
MultiPol: Towards a Multi-policy Authorization
Framework for RESTful Interfaces in the Cloud

Yang Luo1, Tian Puyang1, Wu Luo1, Qingni Shen1,
Anbang Ruan2, and Zhonghai Wu1(B)

1 Peking University, Beijing, China
{luoyang,puyangsky,lwyeluo,qingnishen,wuzh}@pku.edu.cn

2 University of Oxford, Oxford, UK
anbang.ruan@cs.ox.ac.uk

Abstract. Recently a large number of existing cloud systems adopt rep-
resentational state transfer (REST) as the interface of their services. The
end users or even components inside the cloud invoke RESTful calls to
perform various actions. The authorization mechanisms of the existing
clouds fail to supply two key elements: unified access control and flexible
support for different policies. Moreover, different clouds usually provide
distinct access control concepts and policy languages. This might cause
confusion for customers whose business is distributed in multiple clouds.
In this paper, we propose a multi-policy authorization framework called
MultiPol to support various access control policies for OpenStack. The
end users can customize or even integrate different policies together to
form a single decision via logical connectors. This paper presents the
design and implementation of MultiPol, including a new service called
Policy Service and an attachment module called Request Filter. Experi-
ments on OpenStack show that MultiPol has improved the flexibility and
security of policy management without affecting other services. Mean-
time, the average performance overhead is as low as 7.8%, which is
acceptable for practical use. Since MultiPol is built on REST, it is also
adaptive to other clouds which also provide RESTful interfaces.

Keywords: Representational state transfer · Access control · Open-
Stack · Multi-policy

1 Introduction

Cloud computing has become a revolutionary force for enterprises to reduce their
costs by using on-demand computational infrastructures [1–3]. Although being
the most widely-adopted open sourced cloud, OpenStack failed to provide ade-
quate consideration on security, especially the access control area. Presently, the
critical role of single sign-on in providing cloud security has been well demon-
strated by keystone, a standalone authentication service, yet the access control
mechanism of OpenStack is still unable to provide strong security. Locally stored
policy is used to enforce access control for almost all OpenStack services, and
c© Springer International Publishing AG 2016
K.-Y. Lam et al. (Eds.): ICICS 2016, LNCS 9977, pp. 214–226, 2016.
DOI: 10.1007/978-3-319-50011-9 17

MultiPol: Towards a Multi-policy Authorization Framework 215

the policy is built in, which disallows anyone to modify it except cloud service
provider itself. From the perspective of access control, attribute-based access
control (ABAC) [4,5] is readily adopted by OpenStack and role-based access
control (RBAC) [6] is partially supported as well. However, these models are
hard-coded into the cloud and lack adequate flexibility to be customized. The
above implementation has several limitations as an approach for providing cloud
access control. First, the policy is currently decentralized. All access controls are
restricted within the scope of a physical host. A policy supervisor has to suffer
preparing a policy for each service and manually deploying them to all cloud
nodes, the process of which can be quite unfriendly and error-prone. Second, the
security hook code is a headache for developers. A part of the permission checks
are even hard-coded into the platform. If a cloud customer is unwilling to use
the built-in security policy and desires to customize his own, there will be no
way for him to achieve this.

