A Transparent Learning Approach for Attack
Prediction Based on User Behavior Analysis

Peizhi Shao!, Jiuming Lu', Raymond K. Wong!®¥, and Wenzhuo Yang?

1 School of Computer Science and Engineering, University of New South Wales,
Kensington, Australia
wong@cse.unsw.edu.au
2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

Abstract. User behavior can be used to determine vulnerable user
actions and predict potential attacks. To our knowledge, much work has
focused on finding vulnerable operations and disregarded reasoning/-
explanations of its results. This paper proposes a transparent learning
approach for user behavior analysis to address this issue. A user rat-
ing system is proposed to determine a security level of each user from
several aspects, augmented with explanations of potential attacks based
on his/her vulnerable user actions. This user rating model can be con-
structed by a semi-supervised learning classifier, and a rule mining algo-
rithm can be applied to find hidden patterns and relations between user
operations and potential attacks. With this approach, an organization
can be aware of its weakness, and can better prepare for proactive attack
defense or reactive responses.

Keywords: Transparent learning - Machine learning - User behavior
analysis - Cybersecurity

1 Introduction

Cybersecurity (CS) is to study the processes and/or technologies that pro-
tect computers, programs, networks, and data from attacks, unauthorized
access/change, or destruction. Cyber attacks are argued as the actions that
attempt to bypass security mechanisms of computer systems [31]. A cyber attack
detection is to identify individuals who try to use a computer system without
authorization, or those who have access to the system but abuse their authori-
ties [10]. Most attacks in general can be grouped into Denial of Service Attacks,
Remote to Local Attacks, User to Root Attacks, and Probing [34].

Due to the increasing number of incidents of cyber attacks, CS has always
been a critical issue concerned by every Internet user. Well-trained hackers make
the traditional online security protection methods such as firewalls or virus detec-
tion software no longer effective. On the other hand, user behavior analysis
(UBA) become a new area to detect online attacks and also perform real-time
analysis based on user behavior and actions.

© Springer International Publishing AG 2016
K.-Y. Lam et al. (Eds.): ICICS 2016, LNCS 9977, pp. 159-172, 2016.
DOI: 10.1007/978-3-319-50011-9_13

160 P. Shao et al.

For example, email is a main intermediary for spreading virus and Trojan
horse. The attackers will widely spread emails containing worm programs to
infect computers and networks. These emails usually have attractive subject,
which draw user’s attention and allure them to open them. For example the
widely spread Verona virus, also known as Romeo & Juliet virus, contain the
words like I love you or sorry. So if a user is easily attracted by these words and
opens these emails from unknown senders, it is likely that they will be affected
and cause security threat to their systems. For cautious users with good online
behavior, they may check the sender email address and distinguish if an email is
safe to open. In many cases these users may just delete these emails and blacklist
he sender address.

Meanwhile, big data analysis has been widely used in commercial applications
such like product recommendation, and UBA is used for identifying target cus-
tomers for certain products. Recently, UBA has gained tractions in CS [26]. Com-
pared with the traditional attack detection methods (which detect the actions of a
certain attack or the existence of virus software or Trojan horse), UBA focuses on
determining abnormal user actions based on their usual, normal activities. After
that, warnings can then be generated and countermeasure can be implemented. In
general, it is difficult for an attacker to imitate the original user’s behavior. UBA
can also be used to detect insider attacks, for example, an employee may illegally
transfer the company data to other competitors for profit.

Since UBA allows users to implement preventive measures instead of detect-
ing the attacks, CS companies have started adding UBA into their products/ser-
vices. However, to the best of our knowledge, most UBA approaches focus on
finding vulnerable user operations, and do not provide explanation or reasoning
of their findings. In this paper, we propose a novel approach that is based on the
concept of transparent learning, in which a prediction of attacks can be reasoned
with explanations. As a result, an organization can be aware of its weakness, and
can better prepare for proactive attack defense or reactive responses.

The rest of this paper is organized as follows. Section 2 summarizes related
work and Sect. 3 presents our proposed approach. Section 4 describes an example
to illustrate our approach and finally Sect.5 concludes this paper.

