SECapacity: A Secure Capacity Scheduler
in YARN

Chuntao Dong'?, Qingni Shen'2®9, Lijing Cheng'?, Yahui Yang'~,
and Zhonghai Wu'~

! School of Software and Microelectronics, Peking University, Beijing, China
{chuntaodong, morleycheng}@pku. edu. cn,
{qingnishen, yhyang, wuzh}@ss. pku. edu. cn
2 MoE Key Lab of Network and Software Assurance,
Peking University, Beijing, China

Abstract. In this paper, aiming to the requirement that isolation of user’s job
and data security, we deeply analyze the mainstream computing framework
Hadoop YARN, and start with the core module of YARN - resource scheduler.
Using the existing label-based scheduling policy, we design and implement a
SECapacity scheduler. Our main work including: First, according to the prin-
ciple of least privilege, we propose a user-classification based scheduling policy,
which divided users to several levels based on their attributes, then restrict
which nodes could be used by this user according to the user level. Second, we
design and implement a SECapacity scheduler to implement user-classification
based scheduling. Third, we verify and analyze the effectiveness and efficiency
of SECapacity scheduler, the results shows that SECapacity scheduler can
ensure 100% isolation of users at different levels, and the performance overhead
is about 6.95%.

Keywords: Big data platform - Hadoop - User-classification based
scheduling + SECapacity scheduler

1 Introduction

Big data has rapidly developed into a hotspot, and big data analysis has been widely
applied. In order to make good use of big data, academia and industry has proposed
numerous techniques, such as Hadoop, Spark, Storm, and Graphlab etc., Hadoop has
quickly become a major platform, which includes many technique as an ecosystem,
such as MapReduce [2], YARN [8] and HDFS etc. With the development of big data
applications, the security and privacy of big data have received sufficient attention. Due
to the characteristics of big data and its complexity of processing, the security issues of
big data are very complex and difficult to handle. The built-in security mechanism of
Hadoop can only limit internal users to use resource legitimately. To ensure security
and privacy of big data platform, academia and industry have proposed plenty of
solutions. We will introduce these solutions in the related work of Sect. 2.

In this paper, first we analyze the security characteristics of big data platform and
the related work. Then, we describe the threat scenario. Third, we refer to the principle

© Springer International Publishing AG 2016
K.-Y. Lam et al. (Eds.): ICICS 2016, LNCS 9977, pp. 184-194, 2016.
DOI: 10.1007/978-3-319-50011-9_15

SECapacity: A Secure Capacity Scheduler in YARN 185

of least privilege [3] and proposed SECapacity scheduler to enhance the isolation of

tasks [1]. Fourth, we conduct a massive experiments to test performance and security of

our SECapacity scheduler. Finally, we summarize our work and clarify the value of our

work, illustrate the limitation of our work, and introduce our research in the future.
In this paper, our main contributions are summarized as following points:

(1) We proposed a user-classification based scheduling refer to the principle of least
privilege, which can enhance isolation of user’s job and protect data security.

(2) Based on user-classification based scheduling, we design and implement the
SECapacity scheduler based on Capacity scheduler.

(3) We test the performance and analyze the security of SECapacity scheduler by
conduct a series of experiments.

The rest of this paper is organized as follows. We introduce the background in
Sect. 2, and describe the threat scenario in Sect. 3. In Sect. 4, we present the design
details of SECapacity, and introduce the implementation details of SECapacity in
Sect. 5. We then evaluate and analyze experimental results in Sect. 6. We conclude the
paper in Sect. 7.

2 Background

This section provides the background information about security analysis of Hadoop,
related work and the mechanism of Capacity scheduler.

2.1 Security Analysis

As a distributed computing platform, big data platform has its own advantages, as well
as disadvantages in security. So we analyze it from the pros and cons.

Big data platform has native characteristic of security and robustness: (1) The
distribution makes the platform more robustness. The entire system wouldn’t be
impact, when adversary attacks a single node or a small number of nodes; (2) In the big
data environment, the value of a few number of data become less. It’s not significant
that malicious users just get the data on a single node; (3) Big data platform is con-
stituted by thousands of storage and computing nodes, except for central node, the
common nodes has no difference, it’s not easy to find the valuable attack point among
the nodes.