To solve the above-mentioned issues, in this paper, we propose an authoriza-
tion framework called multiple-policy framework (MultiPol). It includes a stand-
alone service called Policy Service, and an attachment module called Request
Filter which is required to be attached to other OpenStack services to filter
the requests sent to them (we state it as “attached” not “patched” because it
is highly loose-coupled with other services). With the MultiPol framework, each
representational state transfer (REST) [7] request towards the cloud (including
requests sent by not only outside consumers but also the cloud infrastructure
itself) is filtered by Request Filter first. Request Filter then validates it by
sending its security contexts to Policy Service, which will make a proper deci-
sion based on policy enforcement. If Policy Service says yes to this access, the
request will be permitted by Request Filter to reach the demanded service.
Otherwise Request Filter will reject it by returning an error. The MultiPol
framework highlights the achievement of decoupling access controls from func-
tionalities of cloud in code level, which facilitates both cloud service providers
and tenant administrators to have a global view on their security perimeters: the
entire cloud or an individual tenant. And the security settings, especially pol-
icy configurations can be modified through the unified Policy Service inter-
face. Policy Service manages multiple policies provided by both cloud providers
and consumers. Several calls are provided by Policy Service and Request
Filter as a part of the framework. We have implemented the security frame-
work based on the latest OpenStack Mitaka [8]. Despite the fact that Open-
Stack employs REST as its primary interface, the MultiPol framework is gen-
eral enough to be applied to other kind of interfaces, like simple object access
protocol (SOAP), etc.

The remainder of this paper is organized as follows. Section 2 elaborates on
the background. Section 3 presents the design of MultiPol framework. Section 4
brings the implementation. Section 5 describes experimental results. Section 6
concludes this paper.

216 Y. Luo et al.

2 Background

For the past few years, there has been a considerable interest in environments
that support multiple and complex access control policies [9–13]. Access control
as a service (ACaaS), proposed in [14] by Wu et al., provided a new cloud ser-
vice to enforce a comprehensive and fine-grained access control. It is claimed to
support multiple access control models, whereas there is no evidence that this
approach applies to the models except RBAC. And this work is highly based
on IAM provided by AWS, which makes it difficult to apply for other clouds.
OpenStack access control (OSAC), proposed in [15] by Tang et al., has pre-
sented a formalized description for conceptions in keystone, such as domains
and projects in addition to roles. It further proposed a domain trust extension
for OSAC to facilitate secure cross-domain authorization. This work is orthogo-
nal to ours, since it mainly focuses on the enhancement of keystone. The domain
trust decision made by OSAC can be used as a policy condition in MultiPol,
which increases the granularity of access controls. So our work can be well inte-
grated together. The work proposed in [16] by Jin et al., has defined a formal
ABAC specification suitable for infrastructure as a service (IaaS) and imple-
mented it in OpenStack. It includes two models: the operational model IaaSop

and the administrative model IaaSad, which provide fine-grained access control
for tenants. However, this work only focuses on isolated tenants, cross-tenant
access control is not supported. Moreover, their model is bundled with ABAC,
which lacks the flexibility for cloud users to design a policy which is based on
a customized model. The existing solutions usually follow a path by trying to
progress in terms of expressiveness and functionality. However, a vast majority
of them remain merely academic and lack practical acceptance owing to their
complexity in usage or computation. So instead of making a universal policy
model applicable for all scenarios, we try to narrow down the scope to the most
popular cloud systems. And we found that recently, REST [7] has become the
most widely-accepted interface standard for the clouds.

Systems that conform to the constraints of REST can be called RESTful.
RESTful systems typically, but not always, communicate over hypertext trans-
fer protocol (HTTP) with methods like GET, POST, PUT and DELETE that web
browsers use to retrieve web pages and send data to remote servers.

As being an abstract architectural style instead of a strictly defined protocol,
REST does not seek to specify the accurate syntax on the request form. This
fairly results in the current numerous implementations respectively from different
service providers. However, based on the analysis upon the interface design from
mainstream web services in the marketplace, we can extract the representative
elements for a typical RESTful request. A standard request form (SRF) is defined
from those elements to ensure that the vast majority of the RESTful requests
would fit in it. The MultiPol framework accepts the input of SRF requests to
ensure it can be seamlessly applied to a control system using the SRF. Now we
present the definition of SRF as below:

MultiPol: Towards a Multi-policy Authorization Framework 217

Fig. 1. Architecture of multiPol authorization framework

Verb

{http|https}://DomainName[/Version]/Object/

Verb: the HTTP method, possible values are GET, POST, PUT and DELETE.
DomainName: the domain name of the cloud service provider.
Version: the version of the REST interface this request is asking for. Offering

version numbers in REST calls is usually a good design for maintaining multiple
API versions simultaneously.