2 Related Work

2.1 Machine Learning

There are plenty of works focusing on using different machine learning (ML)
methods/models for detecting abnormal operations and predicting potential
attacks in CS. For example, artificial neural networks were used in Cannady [11]
to classify user operations into different categories of user misuses. Lippmann
and Cunningham [21] proposed an Anomaly Detection System using keyword
selection via articial neural networks. Bivens et al. [8] presented a complete Intru-
sion Detection System including the following stages: preprocessing, clustering
the normal traffic, normalization, articial neural networks training and articial
neural networks decision. Jemili et al. [15] suggested a framework using Bayesian

A Transparent Learning Approach 161

network classifiers using nine features from the KDD 1999 data for anomaly
detection and attack type recognition. Kruegel et al. [17] used a Bayesian net-
work to classify events for OS calls. In Li et al. [20], an SVM classifier with an
RBF kernel was used to classify the KDD 1999 dataset into predefined categories
(Denial of service, Probe or Scan, User to root, Remote to local, and normal).
Amiri et al. [2] used a least-square SVM to be faster son the same dataset. Some
other ML models such as Hidden Markov Models [5] and Nave Bayes classifiers
[35] have also been popular in CS, e.g., [3,16,25].

2.2 Rule Mining

Association rule Mining was introduced by Agrawal et al. [1] for discovering
frequently appearing co-occurrences in supermarket data. Brahmi [9] applied the
method to capture relationships between TCP/IP parameters and attack types.
Zhengbing et al. [36] proposed a novel algorithm based on the signature apriori
algorithm [14] to find new attack signatures from existing ones. Decision Trees
such as ID3 [29] and C4.5 [30] are widely used for rule mining. Snort [24] is a well-
known open-source tool using the signature-based approach. Kruegel and Toth
[18] used DT to replace the misuse detection engine of Snort. Exposure [6,7] is a
system using Weka J48 DT (an implementation of C4.5) as the classifier to detect
domains that are involved in malicious activities. Inductive learning is a bottom-
up approach that generates rules and theories from specific observations. Several
ML algorithms such as DT are inductive, but when researchers refer to inductive
learning, they usually mean Repeated Incremental Pruning to Produce Error
Reduction [12] and the algorithm quasi-optimal [22]. Lee et al. [19] developed a
framework using several ML techniques such as inductive learning, Association
rule and Sequential pattern m ining to detect user misuses.

2.3 User Behavior Analysis

Researchers in [4] used UBA in CS. In [26], clustering algorithms such as Expec-
tation Maximization, Density-Based Spatial Clustering of Applications with
Noise, k-means have been used in UBA. A combination of these methods has also
been discussed in [33]. Commercial products/services such as Lancope, Splunk,
Solera have started including UBA in their offerings.

3 Owur Approach

Unlike most existing UBA approaches, by following the concept of transpar-
ent learning, we use 2 independent modules working together. Firstly, a semi-
supervised learning module is designed to rate a security risk of each user. The
learning takes the rating that is a tuple of 3 scores that consider 3 different
aspects, namely, constancy, accuracy and consistency, into account. Secondly,
a rule mining module is used to identify hidden patterns between historic user
operations and an attack, and is used to reason why the user is rated at a par-
ticular security level.

162 P. Shao et al.

3.1 Transparent Learning

Transparent learning is a ML concept that aims at the transparency of ML
models, algorithms and results. An ideal transparent learning technique is one
that [32]:

— Produces models that a typical user can read, understand and modify.
— Uses algorithms that a typical user can understand and influence.
— Allows a user to incorporate domain knowledge when generating the models.

The main advantage of transparent learning is its interpretability. This is very
important in CS, especially in understanding the reasons behind potential attack
prediction. Most existing UBA systems can find potential vulnerabilities, but are
unable to provide reasoning/explanations. This is because most of these systems
are based on clustering or outlier detection, and many security experts may not
understand why or how a prediction is made. To address this issue, we propose
a transparent learning model containing 2 modules as shown in Fig. 1.