Big data platform also brings convenience to the attacker, so it’s difficult to defend
the threat: (1) The big data platform is consisted of thousands of storage and computing
nodes, which makes it very difficult to detect and deal with intrusion timely. (2) The
software on the big data platform uses the master - slave structure, it’s hard to remove
the feature of centralization. As long as there is such a pivot or management center
node like ResourceManager or ApplicationMaster, it’s easy to be attacked. (3) During
data processing, because of the low value of single node, the attacker will target to steal
data processing results to improve the attack efficiency.

186 C. Dong et al.

2.2 Related Work

There are many security and privacy issues in the big data platform now. The academic
have proposed many solutions to solve these issues. We will introduce several solutions
in the part.

Indrajit Roy etc. present Airavat [7], a MapReduce-based system which provides
strong security and privacy guarantees for distributed computations on sensitive data.
Airavat is a novel integration of mandatory access control and differential privacy. Tien
Tuan Anh Dinh etc. develop a solution which avoids using the expensive ORAM
construction and ensure privacy preserving computation in MapReduce, and implement
their solution in a system called MR [4]. Olga Ohrimenko etc. analyze the security of
intermediate traffic between mappers and reducers, and they describe two provably-
secure, practical solutions [6]. In the paper [9], the author present SecureMR, a practical
service integrity assurance framework for MapReduce, which provide a set of practical
security mechanisms that prevent replay and Denial of Service attacks, preserve the
simplicity, applicability and scalability of MapReduce.

We summarize the current research work and find that there is few research focus
on the security of data processing results. Therefore, we focus on the data leakage issue
during the big data processing. The current solutions mainly focus on static data
security and access security, but ignore the security and isolation of tasks. We
detailedly describe the threat scenario and steal scheme in our previous work [5].
According to the security features of the big data platform, we select a systematic risk
management strategy to enhance the security of the platform.

2.3 Capacity Scheduler

In this paper, we add the security scheduling strategy in Capacity scheduler of Hadoop
to enhance the security. The Capacity scheduler is based on the ratio of memory using,
but rarely consider of security issues. The main design and development of our work is
using label-based-scheduling strategy [1].

Label-based Scheduling provides a method match the shared cluster resources on
nodes to a queue. The node, which has the same label with the queue, can be used by
this queue. Using label-based scheduling, an administrator can control exactly which
nodes are chosen to run jobs submitted by different users and groups. It’s useful for
data locality and multi-tenancy use cases.

3 Threat Scenario

Because we have described the threat model that steal user’s processing results and
implement the solution in our previous work [5], we will only describe the threat
scenario in this section.

Threat Model. We assume adversary is regarded as trusted but have malicious
intentions. He tries to steal sensitive results from other user that he is not allowed to
access. The threat model is depicted in Fig. 1. There are three types of entities:

SECapacity: A Secure Capacity Scheduler in YARN 187

Management node

@ Collect
information
» s »

Assigning tasks Adversary

Slave nodes

Submit
I application

User

(@ Analyze the nodes
that store data

(3)steal sensitive data

Fig. 1. The model of detecting the node storing the results

User: These entities have data to be stored in the cluster and interact with the
Hadoop Cluster to manage their data and submit applications on the cluster.

Adversary: The adversary intends to steal the processed results of other users. He
collects information and analyzes the nodes that store results.

Hadoop Cluster: The Hadoop cluster provides resources and services for users.

Based on the threat model, we proposed and implement the attack scheme [5]. The
key of our scheme is confirm the node that storing the processed data. In general, the
malicious want to running task on the node that the target user’s job is running. In other
words, lacking of job isolation mechanism lead to security problem in big data
platform.

In this paper, we assume that the malicious user can control a few of nodes if they
can deploy tasks on these nodes. Based on assume, the isolation mechanism of Hadoop
is not enough to guarantee the security of the platform, we need to proposed a new
solution at the platform level. So we design SECapacity Scheduler as a systematic risk
management strategy to enhance the security of the platform.