Object: the part of the path in the URI, which identifies the resource. It is
generally an ordered list of strings separated by /.

It is notable that as an essential part for an access behavior, the subject
does not show up in the SRF. This is due to the fact that the subject is usually
implicitly embedded in the HTTP header, or represented by an access token
retrieved in the previous authentication step. Therefore, this entity needs to be
obtained according to the specific implementation. An example of a policy rule
for RESTful interfaces is shown below.

Subject, Object, Verb -> Effect

In the above expression, Effect is the authorization decision that the policy
declares to enforce. To support both positive and negative authorizations, Effect
can be assigned to either Allow or Deny. Finally, the entire hierarchy of the
RESTful policy syntax can be described in backus-naur form like below:

Policy ::= [Version,] Rules

Rules ::= {Rule}

Rule ::= Subject, Object, Verb -> Effect

Verb ::= GET | POST | PUT | DELETE

Effect ::= Allow | Deny

3 MultiPol Design

The architecture of the MultiPol authorization framework is shown in Fig. 1.
We divide it into two parts: Request Filter and Policy Service. Request

218 Y. Luo et al.

Filter is responsible to intercept all the calls to OpenStack’s REST interface.
Policy Service is the container of policy rules. Each of the REST requests
towards the cloud (including requests sent by not only the outside consumers but
also the cloud infrastructure itself) is filtered by Request Filter first. Request
Filter then validates it by sending its security contexts (Subject, Object,
Verb, etc.) to Policy Service, which will make a proper decision based on
policy enforcement. If Policy Service says yes to this access, the request will
be permitted by Request Filter to reach the target service.

The original policy for OpenStack is a single JSON file called policy.json
locally stored on the service node. A number of rules are provided in that file
and are supposed to be globally enforced for every cloud user, including cloud
administrators. A user cannot specify his own policy rules or make changes to
the original policy enforcement mechanism. This structure was poorly designed
and failed to meet policy customization demands from both consumer and cloud
provider’s perspectives. Therefore, the MultiPol framework intends to solve this
issue. In the MultiPol framework, two types of policy are designed as below:

Global Policy. This type of policy is provided by the cloud provider. It can
be enforced on all tenants across the whole cloud, and only cloud administrator
can modify it. A global policy is public to be viewed and used by all cloud users,
just like the built-in types for a VM instance.

Customer Policy. This type of policy is configurable on the consumer side.
It only applies within a tenant-wide scope, and a tenant’s administrator can
modify it, while other tenants can neither view nor change it.

The MultiPol framework is based on metadata, which is a file that describes
the multiple policies and organizes them into a tree structure. Policies can be
nested, the inner policy is called a “sub policy” of the outer one, the outmost
policy is the root of the policy tree and will be enforced by MultiPol in a depth-
first manner. Policy is composed of a number of fields including name, type,
enforcer, version and rules, which are described in the Table 1.

When we talk about a security policy, we do not quite distinguish between
practical policy rules or just the enforcing logic for this sort of policy. MultiPol
has clarified these conceptions by defining them as rules and enforcer. A secu-
rity system that supports multiple policies typically allows its users to design
their policy rules. However, the underlying enforcement logic of them is usually
unchangeable. MultiPol makes it customizable even for cloud users to offer max-
imum flexibility. In OpenStack, policy enforcement was originally implemented
as a module called policy.py, which can be viewed as an enforcer for different
policy languages including the original ABAC policy. We refactor it by extract-
ing out the shared logic of a general enforcer into an inheritable base class, so
MultiPol can support multiple policies. A policy language author for the Multi-
Pol should write his own enforcer in accordance with the base class declarations.
These declarations can be simplified as below:

– Input: request vector (subject, object, verb), policy rules
– Output: decision (permit|deny)