User Dalily Online
Activity +

Data Encoding p
User Behaviour
l Dataset
'
User Behaviour
Dataset Rule Mining User Security
Module Rating Module
Y
Rule Mining User Security

Module Rating Module Suspect Action

Training Process Prediction Process

Fig. 1. The two main modules

3.2 User Security Rating Module

Based on user’s daily online activities and the manner of using the computer,
each user will be given a security rating. This rating indicates the probability
that this user may lead to a threat to the system. This user behavior is a repre-
sentation of one’s personality and knowledge, and can be analysed from different
aspects. Inspired by [13], we consider the following aspects when determining the
rating:

A Transparent Learning Approach 163

Constancy — how long the user continuously maintains good online behavior.
It indicates that the user has a good understanding of CS and/or the security
policy of the company. It also illustrates the awareness of potential online
attacks and will cautiously protect themselves from potential cyber attacks.

Accuracy - the frequency that a user makes security related mistake during
online activities and the accuracy of the user to finish certain tasks. This
shows the proficiency of the user. An experienced user is likely to have better
security rating than a beginner.

Consistency — consistent usage patterns. If the user’s online behavior is con-
sistent. It is easy to be tracked and risk is also minimized.

3.3 Rule Mining Module

We base on an inductive learning algorithm called GOLEM [23] to develop a
rule mining module. The algorithm works as follows. Firstly, it generates LGG
[27,28] clauses from each pair of records. Then it picks the one that covering
the maximum number of positive examples and considering reduction based on
negative examples. Finally, it adds the reduced clause as a sub-rule into the final
clause and mark the covered, positive examples. It repeats this process until all
positive examples are covered.

GOLEM is a useful algorithm to find hidden rules between a set of facts and
the results. However, in UBA, action frequency needs to be considered because
frequent user actions should be more important than less frequent ones.

Algorithm 1. User Behavior Frequency GOLEM

Let €™ be a set of positive examples of user behavior records.
Let €™ be a set of negative examples of user behavior records.
Let My (k) be an h-easy model of background knowledge k.
Let s be a given sample limit.

Let Pairs(s) be a random sample of pairs from e*.

Let Lggs = {C : {¢,€'} € Pairs(s) and C = urlgg({e,€'}) wrt My (k)

and C' consistent wrt e~}

Let e be a specific operation in lgg({e, €'}).

Let E be the operation type for operation e.

Let f(F) be the frequency of the operation type E.

Let ubfc of pair {¢, ¢ } be the product of cover(lgg({e, ¢'})) and the minimum f(F)
of lgg({e, €'}).

Let S be the pair {¢, €'} whose urlgg has the greatest ubfc in Lggs.

DO
et (9) be a random sample of size s from &
Let Lggs = {C : € € €7(S) and C = urlgg(S U {¢'}) consistent wrt ¢~}
Find ¢’ which produces the greatest ubfc in Lggs.
Let S =SU{€}
Let e™ = e — cover(urlgg(S))

WHILE covers more

+

164 P. Shao et al.

Therefore, we extend the original GOLEM algorithm to User Behavior Fre-
quency GOLEM (UBF-GOLEM). It is based on the notion of User Behavior
Frequency Coverage (UBFC) - the product of the coverage of a specific oper-
ation and the frequency of this operation category. Then we change the LGG
selection criteria from coverage based to UBFC based. The final algorithm is
shown in Algorithm 1, and an example showing how GOLEM algorithm and
UBF-GOLEM work is described in Sect. 4.

UBF-GOLEM is able to find hidden rules behind attack actions. For each
attack action, we determine the most relevant operations that are related to an
attack. After that, for attack prediction, vulnerable operations can be identified
by comparing user operations with the generated rules.

4 An Illustrating Example

This section presents a simplified example to illustrate how the two modules
work. Assume some worm virus spread from a domain called “virus.com”. We
first prepare the encoded raw data to generate the user security rating via a
semi-supervised learning method.

4.1 Training the User Security Rating Module

Raw data from user online activities, such as log-on data, Device connection
data, file transfer data, Http access data and Email data, are collected. Sample
of these data is shown in Fig. 2.

