gain nothing after the protocol
execution.

Protocol 3. Secure OR Operation
Input: Bob holds (Enc(x), Enc(y)), and S holds the private key sk
Output: Bob holds Enc(x ∨ y)

1 Bob and S collaboratively compute Enc(x × y) using protocol 2 ;
2 Bob computes r = Enc(x) + Enc(y) − Enc(x × y);
3 Bob outputs r;

5.4 Secure Retrieval of Output Data

Following the output of the Secure complex boolean query evaluation stage, Bob
has the evaluation result (in encrypted form) for the combination of all predicates
in the input on each data records. The goal of this stage is to utilize these results
to reveal the raw evaluation result to Bob. The results are the indices of satisfied
records. It is still worthy to point out that after this final stage, Bob can obtain
only the result and nothing else, at the same time S gain nothing regarding
Bob’s query.



330 H.G. Do and W.K. Ng

Let denote (pkB, skB) as Bob’s Paillier key pair, and Enc(pkB, ·) as the
encryption using Bob’s public key. The process of Secure retrieval of output
data is presented in Protocol 4.

Protocol 4. Secure Retrieval of Output Data
Input: Bob holds Enc(bi)- the encrypted evaluation result of each document,
Output: Bob holds Sr the set of statisfied indices

1 For each index idi
(1.1) S sends Enc(idi) to Bob.
(1.2) Bob and S compute Enc(bi × idi) = SecMul(Enc(bi), Enc(idi))
(1.3) Bob generates a random integer ri, and computes Enc(bi × idi + ri)
(1.4) Bob sends Enc(bi × idi + ri) and Enc(pkB, ri) to S.
(1.5) S decrypts to get bi × idi + ri
(1.6) S generates a random integer si and encrypts Enc(pkB, bi × idi + ri + si)
(1.7) S computes Enc(pkB, si + ri);

2 S sends pairs of {Enc(pkB, bi × idi + ri + si), Enc(pkB, si + ri)} to Bob in a
random order;

3 Bob decrypts and computes pi = bi × idi;
4 If pi �= 0, Bob adds pi to Sr;
5 Bob outputs Sr;

At line 1.4, the cloud S receives Enc(pkB, ri) (encrypted by Bob’s public key)
and a random number bi × idi + ri for each document. Clearly, it learns nothing
regarding the evaluation results of Bob’s input query. On the other hand, Bob
recieves two random number bi × idi + ri + si and si + ri for document idi, the
only information he obtains is bi × idi and nothing else.

6 Implemetation

We implemented and calculated the CPU time required to run the sub-protocols
that we propose in Sect. 5. Our experiments were conducted on a Windows 10.0
machines with a processor 3.0 GHz and 16 GB RAM. We used Paillier cryp-
tosystem as the underlying additive homomorphic encryption scheme and imple-
mented the proposed sub-protocols in Java. In order to make all the same sub-
protocol to play the similar role, we implemented a simplified version of Secure
Retrieval of Output Data (i.e. Protocol 4) protocol. In this simplified version, we
consider there is only one document. As the result of the assumption, the output
of the sub-protocol is either 0 or the index of the single document. Table 1 shows
the processing time of four sub-protocols with different Paillier encryption key
sizes.

While the specification of secure OR protocol requires 4 more multiplicative
operations compared to secure AND protocol in the ciphertext space, the result
shows that there is not much difference between the running times of secure
AND and secure OR. On the other hands, we note that the running time of



Private Boolean Query Processing on Encrypted Data 331

Table 1. Running times of different sub-protocols in our implementation

Key size Secure negation Secure AND Secure OR Secure retrieval

512 4 ms 20ms 22 ms 38 ms

1024 17 ms 73ms 86 ms 150 ms

2048 81 ms 517ms 558 ms 1090 ms

secure Negation is significantly larger than the difference between the previous
two protocol. That means the encryption/decryption operations are more com-
putationally expensive than performing arithmetic calculations on the ciphertext
space. If we fix the Paillier encryption key size to 1024 bits, we note that the
running times of secure retrieval of output data is 150 milliseconds, hence, we
can easily handle thousands of data records in a reasonable time (i.e. 30 min).
However, we observed that the computation cost of the sub-protocols increases
by almost a factor of 7 when the Paillier key size is doubled.

7 Conclusion and Future Work

Thanks to various benefits (i.e. such as cost-efficiency and flexibility), outsourc-
ing data storage and operational services to clouds has gained significant atten-
tion from both industry and academia. However, due to privacy concerns, data
are typically encrypted before being outsourced. On the other hand, data encryp-
tion brings new challenges to both academia and industry which is query process-
ing over encrypted data. Various techniques have been proposed to securely per-
form data retrieval over encrypted data. However, these techniques are either
not directly applicable for evaluating complex queries over encrypted data or
insecure regarding certain security requirements.

This paper presents a framework to securely evaluate boolean queries over
encrypted data in the cloud. We applied Bloom filter and additive homomorphic
encryption to construct a secure single keyword evaluation. We also presented an
efficient mechanism to systematically combine the evaluation results of individual
predicates to compute the corresponding query evaluation result. Our protocol
not only protects data confidentiality and privacy of users input query but also
hides the access patterns of the queries. The experimental results show that our
protocol is practical for a small and medium size of data. As future work, we
will design, implement and evaluate our protocols in parallel paradigms such
as Map-Reduce or GPU. We also plan to extend our solutions to address other
adversary models, such as fully malicious adversaries.

References

1. Bajaj, S., Sion, R.: TrustedDB: a trusted hardware based database with privacy
and data confidentiality. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2011, Athens, Greece (2011)



332 H.G. Do and W.K. Ng

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
IACR Cryptology ePrint Archive 2006 (2006)

4. Brassard, G., Crépeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987). doi:10.1007/3-540-47721-7 17

5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA (2006)

6. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2 9

7. Do, H.G., Ng, W.K.: Privacy-preserving approach for sharing and processing intru-
sion alert data. In: Tenth IEEE International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, ISSNIP 2015, Singapore (2015)

8. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

9. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive (2003)
10. Guo, F., Mu, Y., Susilo, W.: Subset membership encryption and its applications

to oblivious transfer. IEEE Trans. Inf. Forensics Secur. 9(7), 1098–1107 (2014)
11. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable

encryption: ramification, attack and mitigation. In: 19th Annual Network and Dis-
tributed System Security Symposium, NDSS 2012, San Diego, California, USA
(2012)

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

13. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive 2005 (2005)

14. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California,
USA (2000)

15. Wu, Q.-H., Zhang, J.-H., Wang, Y.-M.: Practical t-out-n oblivious transfer and its
applications. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol.
2836, pp. 226–237. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39927-8 21

http://dx.doi.org/10.1007/3-540-47721-7_17
http://dx.doi.org/10.1007/3-540-44586-2_9
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-540-39927-8_21

	Private Boolean Query Processing on Encrypted Data
	1 Introduction
	2 Related Work
	3 Definitions and Assumptions
	3.1 Problem Statement
	3.2 Security Assumptions

	4 Building Blocks
	4.1 Bloom Filter
	4.2 Additive Homomorphic Encryption
	4.3 Oblivious Transfer and OT Extension

	5 Proposed Framework
	5.1 System Overview
	5.2 Secure Single Keyword Evaluation
	5.3 Secure Complex Boolean Query Evaluation
	5.4 Secure Retrieval of Output Data

	6 Implemetation
	7 Conclusion and Future Work
	References