MultiPol: Towards a Multi-policy Authorization Framework 219

Table 1. The fields of a multiPol policy

Fild Meaning

Name The identifier for the policy, must be unique within the metadata

Type A flag tells whether the policy is provided by cloud provider itself, possible values are:

Global This policy is provided by the cloud provider

itself, customer can just refer to it by name

Customer This is a user-customized policy, and the

customer has to specify its content. This

value is by default

Enforcer The processing logic for this policy, output ips decision, possible values are:

Default The original ABAC policy enforcer adopted

by policy.json

op-and The intersection enforcer, meaning all sub

policies will be composed in a deny-override

manner

op-or The union enforcer, meaning all sub pol-

icy decisions will be composed in an allow-

override manner

all-pass A special enforcer that permits all accesses

all-forbid A special enforcer that denies all accesses

custom A cloud user can customize a policy enforcer

on his own

Version A descriptive string that indicates the current version of the policy

Rules This field’s meaning varies based on different situations:

When enforcer = all-pass or all-forbid This field will be omitted

When enforcer = op-and or op-or This field will be a name list of its sub

policies

other conditions The field will be the rules of the policy

Through this mechanism, a cloud user can customize their own security mod-
ule by submitting his policy to the cloud. Since enforcer is essentially Python
code, the cloud provider is required to provide some sorts of code examine mea-
sures for uploaded enforcer files to ensure there are no malicious code included.

4 Implementation

4.1 Request Filter

As a part of the MultiPol framework, Request Filter serves as an extension to
target services to provide access controls for them. OpenStack typically provides
its services based on web server gateway interface specification (WSGI). This
standard specifies a structure called filter chain, which is an extension mechanism
that supports the preprocessing and filtering of incoming requests before they
arrive to the application side. Keystone has utilized these filters to offer authenti-
cation for the cloud. Thus a natural way to think about it would be implementing
Request Filter as a WSGI filter as well. It is called multipol enforce and
exactly located after keystonecontext (keystone’s middleware). We believe this
is an optimal place as access control always comes after authentication.

220 Y. Luo et al.

Request Filter attempts to reduce invasiveness to other services by limiting
modification of Request Filter to a couple of lines of configuration, so no
existing code change is involved. The following code fragment shows Request
Filter’s modification in nova’s configuration: /etc/nova/api-paste.ini.

[composite:openstack_compute_api_v2]

keystone = compute_req_id faultwrap sizelimit authtoken keystonecontext

multipol_enforce ratelimit osapi_compute_app_v2

keystone_nolimit = compute_req_id faultwrap sizelimit authtoken

keystonecontext multipol_enforce osapi_compute_app_v2

[filter:multipol_enforce]

paste.filter_factory = multipol.rf.enforce:Multipol Enforce.factory

Request Filter normally queries for a security decision each time when
needed. This manner will bring additional time overhead, mainly the network
latency. To alleviate this situation, a cache module is provided in Request
Filter for each decision from Policy Service. So that a new request can
just use the cached result, instead of accessing Policy Service again. If cache
misses, Request Filter then queries Policy Service for decision making, and
newly obtained ruling result will be buffered in the cache.

4.2 Policy Service

Policy Service is the newly proposed service which plays a crucial part in the
MultiPol enforcement framework. It provides access controls for all functions
calls to the REST interfaces of the cloud. The structure of Policy Service is
shown in Fig. 2. It primarily composes of three parts:

– API Module: serves as a REST interface of the Policy Service.
– Verify Module: consults access rules in the policy and determines an access

ruling result in response to the verify query from Request Filter.
– Update Module: manages the storage of all policies in the Policy Service,

controls the policy updates and also provides a functionality to send notifica-
tions to Request Filter for events like cache wiping.

Additionally, a database and a message queue are also required by Policy
Service just like other services. The database is currently only used for storing
metadata about the policy. The practical policy rules are stored on disk. The
message queue is used to provide communications among API Module, Verify
Module and Update Module.

It is worth noting that the Policy Service can be deployed on multiple
nodes just as other services do, so requests to Policy Service API will be
load-balanced to gain performance and avoid single point failures.

