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Abstract. Midori is an energy-efficient lightweight block cipher pub-
lished by Banik et al. in ASIACRYPT 2015, which consists of two vari-
ants with block sizes of 64-bit and 128-bit, respectively. In this paper, a
new method is proposed to exploit cell-oriented fault propagation pat-
terns in recognizing appropriate faulty ciphertexts and fault positions,
which poses a serious threat to practical security of Midori. In light of
this, we present a Differential Fault Attack against the Midori using cell-
oriented fault model. Specifically, by inducing two random cell faults
into the input of the antepenultimate round, our attack reduces the
secret key search space from 2128 to 232 for Midori-128 and from 2128

to 280 for Midori-64, respectively. Our experiments confirmed that two
faulty ciphertexts induced into the input of antepenultimate round could
recover twelve in sixteen cells of subkey with over 80% probability.

Keywords: Lightweight cipher · Differential fault analysis · Cell-
oriented fault propagation · Midori

1 Introduction

In recent years, Internet of Things (IoT) as a new information network tech-
nology is booming, accompanied by an endless stream of new devices including
Smart-Home devices, wearable devices, medical implants and other battery oper-
ated portable equipments. These devices always produce, process, transfer and
store private information such as wearable equipments, or even security-critically
control over people’s lives like heart pacemakers. Inevitably, there is growing
concern about their actual security. Fortunately, the cryptographic technique
is a reliable way to meet these security requirements. As a result, the resource-
constrained devices like RFID tags and sensing nodes used in the IoT have drawn
a great attention on the lightweight cipher, which is featured with low latency,
small areas, low energy consumption and hardware-friendly design. In this flour-
ishing field, several lightweight block ciphers have been proposed in the last few
years, including HIGHT [1], CLEFIA [2], PRESENT [3], KATAN [4], PRINCE
[5], LED [6], Piccolo [7], SIMON/SPECK [8], Midori [9] and so on.
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Midori is published in the ASIACRYPT 2015 by Banik [9] et al. with two
variants Midori-64 and Midori-128, both of them optimized with the energy con-
sumption criterion. The optimizing work mainly consist of replacing the 8-bit
Sboxes with 4-bit Sboxes and using almost MDS (Maximum Distance Separable)
binary matrices instead of MDS matrices. By adopting this energy-efficient archi-
tecture, Midori seems to be a promising cipher with low latency and small areas
at the same time. However, the security (mathematical security and practical
security) of lightweight cipher is vital as it is the key to protect our security-
sensitive information inside the IoT devices from attackers. On one hand, sev-
eral literatures have studied the mathematical security of Midori by means of
classical cryptanalysis, including differential/linear cryptanalysis [9], impossible
differential cryptanalysis [10], meet-in-middle attack [11], truncated differential
and related-key differential attacks [12]. Nonetheless, these cryptanalysis haven’t
identified any serious weakness with respect to mathematical properties. On the
other hand, the practical security also plays a key role for security, but for Midori,
there is no public literature studied its practical security so far.

Other than classical cryptanalysis, differential fault attack (DFA) is a typical
cryptanalysis on cryptographic devices (implementations). It was first proposed
by Biham and Shamir [13] against DES-like cryptosystem. After that, several
similar attacks have been proposed to analyze the AES [14–16], Triple-DES [17],
SMS4 [18,19], LED [20] et al. In essence, the DFA exploits the subtle relation-
ships between the secret key and the behavior information under malfunctions to
launch a key recovery attack. Typically, it derives information about the secret
key by the differential between correct and faulty ciphertext (with the same
plaintext). Thus, besides selecting a suitable fault model, the key to a DFA in
practical is to determine whether the success of fault injection. All these afore-
mentioned DFA methods haven’t pointed out how to filter the proper faulty
ciphertexts. As the DFA method described in [16], although it only need one
faulty ciphertext to recover the 128-bit secret key, there is a huge difficulty to
discriminate and sort out the applicable faulty ciphertext. On the other hand,
the determination of the fault location also influences the analysis complexity. If
it is unknown, the exhaustive method is needed to cover all possibilities, thus the
computational complexity will be multiplied. Therefore, if the precise positions
could be deduced straightly by the faulty and correct ciphertexts, the attack-
ing complexity would be decreased dramatically. For Midori, the almost MDS
matrix used in its permutation-layer gives us an unexpected convenience to solve
both filtering and positioning problems, thus from a security point of view, this
feature poses the great threat to its practical security against attacks like DFAs.