Data Encoding. Each user will be given a rating that contains 3 scores by
considering the 3 aspects (constancy, accuracy and consistency) mentioned in
the previous subsection. Based on these scores, we can train a classifier to rate
and rank (based on the likelihood and risk) of a particular user to be attacked.

Training. After the collected data are encoded into multi-dimensional numeric
features, we then cluster the data using an unsupervised algorithm such as k-
mean and Expectation Maximization. We then manually select and labeled some
data for supervised learning the security risk of a user. Typical supervised ML
algorithms, such as SVM, artificial neural networks or DT, can be used to train
a classifier. We can then use the trained classifier to predict the remaining unla-
beled data.

4.2 Using Inductive Learning

In the rule mining module, we classify the user operations into different types.
The checkpoint for each action type is as shown in Table 1.

A Transparent Learning Approach 165

Log-on Data

Log-on id date user pc activity
X0W9-Q2DW16EI-1074QDVQ|01/02/2010 05:02:50| WCR0044|PC-9174|Logon
C204-Z2RH12FQ-9176MUEL (01/02/2010 05:19:09| WCR0044|PC-9174|Logoff
Device Data
Device id date user pc activity
W7U9-D6EJ66QR-5998NVVQ|01/02/2010 07:44:23|KBD0201|PC-5997|Connect
K3K6-K6PY61IC-7281YJRT |01/02/2010 07:45:55|BHV0556 | PC-6254| Connect

File Data
File id date user pc filename content
I7HO0-J1BK99KL-0235UCYA |01/02/2010 05:16:32| WCR0044|PC-9174|N1Y38G35.doc |conqu...
V6C5-R5SWIIWN-5752LTX.J|01/02/2010 05:16:39| WCR0044|PC-9174|LORS8KW5.doc|Today...
Http Data
Http id date user pc url content
G5W9- 01/02/2010/ACM0931|PC-5571|http://newegg.com alone on they t1517
X47B411J- |06:54:37 residual m7 73 sam-
1699KNGR ple subsequently c...
F2P0- 01/02/2010]ACM0931|PC-5571|http://megaclick.com parts dark would
H3GU35KC-|06:55:09 possibility 50 middle
5660VIYU represent outer 3...
Email Data
Email id|date|user|pc|to cc bee from size |attach|content
... |Ci..Qdta... |[Du...Qdta...|El..Qdta...|Re...@harr...|34113|3
.. |Ca...Qloc... Ka...Qdtaa..|46808|0

Fig. 2. Raw data sample

Example Data. For each user that has been attacked, we encode their data as
discussed before. A snapshot of some positive examples is listed below:

[Website_domain("virus.com"
Unusual_log_time (true),
Website_domain ("groupon.com"),
Db_request_without_permission(false),
Connect_too_long(false),
Website_domain ("google.com"),
Get_file ("1 AFEEF45CBO7F87C3D598ED8ASAA"),
Website_domain ("thepostgame.com"),
Too_short_log(false) 1]

[Get_file ("2351F8CD57177D4C1044D37460B") ,
Website_domain("imdb.com"),
Receive_email_from("Glo34Hugh@hotmail.com"),
Too_short_log(false),
Db_request_without_permission(false),
Connect_too_long(false),
Connect_too_long(false),

Send_email_to ("ki77r089@gmail.com"),
Send_email_to ("mm631dQ@gmail.com")]

166 P. Shao et al.

[Receive_email_from("Kora_Guro@virus.com"),
Receive_email _from("Glo34Hugh@hotmail.com"),
Too_short_log(false),
Db_request_without_permission(false),
Connect_too_long(false),

Get_file ("1 AFEEF45CBO7F87C3D598EDS8ASAA") ,
Send_email_to ("ki77r089@gmail.com"),
Send_email_to ("mm631d0@gmail.com")]

[Unusual_log_time (true),
Website_domain ("groupon.com"),
Website_domain("imdb.com"),
Connect_too_long(false),
Connect_too_long(false),
Get_file ("1AFEEF45CB0O7F87C3D598ED8ASAA"),
Too_short_log(false)]