Since Policy Service is also provided as a service, its interfaces also require
to be access controlled by Request Filter. This means that all requests to
functions provided by Policy Service will be mediated by Policy Service
itself. This kind of manner might cause deadlock if not handled correctly:

MultiPol: Towards a Multi-policy Authorization Framework 221

Fig. 2. The components of Policy Service

a function call to Policy Service asks for a permission from Policy Service.
It is easy to see that the verify operation will cause an endless loop of calling
and it requires to be specially handled to interrupt the loop. A rational solution
is letting Request Filter act differently for this function: instead of querying
Policy Service for decision, Request Filter only performs a local check to
ensure the caller is checking his own access rights. Since the caller context of a
verify call just comes from the request context which has been authenticated
by keystone, this prevents a malicious user to fake another user’s identity and
peep at other’s access rights by testing against the verify function.

Update Module is the handler for policy update matters, including manag-
ing policy storage, enforcing policy constraints and calling Request Filter for
purpose like cache wiping.

Since multiple policies are supported in Policy Service, first we need to
design the storage arrangement to hold these policies. A good implementa-
tion is storing the policies based on their types. Global policies are cloud-
wide functioned and should be stored in a top-level path like /etc/multipol/.
While customer policies are only restricted to tenants and should be stored
in a tenant-specific path like /etc/multipol/customer policy/%TENANT ID%/
(where %TENANT ID% represents the tenant identifier). The filename of a policy is
identical with its occurrence in the metadata, so the enforcer can easily find the
related policy files by parsing the metadata. Since a policy name in a metadata
is unique, there will not be a filename conflict in the storage stage. For conve-
nience, we refer to policy, enforcer, metadata together as policy in this paper.

222 Y. Luo et al.

Next we will illustrate MultiPol’s strategy about who can access the policy. It
includes four constraints:

Constraint I. A cloud administrator should be privileged to read all tenants’
policies through for maintenance convenience. Because it is helpful for trou-
bleshooting potential errors of policy configuration. However, the administrator
should be forbidden to set customer policies to avoid an insider attack. The
second task for a cloud administrator is to manage global policies, so he is sup-
posed to be fully authorized to read and modify them. MultiPol enforces this
constraint straightly by posing global policies and cloud administrators in the
same tenant, so that cloud administrators can modify global policies without
additional settings.

Constraint II. A tenant administrator is approved to call all functions provided
by Policy Service for managing the policy of his own tenant.

Constraint III. An end-user is only approved to access resources in his own
tenant by default.

Constraint IV. Only Policy Service is authorized to call any functions pro-
vided by Request Filter.

Based on the above constraints, we can deduce several global policies, which
can be enforced by the MultiPol framework for all the cloud users:

– enable: the policy enabling the rights for the administrators to configure
their policies. This policy is based on Constraint I and Constraint II and
enforced by Policy Service.

– restrict: the policy to ensure users can only have rights to access resources
belonging to their own tenants, so unauthorized access is restricted. This policy
is based on Constraint III and enforced by Policy Service.

– self-protect: the policy to ensure functions provided by Request Filter
cannot be invoked by any other code except Policy Service. This policy is
based on Constraint IV. It is notable that this policy is directly enforced by
Request Filter to avoid the above mentioned deadlock.

5 Experiments

This section shows how we implement MultiPol enforcement framework in the
OpenStack cloud and evaluate its performance and usability.

5.1 Performance

We used tempest [17] for benchmarking. We compared the standard OpenStack
Mitaka cloud against an alternative with the MultiPol framework applied (for
both Request Filter’s cache off and on). The results are shown in Table 2.
The additional time introduced by the security framework is acceptable, as
the average cost was 14.2% for cache disabled, and 7.8% for cache enabled.