In this paper, we firstly illustrate an crucial vulnerability in Midori caused by
the almost MDS binary matrix. We begin with investigating the fault propaga-
tion property of single fault induced in the antepenultimate round of encryption,
then examine the differential of correct and faulty ciphertext, and analyze the
positions of nonzero differentials. Some distinct patterns emerge, which connects
the faulty position and the nonzero-differential positions, and these patterns
could be exploited to deduce the corrupted positions. This fact also suggests
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that the tradeoffs must be taken between security and the performance met-
rics like latency, energy consumption by (lightweight) cipher designers. Based
on this observation, we propose a new cell-oriented differential fault analysis
method against both Midori-64 and Midori-128, as they adopt the same overall
structure. Our attack adopts cell-oriented fault model, and the fault injection
position could be inferred only using correct and faulty ciphertext. By retrieving
the related subkeys, our method reduces the secret key search space by 248 and
296 only using two faulty ciphertexts for Midori-64 and Midori-128, respectively.

The rest of this paper is organized as follows. Section 2 briefly introduces the
block cipher Midori. Section 3 investigates the cell-oriented fault propagation
of Midori. Then Sect. 4 proposes our DFA method, and Sect. 5 summarizes the
attacking complexity and experiments. Finally Sect. 6 concludes the paper.

2 Description of Block Cipher Midori

Midori consists of two variants, Midori-64 and Midori-128. Their block sizes n
are 64-bit and 128-bit respectively, and the key sizes are 128-bit for both. Midori
adopts a typical Substitution-Permutation Network structure, its state matrix is
a 4× 4 cell-matrix, where the cell sizes m are 4-bit and 8-bit for Midori-64 and
Midori-128, respectively. The state matrix S is defined as follows:

S =

⎛
⎜⎜⎝

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎞
⎟⎟⎠ ,

where s0, s1, . . . , s15 are sixteen cells. Midori is composed of encryption, decryp-
tion and key schedule, its overall structure of encryption is depicted as Fig. 1.
And the comparison of two variants of Midori is tabulated as Table 1.

Table 1. The comparison of two Midori variants

Block size(n) Cell size(m) Key size Number of rounds(R)

Midori-64 64 4 128 16

Midori-128 128 8 128 20

2.1 Encryption and Decryption

For Midori, its encryption and decryption consist of R rounds of round function.
Each of it consists of four transformations including SubCell, ShuffleCell,
MixColumn and KeyAdd. The plaintext is divided into 16 cells and rearranged
into the state matrix S. The overall structure of encryption is pictured as Fig. 1
and these four transformations are described in the following.
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Fig. 1. Overall structure of Midori (Encryption), R= 16 for Midori-64 and R= 20 for
Midori-128. WK is the whitening key and RKi is the round key.

– SubCell(SuC): For Midori-64, apply the 4-bit Sb0 to the state matrix S for
each cell: si ← Sb0(si). Similarly, for Midori-128, the 4-bit Sb0 is replaced by
8-bit Sboxes (composed by two 4-bit Sb1 and two bit-permutations [9]): SSb0,
SSb1, SSb2, SSb3, namely, si ← SSbi mod 4(si), where 0 ≤ i ≤ 15.

– ShuffleCell(ShC): Each cell of the state S is permuted as follows:
(s0, s1, . . . , s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

– MixColumn(MC): M is applied to every 4m-bit column of the state matrix
S, i.e., t(si, si+1, si+2, si+3) ← M ·t (si, si+1, si+2, si+3) and i = 0, 4, 8, 12.
Here M and its inverse matrix M ′ are defined as:

M = M ′ =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠

– KeyAdd(AK): The i-th n-bit round key RKi is XORed to a state matrix S.