[Website_domain("virus.com"),
Get_file ("2351F8CD57177D4C1044D37460B") ,
Website_domain ("groupon.com"),
Too_short_log(false)]

[Get_file ("2351F8CD57177D4C1044D37460B"),
Receive_email_from("Kora_Guro@virus.com"),
Unusual_log_time (true),

Receive_email _from("Glo34Hugh@hotmail.com"),
Too_short_log(false),
Db_request_without_permission(false),
Connect_too_long(false),

Website_domain ("google.com"),

Get_file ("1 AFEEF45CB0O7F87C3D598ED8ASAA") ,
Website_domain ("thepostgame.com")]

Table 1. Data encoding

Online action Checkpoint Attribute data input

Log on PC During work hours? Unusual_log-time(true/false)

Log off PC A short login session? | Too_short_log(true/false)

‘Web access Website domain Website_domain(‘‘abc.com’’)

Receive E-mail Email sender Receive_email _from(‘ ‘xyz@abc.com’’)

Send E-mail Email receiver Send_email_to(‘ ‘xyz@abc.com’’)

Login to database Access permission? Db_request_without_permission(true/false)
Log off database Long login session? Too_long_log(true/false)

Device connect New device? Device_first_connect (true/false)

Device disconnect Long connection? Connect_too_long(true/false)

File transfer from device | The file checksum Get_file(‘‘2351F8CD57177D4C1044D37460B°)
Download from website The file checksum Get_file(‘‘1AFEEF45CBO7F87C3D598EDSASAA’)

A Transparent Learning Approach 167

Similarly, this is a snapshot of some negative examples from actions of users

(that are not attacked):

[

Db_request_without_permission(false),
Connect_too_long(false),
Website_domain("google.com"),

Get_file ("1 AFEEF45CBO7F87C3D598ED8ASAA") ,
Website_domain ("thepostgame.com"),
Too_short_log(false)]

Website_domain("imdb.com"),

Receive_email _from("Glo34HughQhotmail.com"),
Too_short_log(false),
Db_request_without_permission(false),
Connect_too_long(false),
Connect_too_long(false),
Send_email_to("ki77r089@gmail.com"),
Send_email_to ("mm631d@gmail.com")]

Receive_email _from("Glo34Hugh@hotmail.com"),
Too_short_log(false),
Db_request_without_permission(false),
Connect_too_long(false),

Get_file ("1 AFEEF45CBO7F87C3D598EDSASAA") ,
Send_email_to ("ki77r089@gmail.com"),
Send_email_to ("mm631d0@gmail.com")]

Receive_email_from("Glo34Hugh@hotmail.com"),
Too_short_log(false),
Db_request_without_permission(false),
Connect_too_long(false),
Website_domain("google.com"),

Get_file ("1 AFEEF45CBO7F87C3D598ED8ABAA"),
Send_email_to ("ki77r089@gmail.com"),
Send_email_to ("mml63d@gmail.com"),
Website_domain ("thepostgame.com")]

And finally, this is a snapshot of some user actions that need to predict/de-

termine if these are safe:

Get_file ("2351F8CD57177D4C1044D37460B"),
Website_domain ("groupon.com"),
Website_domain("imdb.com"),

Receive_email _from("Glo34Hugh@hotmail.com")]

Receive_email_from("Kora_Guro@virus.com"),
Unusual_log_time (true),

Get_file ("1 AFEEF45CBO7F87C3D598EDSASAA") ,
Connect_too_long(false),

168 P. Shao et al.

Website_domain ("google.com"),
Send_email_to ("mm631d0@gmail.com")]

[Website_domain("virus.com"
Unusual_log_time (true),
Receive_email _from("Glo34HughQhotmail.com"),
Db_request_without_permission(false),
Get_file ("1 AFEEF45CBO7F87C3D598EDSASAA") ,
Send_email_to("ki77r089@gmail.com")]

Rules Generated by GOLEM. Based on the example data listed before, the
sub-rules generated from GOLEM are shown below. The coverage of each rule
is also shown for each clause.