MultiPol: Towards a Multi-policy Authorization Framework 223

Table 2. Tempest benchmarks, time in seconds

Service Mitaka MultiPol %Overhead MultiPol+Cache %Overhead

Nova 643.85 709.31 10.2% 697.27 8.3%

Glance 246.34 288.71 17.2% 275.13 11.7%

Neutron 238.16 268.95 12.9% 253.34 6.4%

Cinder 157.22 199.33 26.8% 175.71 11.8%

Heat 324.35 371.28 14.5% 349.68 7.8%

Ceilometer 698.63 723.32 3.5% 706.14 1.1%

This overhead is primarily due to the communication delays between Policy
Service and Request Filter. The worst case was 26.8% for cache disabled
and 11.8% for cache enabled in cinder. This result is expected because of the
relatively small amount of time consumed in each glance call compared to the
execution of permission checking. The effect of MultiPol to ceilometer is not
obvious due to fewer operations needed to be access controlled. The average
additional cost per function call is close to 121 ms, which is a fairly small figure
compared with the delay across a large-scale public network like Internet.

Since the cache mechanism in Request Filter is a critical component, it is
important to evaluate its memory usage. A record in the cache is stored in a
format like a vector, which contains information of Subject, Object and Verb.
The calculation shows that one record requires 150 Bytes on average. To be more
intuitive, we use Tempest to test all commands of OpenStack nova. The size of
used cache turns out to be 68.5 KBytes after running 403 tests. Let us assume
that the usage of an individual user roughly equals to a Tempest test. If the size
of cache is 1 GBytes, a cloud based on Openstack with one nova API service can
support nearly 15000 users (1G/68.5K). This capacity is adequate for practical
use. Moreover, we can utilize a caching algorithm like least recently used (LRU)
to delete a couple of records when the cache size exceeds a preset threshold,

Fig. 3. Comparison of time consumed on designing of two different policies

224 Y. Luo et al.

such as 85 %. Therefore, the size of cache required by Request Filter is afford-
able, which cannot affect the usage of the MultiPol enforcement framework.

5.2 Usability

We analyzed the total time consumed in the policy designing process conducted
by end-users at different degrees (e.g., policy beginners and security experts).
The results are shown in Fig. 3. MultiPol has mitigated almost 41.3% efforts
for a beginner and 32.1% for security expert on the average. This is because
MultiPol allows to use different policies, and we have provided some built-in
policy enforcers like ABAC, RBAC, etc. So the users can just choose to write
the policy they are familiar with. Moreover, MultiPol has provided a standard
request form shared by all kinds of REST interfaces. No matter how many REST
systems a customer needs to manage, he only needs to learn the basic elements
of access control once, like subject, object, verb, etc. It saves a large number of
efforts by reducing the learning time for different policies.

From the developers’ perspective, We also give a rough estimate of the scale
and complexity of adding centralized security enforcement to OpenStack. In
summary, Request Filter’s code modification to a service was only limited to
several Python code files, summing up to hundreds of LOC. And those compo-
nents increased in size less than 1.5% (except Policy Service). Besides these
code modifications, we also examined other types of changes involved, like con-
figuration changes, data changes, etc. Since Request Filter is designed to be
a WSGI attachment, this needs a couple of lines of modifications in the config-
uration of that service.

The changes required to implement the MultiPol framework did not involve
any modifications to the existing Python code or RESTful calls. A couple of
calls are provided by Policy Service to support policy management for both
cloud consumers and service providers. Furthermore, an internal call is extended
on Request Filter for cache wiping. Despite the fact that Request Filter’s
call is sharing the same RESTful interface with the attached service, it does
not actually increase invasiveness since they are straightly handled by Request
Filter and have no involvement with the inner logic of attached service. All
applications that run on the stock OpenStack cloud can be executed unchanged
on a cloud equipped with MultiPol framework.