Table 2. 4-bit bijective Sbox Sb0 and Sb1 in hexadecimal form [9]

0 1 2 3 4 5 6 7 8 9 A B C D E F

Sb0 C A D 3 E B F 7 8 9 1 5 0 2 4 6

Sb1 1 0 5 3 E 2 F 7 D A 9 B C 8 4 6

The decryption procedure shares the whole structure with encryption except
that the ShuffleCell is replaced by its inverse and the order of the round keys
RKi is from R to 0 (Fig. 1).
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2.2 Key Schedule

For Midori-64, the 128-bit secret key K is the concatenation of two 64-bit keys K0

and K1, thus the WK = K0⊕K1 and the round key RKi = K(i−1) mod 2⊕αi−1,
where 1 ≤ i ≤ 15. For Midori-128, WK = K and RKi = K ⊕ βi−1, where
1 ≤ i ≤ 19. Note that αi, βi are both constants, and αi = βi for 0 ≤ i ≤ 14.

2.3 Notations

The following notations were used throughout the rest of the paper.

• Xi,Xi
j : Xi is the output of the (i)-th round, i = 1, 2, . . . , R, thus X0 is

defined as the plaintext and XR = C is the ciphertext. Xi
j is the j-th cell of

Xi, j = 0, 1, . . . , 15.
• SuCi, ShCi,MCi, AKi: these are the state matrix after SubCell,

ShuffleCell, MixColumn and KeyAdd of the i-th round, respectively.
Namely, AKR = XR is the ciphertext.

• RKi: the round key used in the i-th round function, i = 1, 2, . . . , R − 1, and
RK0 = WK, RKR = WK.

• ΔX: the difference of two state matrixes X and X ′.

3 Cell-Oriented Fault Propagation Analysis

In this section, we investigate the propagation of one cell-oriented fault induced
into the input of (R-2)-th round function.

3.1 Fault Propagation in Last Three Rounds

Due to the simple diffusion pattern of inducing fault into the input of last round
and penultimate round, we focus on the single cell-oriented random fault injected
into the input of antepenultimate round. As depicted in Fig. 2, the single cell fault
f induced before the antepenultimate round is changed into f ′ after SubCell, and
remains unchanged after ShuffleCell, then the other three cells in the same col-
umn are infected with identical differential f ′, which stay the same after KeyAdd
transformation. The refreshing of differential values in the (R-1)-th round is
similar to (R-2)-th round, and then trivial in R-th round because of omitted
permutation-layer in the last round. Thus the output differentials equal to the
XOR of correct ciphertext and faulty ciphertext or two faulty ciphertexts.

3.2 Cell-Oriented Fault Propagation Patterns

Distinct association patterns could be observed between the positions of nonzero-
differentials and the position of single cell-oriented fault. Specifically, as pictured
in Fig. 3, each cell of faults induced in the input of antepenultimate round results
in nine faulty cells with unique patterns. Apparently, these patterns could be
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Fig. 2. The fault propagation of last three rounds, fault is induced into the first cell of
state matrix. f, f ′, Fi, and Fi,j are the differentials of two corresponding intermediates,
where i, j = 1, 2, 3.

Fig. 3. The fault propagation patterns of four cells in the first column, f is the faulty
differential and its position is corresponding to the fault injection position.

straightforwardly inferred only requiring the correct ciphertext and faulty cipher-
text. That is, the position of corrupted cell in state matrix S could be uniquely
determined. The essential reason of this pattern is caused by the almost MDS
matrix applied in the permutation layer of Midori. The fault propagation pat-
terns of four cells in the first state matrix column are depicted as Fig. 3 (fault
position j = 0 is detailed in Fig. 2).

In Midori, all design choices are made to save energy consumption, including
using 4×4 almost MDS binary matrices instead of 4×4 MDS matrices. However,
because the branch number of almost MDS matrices [9] is 4, one nonzero active
input leads to three nonzero active outputs in the same column, and nine nonzero
active outputs after two rounds transformations. As a result, the diffusing effect
is weak enough to find distinct patterns of faulty positions. Compared to MDS
matrix applied in the AES (Advanced Encryption Standard), after two rounds of
round function, one nonzero active input leads to sixteen nonzero active outputs,
therefore, no obvious association patterns between the fault injection position
and nonzero differential positions in output.

In the view of practical security, this energy-efficient almost MDS matrix
gives rise to a vulnerability, especially faced with differential fault attacks. This
fact demonstrates that the tradeoffs must be taken between security and the
performance metrics like latency, energy consumption by (lightweight) cipher
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designers. For practical security, the full diffusion MDS matrix is evidently more
preferable than almost MDS matrix for SPN-structure ciphers.