4 SECapacity Scheduler

In this section, we introduce the details of the SECapacity Scheduler. First, we take an
overview of the SECapacity. Then, we introduce the user-classification based
scheduling strategy (UCBS). Third, we introduce the label based scheduling. At last,
we proposed two scheme of UCBS.

4.1 Overview

According to the threat analysis, we knew that tasks of users and malicious users
running on same node is not safe. We wish to separate the users from the malicious
users, and isolate execution of their tasks. The scheduler limit the resource usage of
each user, but don’t limit the number of used nodes, user can apply for computing
resources on any node. It is very easy to be utilized by malicious users. In the process
of designing SECapacity scheduler, we take the least privilege as design principle.

188 C. Dong et al.

The principle of Least Privilege [3] requires that in a particular abstraction layer
of a computing environment, every module must be able to access only the information
and resources that are necessary for its legitimate purpose. The principle means giving
a user account only those privileges which are essential to that user’s work.

In this paper, the principle is extended to design secure scheduling strategy. The
scheduler should ensure the resource quantity. What’s more, the scheduler should limit
the scope of resource usage. By limiting the scope of resource usage, we limit influence
scope of potential malicious users and improve the safety of the platform.

4.2 User-Classification Based Scheduling

According to the design principle, we face two problems: which user is a malicious
user, and SECapacity scheduler take user as resource division unit will seriously affect
the performance, so we proposed UCBS.

A. User classification

We need to identify potential malicious users among all the users. In order to describe
our secure scheduling, we provide a reference user classification scheme. Our user
classification scheme rating user according to attributes, and then divide all users into
several levels on the basis of classification criteria. The classification criteria is
determined by the administrator.

In our scheme, every user has four attributes, include user privilege, user resource
quota, registration time and safety rating. The scores of these four attributes are rep-
resented by symbols U, R, T, and S, and rating criteria are shown in Table 1.
According to rating criteria and the formula (1), we can give each user a score. Where
a, b, c and d are parameters, we simplify all the parameters to 1.

G = axU + b*R + cT + d*S (1)

If we take user as resource division unit will seriously affect the scheduling per-
formance. So we propose a classification scheme to divide all users into several levels.
The classification criteria is determined by the administrator. For example, assuming
there are five users Userl, User2, User3, User4 and User5 in the cluster, and the score

Table 1. User rating criteria

User property User attribute classification and score evaluation criteria

User privilege Super administrator = 50, Administrator = 10, Ordinary
User = 1

User resource quota User resource percentage of cluster resource

Registration time Score of user registration time = [Log,T], T is the

number of days

Safety rating based on behavior Malicious behavior (such as tracking the other tasks)
of users minus 10 score

SECapacity: A Secure Capacity Scheduler in YARN 189

of five users are: 21, 20, 31, 35 and 56. The classification criteria: 024 is level 1, 25—
49 is level 2, and 50-75 is level 3.

B. Resource classification

According to the principle of least privilege, we limit the scope of nodes that user used.
But we also need to ensure the “authority” of users, the “authority” is the resource
quota of users. In the last part, we divide all users into several levels. We need to
recalculate the total resource of users at the same level. Assuming that the number of
nodes in the cluster is n, and the memory resource of each node is x, and there are
musers U;, U,...U,,. The resource quota of m users is X;, X,... X,,. By user rating and
user classification, m user are divided into K level L,, L,... Lg. The resource quota of
all the users in level Ly (0 < k < K) is recorded as Gy, we use the formula (2) to
calculate Gy.

Gk = > Xi, Ui € Lk (2)

Through the calculation, we can confirm the resource quota of K users are: Gy,
G;... Gk, then we use the formula (3) to calculate Nk, the number of nodes belong to
level L (0 <k < K).

Nk = [Gix*n] (3)

C. Label based scheduling

After divided all the users into several levels, we need to schedule the tasks to the
corresponding nodes, we use label to achieve our scheduling goals. For convenience,
we assume that every user monopolize a leaf queue. By configuring labels of queues
and nodes, we schedule the tasks in the queue to the nodes that has the same labels with
the queue. We proposed two isolation scheme as follows:

Node label setting policy: according to Ny (0 < k < K), choose Nj nodes to set
label k, and ensure the resource localization as much as possible.