ROUND_1

Best_Rule: [Get_file("2351F8CD57177D4C1044D37460B")]

Best_Cover: 3/6

2nd_Best_Rule: [Website_domain("virus.com")]

2nd_Best_Cover: 2/6

ROUND_2

Best_Rule: [Unusual_log_time(true),
Website_domain("groupon.com")]

Best_Cover: 2/3

2nd_Best_Rule: [Website_domain("virus.com")]
2nd_Best_Cover: 1/3

ROUND_3
Best_Rule: [Receive_email _from("Kora_Guro@virus.com")]
Best_Cover: 1/1

2nd_Best_Rule: [Receive_email_from("Kora_Guro@virus.com")]
2nd_Best_Cover: 1/1

The rule generated for the attack is:

[Get_file ("2351F8CD57177D4C1044D37460B")]
OR

[Unusual_log_time (true) AND Website_domain ("groupon.com")]
OR

[Receive_email _from("Kora_Guro@virus.com")]

By applying the generated rule to the testing user actions, the result is shown
in Table 2.

Table 2. GOLEM result

User | Potential attack | Vulnerable operations

Userl | Virus [Get_file(“2351F8CD57177D4C1044D37460B"))
User2 | Virus [Receive_email _from(“Kora_Guro@virus.com”)]
User3 | N/A N/A

A Transparent Learning Approach 169
Rules Generated by UBF-GOLEM. Similarly to GOLEM, we apply UBF-
GOLEM to the example data. There are 77 actions in all positive and negative
examples. The top 3 frequent operations are: access website (16), send email (10)

and get file (10). The rules are generated as follows:

ROUND_1
Best_Rule: [website_domain("virus.com")]
Best_UBFC: 2/6 * 16/77

2nd_Best_Rule:
2nd_Best_UBFC:

[Get_file("2351F8CD57177D4C1044D37460B")]
3/6 * 10/77

ROUND_2
Best_Rule: [Get_file("2351F8CD57177D4C1044D37460B")]
Best_UBFC: 2/4 * 10/77

2nd_Best_Rule:
2nd_Best_UBFC:

[Receive_email _from("Kora_Guro@virus.com")]
2/4 * 8/77

ROUND_3
Best_Rule: [Receive_email _from("Kora_Guro@virus.com")]
Best_UBFC: 1/2 x 8/77

2nd_Best_Rule:

[Unusual_log_time(true),
Website_domain("groupon.com")]

2nd_Best_UBFC: 1/2 * 7/77

ROUND_4

Best_Rule: [Unusual_log_time(true),
Website_domain("groupon.com")]

Best_UBFC: 1/1 = 7/77

2nd_Best_Rule:

2nd_Best_UBFC:

[Unusual_log_time(true),
Website_domain("groupon.com")]
1/1 * 7/77

Furthermore, the rule generated for the attack is:

[website_domain("virus.com")]

OR

[Get_file ("2351F8CD57177D4C1044D37460B")]

OR

[Receive_email_from("Kora_Guro@virus.com")]

OR

[Unusual_log_time (true) AND Website_domain ("groupon.com")]

Finally we can use the rules generated from UBF-GOLEM to determine the
vulnerable actions from each user, as shown in Table 3.

UBF-GOLEM vs GOLEM. There are two advantages by using UBFC
instead of a simple coverage for clause selection. Firstly, it considers the weights.
The frequent operations should be more important as these operations have
more chances to be attacked. Secondly, in GOLEM, if two clauses have the same
coverage, the algorithm just chooses the first one. With UBFC, clauses with
the same positive coverage can be ordered by UBF and this shall lead to more
meaningful selection criteria.

170 P. Shao et al.

Table 3. UBF-GOLEM result

User | Potential attack | Vulnerable operations

Userl | Virus [Get_file(“2351F8CD57177D4C1044D37460B”)]
User2 | Virus [Receive_email _from(“Kora-Guro@virus.com”)]
User3 | Virus [Website_domain(“virus.com”)]

In the example above, GOLEM generated rules ignore the potentially impor-
tant sub-rule which is [website_domain(“virus.com”)]. This is because, for each
sample incidence which is covered by more than one clause, only the best-
covered one will be selected. For example, [website_domain(“virus.com”)] is the
second best in the first two rounds, but it is ignored because all of its cov-
ered examples have been marked as covered by other sub-rules. However, [web-
site_domain(“virus.com”)] is the most important sub-rule generated by UBF-
GOLEM. This is because the website has the highest frequency of user opera-
tions, which makes its UBFC value larger than those from other sub-rules.