4 Cell-Oriented Differential Fault Analysis on Midori

As pictured in Fig. 2, the fault propagation patterns are clear. Let us denote the
correct ciphertext C = XR = AKR and faulty ciphertext C ′ = X ′R = AK ′R,
then we have the differential �C that

�C = C ⊕ C ′ = XR ⊕ X ′R (1)

For the (R-1)-th round, the output differential has three nonzero values which
equal to F1, F2, F3, respectively. Thus, due to the involution property of Sboxes
applied in the Midori, for F1, we have following four equations:

F1 = SuC(C4 ⊕ RKR
4 ) ⊕ SuC(C ′

4 ⊕ RKR
4 )

F1 = SuC(C5 ⊕ RKR
5 ) ⊕ SuC(C ′

5 ⊕ RKR
5 )

F1 = SuC(C6 ⊕ RKR
6 ) ⊕ SuC(C ′

6 ⊕ RKR
6 )

0 = SuC(C7 ⊕ RKR
7 ) ⊕ SuC(C ′

7 ⊕ RKR
7 )

(2)

where F1 ∈ F2m , m = 4 for Midori-64 and m = 8 for Midori-128. These four
equations can be solved for three subkey cells RKR

4 , RKR
5 , RKR

6 . The key search
space of this triple of key cells is reduced to an expected value of 2m from (2m)3 =
23m. Similar equations could be deduced for F2 and F3, thus after combination
of these three classes of equations, the whole key search space related to F1, F2

and F3 is reduced to 23m from 29m.
By continuing this method, and XR−2 is the output of (R-2)-th round, then

its first column is:

XR−2
0 = SuC(SuC(C1 ⊕ RKR

1 ) ⊕ RKR−1
1 ⊕ SuC(C2 ⊕ RKR

2 )

⊕ RKR−1
2 ⊕ SuC(C3 ⊕ RKR

3 ) ⊕ RKR−1
3 )

XR−2
1 = SuC(SuC(C4 ⊕ RKR

4 ) ⊕ RKR−1
4 ⊕ SuC(C5 ⊕ RKR

5 )

⊕ RKR−1
5 ⊕ SuC(C6 ⊕ RKR

6 ) ⊕ RKR−1
6 )

XR−2
2 = SuC(SuC(C12 ⊕ RKR

12) ⊕ RKR−1
12 ⊕ SuC(C13 ⊕ RKR

13)

⊕ RKR−1
13 ⊕ SuC(C15 ⊕ RKR

15) ⊕ RKR−1
15 )

XR−2
3 = SuC(SuC(C8 ⊕ RKR

8 ) ⊕ RKR−1
8 ⊕ SuC(C10 ⊕ RKR

10)

⊕ RKR−1
10 ⊕ SuC(C11 ⊕ RKR

11) ⊕ RKR−1
11 )

(3)

Thus considering its cell-oriented differentials in the output of (R-2)-th round:

0 = �XR−2
0 = XR−2

0 ⊕ X ′R−2
0

f ′ = �XR−2
1 = XR−2

1 ⊕ X ′R−2
1

f ′ = �XR−2
2 = XR−2

2 ⊕ X ′R−2
2

f ′ = �XR−2
3 = XR−2

3 ⊕ X ′R−2
3

(4)
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Consequently, the interrelation between subkey cells in the equations further
reduce the subkey search space. Apparently, for the first cell output of (R-3)-th
round and its nonzero differential are:

XR−3
0 = SuC(XR−2

1 ⊕ RKR−2
1 ⊕ XR−2

2 ⊕ RKR−2
2 ⊕ XR−2

3 ⊕ RKR−2
3 )

f = XR−3
0 ⊕ X ′R−3

0

(5)

With combination of equations Eqs. 2, 4 and 5, only twelve cells of subkey
essentially involve nonzero differential operations, resulting that the key search
space is reduced to an expected decrease value of 212m.