4.3 The Scheme of Isolation Scheduling

According to the principle of least privilege, we proposed two schemes of isolation
scheduling: complete isolation scheduling and range control scheduling.

Complete isolation scheduling: the jobs in the queue that has the label k can only
use the nodes that has the same label with the queue.

Queue label setting policy: the queue that the user U; belongs to should be set label
k, U; € Ly, 0 < k < K. We take the example that mentioned in the last part as example,
its configuration scheme is as shown in the Fig. 2.

Range control scheduling: the jobs in the queue that has the label k can use the
nodes that has the same label k and less than k.

190 C. Dong et al.

[
Queue A I l QueueB l l Queuec I

i
;
Queve —
i

‘
|

Leaf Queue ,
App\(ax-or{/)\pphcahon) pr-: ation (

J
- [D-0) @‘@"@ m

Fig. 2. Complete isolation scheduling scheme Fig. 3. Range control scheduling scheme

{ Applcation

Queue label setting policy: the queue that the user U; belongs to should be set label
1,2... k, U; € Ly, 0 <k < K. We take the example that mentioned in the last part as
ex-ample, its configuration scheme is as shown in the Fig. 3.

The detailed scheduling rules: users can use resources of lower levels users, but
user can’t use resource of higher level users. Users should firstly use resource that
belong to their own level, we achieve this through starting resource preemption
strategy.

5 Implementation

In this section we introduce the design and implementation of SECapacity scheduler.
First we introduce the structure of SECapacity scheduler, then demonstrate the function
and realization of each module in detail.

5.1 The Structure of SECapacity Scheduler

SECapacity scheduler is based on the Capacity scheduler of Hadoop 2.6.0, and using
the label based scheduling. We implement the complete isolation scheduling in
SECapacity scheduler. The structure of SECapacity scheduler is as shown in Fig. 4.

5.2 Function of Each Module

In this part, we will detailedly describe the function and implement of each module in
the SECapacity Scheduler.

(1) Queue and Node label management module: rates and classify the user to
generate the label configuration scheme. The module includes five components as
follows:

User level management component rates all users and generates user classification
scheme according to user’s attributes. It has two function: initialization and updating.

Queue label management component is based on the user classification scheme to
generate queue label configuration scheme.

SECapacity: A Secure Capacity Scheduler in YARN 191

N\

(Queue and node label management module |

Attribute update > | |

management module | User level management |

| component |

' |

Q\leug label | ’/_/\ |
configuration module |

I Queue label Resource classification |

Confi l | nent c 1t [« 1t |

onfigure

parameters | * :

| Data distribution Node label |

Capacity | ment c c it |

-site.xml |\ |

Node label
Configure configuration module

________________ s node label ¢
1
Capacity Scheduler «————————
]

Fig. 4. The architecture of SECapacity scheduler

Resource classification management component calculates the total resource quota
of each level’s users according to the user classification scheme and the resource quota.

Data distribution management component uses the information of data blocks
distribution to calculate the number of data blocks on each node.

Node label management component generates node label configuration scheme
according to the nodes’ number of each level and the distribution of all users’ data
block.

(2) Attribute update management module monitors user’s attributes, and the
changing of users and nodes in the cluster. According to these changes, it calls
Queue & Node label management module to modify the classification of user, and
generates a new queue and node label configuration scheme.

(3) Queue label configuration module uses the queue label configuration scheme to
set the related configuration file. This module can automatically configure
capacity-site.xml. This module mainly modifies the following parameters:

(1) yarn.scheduler.capacity.<queue-path>.accessible-node-labels: decide which
labels can be used by the “queue-path’.

(2) yarn.scheduler.capacity.<queue-path>.accessible-node-labels.<label>.capac-
ity: decide the available proportion of resources on the nodes labeled “label”
which can be used by user in the queue named “queue-path”.