4.3 Discussions

Compared with other CS systems, our proposal focuses on supporting reason-
ing and determining relationships between an attack and user operations. Our
approach determines the relationship between a threat and the user actions that
may cause this threat. Based on the frequency and variety of these user oper-
ations, companies may consider adjusting their security policies accordingly. In
our two module approach, the user security rating module provides each user a
security rating, and the rule mining module is to determine potentially vulner-
able operations performed by each user. This gives an idea on which individual
or user group and also what operations need to be considered. When an attack
happens, it will also be easier to locate and faster response to the attack.

5 Conclusions

User behavior is useful to predict potential attacks based on vulnerable user
actions. Much work to date has focused on finding vulnerable operations instead
of providing reasoning/explanations of its findings. In this paper, we have pre-
sented a transparent learning approach for UBA to address this issue. A user
rating system is proposed to determine a security level of each user, with expla-
nations of potential attacks based on his/her vulnerable user actions. A detailed
example has been presented to illustrate how approach works. We believe that,
with justifiable reasoning from our proposed approach, an organization can be
aware of the weakness of its current system, and can better prepare for proactive
attack defense or reactive responses.

A Transparent Learning Approach 171

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Agrawal, R., Imieliniski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM Sigmod Record, vol. 22, pp. 207-216. ACM
(1993)

Amiri, F., Yousefi, M.R., Lucas, C., Shakery, A., Yazdani, N.: Mutual information-
based feature selection for intrusion detection systems. J. Netw. Comput. Appl.
34(4), 1184-1199 (2011)

Ariu, D., Tronci, R., Giacinto, G.: HMMPayl: an intrusion detection system based
on hidden Markov models. Comput. Secur. 30(4), 221-241 (2011)

Asenjo, P.E.R.: Web user behavior analysis. Ph.D. thesis, Universidad De Chile
(2011)

Baum, L.E., Eagon, J.A., et al.: An inequality with applications to statistical esti-
mation for probabilistic functions of Markov processes and to a model for ecology.
Bull. Amer. Math. Soc. 73(3), 360-363 (1967)

Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: finding malicious
domains using passive DNS analysis. In: National Diabetes Services Scheme
(NDSS) (2011)

Bilge, L., Sen, S., Balzarotti, D., Kirda, E., Kruegel, C.: EXPOSURE: a passive
DNS analysis service to detect and report malicious domains. ACM Trans. Inf.
Syst. Secur. (TISSEC) 16(4), 14 (2014)

Bivens, A., Palagiri, C., Smith, R., Szymanski, B., Embrechts, M., et al.: Network-
based intrusion detection using neural networks. Intell. Eng. Syst. Artif. Neural
Netw. 12(1), 579-584 (2002)

Brahmi, H., Brahmi, I., Ben Yahia, S.: OMC-IDS: at the cross-roads of OLAP
mining and intrusion detection. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J.
(eds.) PAKDD 2012. LNCS (LNAI), vol. 7302, pp. 13-24. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30220-6_2

Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153—
1176 (2015)

Cannady, J.: Artificial neural networks for misuse detection. In: National Informa-
tion Systems Security Conference, pp. 368-81 (1998)

Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pp. 115-123 (1995)

Digman, J.M.: Personality structure: emergence of the five-factor model. Annu.
Rev. Psychol. 41(1), 417-440 (1990)

Han, H., Lu, X.L., Ren, L.Y.: Using data mining to discover signatures in network-
based intrusion detection. In: Proceedings of International Conference on Machine
Learning and Cybernetics, vol. 1, pp. 13-17. IEEE (2002)

Jemili, F., Zaghdoud, M., Ahmed, M.B.: A framework for an adaptive intrusion
detection system using Bayesian network. In: ISI, pp. 66-70 (2007)