5 Attacking Complexity and Experimental Results

5.1 Attacking Complexity

In essence, differential fault analysis utilizes the interrelationship of input dif-
ferential and output differential in the SubCell. For Midori, its relationship is
defined as follows [18]:

INs(�x,�y) = {zi|zi ∈ F2m , SuC(zi) ⊕ SuC(zi ⊕ �x) = �y}
Ns(�x,�y) = #{zi|zi ∈ F2m , SuC(zi) ⊕ SuC(zi ⊕ �x) = �y} (6)

then for Midori’s last round SubCell, using the first equation of Eq. 2, �x =
C4 ⊕ C ′

4, �y = F1, then the candidates of subkey cell could be recovered using
RKR

4 = C4 ⊕ INs. Candidates of other subkey cells could be derived similarly.
Note that the maximum differential probability [9] of SubCell are 2−2,

namely, maximum of Ns equals to 16×2−2 = 4 for Midori-64 and 256×2−2 = 64
for Midori-128. That is, for fixed �x,�y, the maximum number of subkey cell
candidates should be 4 and 64 for Midori-64 and Midori-128, respectively. Specif-
ically, for Sb0, Sb1 separately used in Midori-64 and Midori-128, if Ns(�x,�y) is
not null, then it equals 2 with probability of 75.0% (72/96) and 85.71% (90/105)
for Sb1. Due to the SubCell of Midori-128 is constructed by Sb1, if it is divided
into two of Sb1, the attacking complexity could be reduced dramatically.

Since at least two faults are required to uniquely determine the subkey cell
candidates in equations Eq. 2, we derive intersection of subkey cell candidates
using multiple faults induced in the same rounds (optional). Given that two faults
are induced in the same cell position of (R-2)-th input, three nonzero differentials
are obtained by pairing combination. Therefore, for Midori-128, at least two
faulty ciphertexts are required to recover nine cells of RKR and three cells of
RKR−1. Considering that RKR−1 = RKR−1 ⊕ βR−2 and K = WK = RKR,
hence twelve cells of secret key K could be deduced, its secret key search space
is reduced to 232 from 2128 at best. For Midori-64, two faulty ciphertexts could
only recover nine cells of RKR and three cells of RKR−1, thus secret key search
space decreases by an expected value of 248 (= 212m).
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5.2 Experimental Results

We implemented our attack on a PC using Matlab R2014b (64-bit) with 2.60 GHz
CPU and 4 GB memory. The fault injection was simulated by software com-
mands. We use the equations similar to Eq. 2 to illustrate our attack which is
applied to Midori-64. Two simulated faults were induced into the first cell of
(R-1)-th input, namely XR−2

0 and the corrupted value is kept unknown.

Table 3. Subkey cell recovery for RKR
1 , RKR

2 and RKR
3 using two faulty ciphertexts

cNum = 1 cNum = 2 cNum = 4 Proportion of cNum = 1 Time latency(s)

RKR
1 92 4 9 87.62% 0.2381

RKR
2 86 10 9 81.90% 0.2389

RKR
3 86 10 9 81.90% 0.2629

*cNum= #{Candidates} denotes the number of subkey cell candidates. The first three
columns denote the number of possible combinations of two distinct differentials satisfying
cNum= 1, cNum = 2 and cNum = 3, respectively.

Considering that Ns(�x,�y) of Sb0, the number of nonzero input �x equals
15, thus all combinations of two distinct differentials only have 105 (= 15×14/2)
elements. In consequence, as tabulated in Table 3, three subkey cells of RKR

could be recovered with over 80% probability only using two faulty ciphertexts.
On the basis of above experiments, for Midori-128, the attacking complexity

in practice is estimated to 29 · (3e2 + 3e) (= 12 · C2
(e+1) · 28), where e denotes

the number of faults induced in the same cell position. For Midori-64, with the
same setting, the attacking is estimated to 25 · (3e2 + 3e).

6 Conclusions

In this paper, based on the cell-oriented fault propagation patterns existing in
Midori, we presented a differential fault analysis method against its two vari-
ants Midori-64 and Midori-128. Our method straightly exploits these patterns
to uniquely determine the corrupted positions, resulting in its low attacking
complexity. Especially, secret key search space is reduced from 2128 to 232 for
Midori-128 and from 2128 to 280 for Midori-64, respectively. In addition, our
experimental results confirms that the almost MDS matrix used in its permu-
tation layer resulting in a vulnerability, which could be utilized by practical
attacks like DFAs. This result evidently provides a new design advice to cipher
designers.
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