(3) yarn.scheduler.capacity.<queue-path>.accessible-node-labels.<label>.mami-
mum-capacity: decide the upper bound of the resource labeled “label” which
can be used by users in the queue named “queue-path”.

(4) Node label configuration module configures each node’s label according to node
label configuration scheme. This module uses node label configuration scheme to
generate and run the configuration script.

192 C. Dong et al.

6 Evaluation

In this section, we evaluate the performances of SECapacity Scheduler. We describe
the experiment environment and scenarios, then conducted a series of experiments to
test two schemes of isolation scheduling, and analyze the experimental results at last.

6.1 Experiment Scenario

Experiment Environment. The Hadoop cluster including 19 nodes, a master that
deployment ResourceManager and NameNode, and 18 nodes that deployed DateNode
and NodeManager. Every node using the local 64-bit Centos operation system with an
Intel Core 7 processor running at 3.4 GHz, 4096 MB of RAM, and run Hadoop 2.6.0.
We set up the size of every data block is 128 MB. The input files is 4.8 GB, and each
block has 3 duplicates. To get the best performance in experiment, we assume there are
three users and the quota of them is 33%, 33% and 34%. These three users are divided
into three levels, and they execute the same job with the same size input files.

Setup. To test SECapacity scheduler, we need to configure the hadoop cluster. The
configuration process includes the following four steps:

Step I: add system level label. According to the experimental scenario, we need to
add three labels one, two and three. Execute command: rmadmin -addToClus-
terNodeLabels one, two, three.

Step 2: label all nodes. The command is: rmadmin -replaceLabelsOnNode yarn
“nodeld = label”. In our experimental scenario, we configure six node with a same
label.

Step 3: configure the label recovery. The label information will be saved to the
HDEFS after the YARN restart.

Step 4: according to the scheme of isolation scheduling, configure the
capacity-scheduler.xml.

6.2 Performance Analysis

We mainly choose two evaluation standard: resource localization rate and runtime.
The resource localization rate is the rate of map task running at the node that storing the
input files. Dividing the cluster into several parts will reduce the resource localization
rate and increase the runtime of job.

At first, we run 3 wordcount jobs that consists 39 map tasks and 1 reduce tasks to
test the Capacity scheduler. In order to ensure the accuracy of experimental results, we
run 20 experiments and calculate the average. A part of experiment results as shown in
Table 2. Then, we also run 3 wordcount jobs that consists 39 map tasks and 1 reduce
tasks in three levels to test the SECapacity scheduler. The nodes’ number of each level
is 6. A part of experiment results as shown in Table 3.

SECapacity: A Secure Capacity Scheduler in YARN

Table 2. The experiment results of capacity scheduler

193

Job | The first run The second run The third run

Runtime | Localization rate | Runtime | Localization rate | Runtime | Localization rate
Job 1376 22/40 367 27/39 365 27/41
Job 4384 23/41 336 30/41 359 31/41
Job 7330 30/42 327 32/41 349 27140

Table 3. The experiment results of SECapacity scheduler

Job | The first run The second run The third run

Runtime | Localization rate | Runtime | Localization rate | Runtime | Localization rate
Job 1348 20/40 356 22/40 417 29/41
Job 4361 22/40 374 18/40 430 27142
Job 7331 21/41 321 20/40 449 22/40

We summarize and analyze the results of Capacity scheduler and SECapacity
scheduler in Table 4. By comparing the results, we find that the localization rate
decline from 61.78%—71.65% to 49.32%-53.74%. The runtime rise from 336 s—367 s
to 360 s—396 s, and rise 6.95% at average. According to the above results, we can get
the conclusion that the runtime is associated with localization rate. We should improve
the data distribution management component to increase the localization rate.