6 Conclusion

This paper proposes a multi-policy access control framework called MultiPol for
clouds like OpenStack. It includes a new service called Policy Service and
an attachment module for target services called Request Filter. MultiPol is
especially designed for RESTful interfaces, so that it can be used in other clouds
that support RESTful interfaces too. Meantime, Multipol can express different
policies by providing the enforcer mechanism. It utilizes cache to minimize the
performance overhead of remote permission checking. The experimental results

MultiPol: Towards a Multi-policy Authorization Framework 225

on OpenStack Mitaka indicate the average enforcement overhead is 7.8%, which
is an acceptable result.

Acknowledgment. We thank the reviewers for their help improving this paper. This
work was supported by the National High Technology Research and Development Pro-
gram (“863” Program) of China under Grant No. 2015AA016009, the National Natural
Science Foundation of China under Grant No. 61232005, 61672062, and the Science and
Technology Program of ShenZhen, China under Grant No. JSGG20140516162852628.

References

1. Crago, S., Dunn, K., Eads, P., Hochstein, L., Kang, D.-I., Kang, M., Modium, D.,
Singh, K., Suh, J., Walters, J.P.: Heterogeneous cloud computing. In: 2011 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 378–385. IEEE
(2011)

2. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

3. Takabi, H., Joshi, J.B., Ahn, G.-J.: Security and privacy challenges in cloud com-
puting environments. IEEE Secur. Privacy 6, 24–31 (2010)

4. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In:
Proceedings of 2005 IEEE International Conference on Web Services, ICWS 2005.
IEEE (2005)

5. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer
2, 85–88 (2015)

6. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 2, 38–47 (1996)

7. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. dissertation, University of California, Irvine (2000)

8. OpenStack: Openstack mitaka (2016). https://www.openstack.org/software/
mitaka

9. Ribeiro, C., Zúquete, A., Ferreira, P., Guedes, P.: SPL: an access control language
for security policies with complex constraints. In: Network and Distributed System
Security Symposium (NDSS01), pp. 89–107 (2001)

10. Bertino, E., Jajodia, S., Samarati, P.: Supporting multiple access control policies
in database systems. In: Proceedings of 1996 IEEE Symposium on Security and
Privacy, vol. 1996, pp. 94–107. IEEE (1996)

11. Carney, M., Loe, B.: A comparison of methods for implementing adaptive security
policies. In: Proceedings of the Seventh USENIX Security Symposium, pp. 1–14
(1998)

12. Jajodia, S., Samarati, P., Subrahmanian, V., Bertino, E.: A unified framework for
enforcing multiple access control policies. ACM Sigmod Record 26(2), 474–485
(1997)

13. Minsky, N.H., Ungureanu, V.: Unified support for heterogeneous security policies
in distributed systems. In: 7th USENIX Security Symposium, pp. 131–142 (1998)

14. Wu, R., Zhang, X., Ahn, G.-J., Sharifi, H., Xie, H.: Acaas: access control as a service
for iaas cloud. In: 2013 International Conference on Social Computing (SocialCom),
pp. 423–428. IEEE (2013)

15. Tang, B., Sandhu, R.: Extending openstack access control with domain trust. In:
Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp.
54–69. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11698-3 5

https://www.openstack.org/software/mitaka
https://www.openstack.org/software/mitaka
http://dx.doi.org/10.1007/978-3-319-11698-3_5

226 Y. Luo et al.

16. Jin, X., Krishnan, R., Sandhu, R.: Role and attribute based collaborative admin-
istration of intra-tenant cloud iaaS. In: 2014 International Conference on Collabo-
rative Computing: Networking, Applications and Worksharing (CollaborateCom),
pp. 261–274. IEEE (2014)

17. OpenStack, Openstack tempest (2016). https://github.com/openstack/tempest

https://github.com/openstack/tempest

	MultiPol: Towards a Multi-policy Authorization Framework for RESTful Interfaces in the Cloud
	1 Introduction
	2 Background
	3 MultiPol Design
	4 Implementation
	4.1 Request Filter
	4.2 Policy Service

	5 Experiments
	5.1 Performance
	5.2 Usability

	6 Conclusion
	References