Joshi, S.S., Phoha, V.V.: Investigating hidden Markov models capabilities in anom-
aly detection. In: Proceedings of the 43rd Annual Southeast Regional Conference,
vol. 1, pp. 98-103. ACM (2005)

Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for
intrusion detection. In: Proceedings 19th Annual Computer Security Applications
Conference, pp. 14-23. IEEE (2003)

Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion
detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol.
2820, pp. 173-191. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45248-5_10

http://dx.doi.org/10.1007/978-3-642-30220-6_2
http://dx.doi.org/10.1007/978-3-540-45248-5_10

172

19.

20.

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.

31.

32.

33.

34.

35.

36.

P. Shao et al.

Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion
detection models. In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 120-132. IEEE (1999)

Li, Y., Xia, J., Zhang, S., Yan, J., Ai, X., Dai, K.: An efficient intrusion detection
system based on support vector machines and gradually feature removal method.
Expert Syst. Appl. 39(1), 424-430 (2012)

Lippmann, R.P., Cunningham, R.K.: Improving intrusion detection performance
using keyword selection and neural networks. Comput. Netw. 34(4), 597-603 (2000)
Michalski, R.S.: A theory and methodology of inductive learning. In: Michalski,
R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning. Symbolic Compu-
tation, pp. 83—-134. Springer, Heidelberg (1983)

Muggleton, S., Feng, C., et al.: Efficient Induction of Logic Programs. Turing Insti-
tute (1990)

Norton, M., Roelker, D.: SNORT 2.0: Hi-performance multi-rule inspection engine.
Sourcefire Network Security Inc (2002)

Panda, M., Patra, M.R.: Network intrusion detection using naive bayes. Int. J.
Comput. Sci. Netw. Secur. 7(12), 258-263 (2007)

Pfleeger, S.L., Caputo, D.D.: Leveraging behavioral science to mitigate cyber secu-
rity risk. Comput. Secur. 31(4), 597-611 (2012)

Plotkin, G.: Automatic methods of inductive inference. Ph.D. thesis, The Univer-
sity of Edinburgh (1972)

Plotkin, G.D.: A further note on inductive generalization. In: Machine Intelligence,
vol. 6, pp. 101-124. Edinburgh University Press (1971)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81-106 (1986)
Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
Raiyn, J., et al.: A survey of cyber attack detection strategies. Int. J. Secur. Appl.
8(1), 247-256 (2014)

Reiss, F.: Transparent Machine Learning for Information Extraction: State-
of-the-Art and the Future (2015). http://www.emnlp.2015.org/tutorials/15/15_
Optional Attachment.pdf

Udantha, M., Ranathunga, S., Dias, G.: Modelling website user behaviors by com-
bining the EM and DBSCAN algorithms. In: 2016 Moratuwa Engineering Research
Conference (MERCon), pp. 168-173. IEEE (2016)

Uma, M., Padmavathi, G.: A survey on various cyber attacks and their classifica-
tion. Int. J. Netw. Secur. 15(5), 390-396 (2013)

Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, Burlington (2005)

Zhengbing, H., Zhitang, L., Junqgi, W.: A novel network intrusion detection system
(NIDS) based on signatures search of data mining. In: First International Workshop
on Knowledge Discovery and Data Mining (WKDD), pp. 10-16. IEEE (2008)

http://www.emnlp.2015.org/tutorials/15/15_OptionalAttachment.pdf
http://www.emnlp.2015.org/tutorials/15/15_OptionalAttachment.pdf

	A Transparent Learning Approach for Attack Prediction Based on User Behavior Analysis
	1 Introduction
	2 Related Work
	2.1 Machine Learning
	2.2 Rule Mining
	2.3 User Behavior Analysis

	3 Our Approach
	3.1 Transparent Learning
	3.2 User Security Rating Module
	3.3 Rule Mining Module

	4 An Illustrating Example
	4.1 Training the User Security Rating Module
	4.2 Using Inductive Learning
	4.3 Discussions

	5 Conclusions
	References