Table 4. Capacity scheduler vs. SECapacity scheduler

Job Capacity scheduler SECapacity scheduler

Runtime Localization The level of user that | Runtime Localization

(s) rate (%) submit job (s) rate (%)
Job1 |367 62.76 level 1 381 51.25
Job2 |[372 61.78 level 1 369 53.74
Job3 [363 63.14 level 1 390 50.13
Job4 |358 70.12 level 2 394 52.50
Job5 [352 71.02 level 2 388 53.17
Job 6 |364 69.35 level 2 396 50.37
Job7 339 70.71 level 3 363 50.91
Job 8 |344 70.13 level 3 376 49.32
Job9 [336 71.65 level 3 360 51.67

6.3 Security Analysis

If the level of a malicious user is higher than or equal to the level of users, users have
the risk of information leakage, because a malicious user can apply for nodes that
belongs to the other users. The SECapacity can only ensure safety and isolation of
users at different levels, but can’t protect users at the same level. So the SECapacity

194 C. Dong et al.

scheduler relay on the accuracy of user classification scheme. In the future work, we
will ensure the safety and isolation of users at same levels.

7 Conclusion

In this paper, we propose a UCBS according to the principle of least privilege, and
implement the scheduling strategy in SECapacity scheduler to enhance isolation of
different level’s jobs. Through the experiments, we verify the effectiveness and per-
formance of SECapacity scheduler. The performance cost of our scheme is about
6.95%, and we don’t need to modify Hadoop source directly. However, the effect of the
SECapacity scheduler is highly dependent on the user classification scheme. We need
to further improve our user classification scheme. Another problem is that SECapacity
scheduler is poor at defend APT attacks, a malicious user can improve their permission
through long-term hidden. We also need to solve the problem that how to defend
against APT attack in the future work.

Acknowledgments. This work is supported by the National High Technology Research and
Development Program (“863” Program) of China under Grant No. 2015AA016009, the National
Natural Science Foundation of China under Grant No. 61232005, 61672062, and the Science and
Technology Program of Shen Zhen, China under Grant No. JSGG20140516162852628.

References

1. Apache hadoop. http://hadoop.apache.org

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Conference on Symposium on Operating Systems Design & Implementation, vol. 51,
pp- 107-113. USENIX Association (2004)

3. Denning, P.J.: Fault tolerant operating systems. ACM Comput. Surv. 8(4), 359-389 (1976)

4. Dinh, T.T.A., Saxena, P., Chang, E.C., et al.: M°R: enabling stronger privacy in mapreduce
computation (2015)

5. Dong, C., Shen, Q., Li, W., Yang, Y., Wu, Z., Wan, X.: Eavesdropper: a framework for
detecting the location of the processed result in hadoop. In: Qing, S., Okamoto, E., Kim, K.,
Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 458-466. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-29814-6_39

6. Ohrimenko, O., Costa, M., Fournet, C., et al.: Observing and preventing leakage in
MapReduce. In: ACM SIGSAC Conference, pp. 1570-1581 (2015)

7. Roy, L, Setty, S.T.V., Kilzer, A., et al.: Airavat: security and privacy for MapReduce. In:
Usenix Symposium on Networked Systems Design and Implementation, NSDI 2010, San
Jose, pp. 297-312 (2010)

8. Vavilapalli, V.K., Murthy, A.C., Douglas, C., et al.: Apache hadoop YARN: yet another
resource negotiator. In: Symposium on Cloud Computing, pp. 1-16 (2013)

9. Wei, W, Du, J,, Yu, T., et al.: SecureMR: a service integrity assurance framework for
MapReduce. In: Computer Security Applications Conference, pp. 73-82. IEEE (2009)

http://hadoop.apache.org
http://dx.doi.org/10.1007/978-3-319-29814-6_39

	SECapacity: A Secure Capacity Scheduler in YARN
	Abstract
	1 Introduction
	2 Background
	2.1 Security Analysis
	2.2 Related Work
	2.3 Capacity Scheduler

	3 Threat Scenario
	4 SECapacity Scheduler
	4.1 Overview
	4.2 User-Classification Based Scheduling
	4.3 The Scheme of Isolation Scheduling

	5 Implementation
	5.1 The Structure of SECapacity Scheduler
	5.2 Function of Each Module

	6 Evaluation
	6.1 Experiment Scenario
	6.2 Performance Analysis
	6.3 Security Analysis

	7 Conclusion
	Acknowledgments
	References

