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Abstract. In 2015, Haviv proposed the Remote Set Problem (RSP) on
lattices and gave a deterministic algorithm to find a set containing a
point which is O(

√
k/n) far from the lattice in �p norm for 2 ≤ p ≤ ∞,

where n is the lattice rank and k divides n. Inspired by it, we propose the
variant of Remote Set Problem on Lattices (denoted by V-RSP) that only
depends on parameter γ ≤ 1. We obtain that the complexity classes that
V-RSP belong to with the change of parameter γ. Using some elementary
tools, we can solve V-RSP that can find a set containing a point which is
O(k/n) far from the lattice in any �p norm for 1 ≤ p ≤ ∞. Furthermore,
we also study relationships between �2 distance from a point to a lattice
L and covering radius (ρ(p)(L)), where ρ(p)(L) is defined with respect
to the �p norm for 1 ≤ p ≤ ∞, here, for p = ∞, our proof does not rely
on Komlós Conjecture.

Keywords: Lattice · Equivalent norms · The variant of remote set prob-
lem · Hölder’s inequality

1 Introduction

A lattice is a discrete additive subgroup of Rm and is the set of all integer linearly
combinations of n linearly independent vectors b1, . . . , bn in R

m, where n is the
rank of the lattice, m is the dimension of the lattice and b1, . . . , bn is called a
lattice basis. Gauss [7] gave an algorithm to find the shortest vector in any two
dimension lattice that originated the study of lattices. Since then, many different
lattice problems were proposed. In 1996, Ajtai [2] showed that finding relatively
short nonzero vectors is as hard as approximating shortest vector problems in
the worst case in a family of random lattice. These random lattices can be used
for cryptography. Hence, the study of lattices gains a lot of attention from a
computational point of view.

There are two classical problems in lattices. The first is the Shortest Vector
Problem (SVP): given a lattice, find the shortest non-zero lattice vector. The
second is the Closest Vector Problem (CVP): given a lattice and a target vector,
find the closest lattice vector to the target vector.
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The covering radius ρ(p)(L) of lattice L is the maximum �p distance of a
point in the linear span of L from the lattice, where ρ(p)(L) is measured with
respect to the �p norm for 1 ≤ p ≤ ∞. The covering radius problem is to find
ρ(p)(L) for a given lattice L. The Covering Radius Problem (CRP) is also an
important lattice problem and the exact CRP is in Π2 at the second level of
the polynomial hierarchy. Computing the covering radius of a lattice is a classic
problem in geometry of numbers, but it has received so far little attention from
an algorithmic point of view. In 2004, Micciancio [16] showed that finding colli-
sion of some hash function can be reduced to approximate CRP of lattices, where
CRP only is used to connect the average and worst case complexity of lattice
problems. Motivated by [8], Guruswami et al. [10] initiated the study of compu-
tation complexity for CRP, and showed that CRP2 lies in AM, CRP√

n/ log n
lies

in coAM and CRP√
n lies in NP ∩ coNP which implies that under Karp reduc-

tions CRP√
n is not NP-hard unless NP = coNP . But they did not give some

hardness results for CRP [10]. Peikert [18] showed that CRP√
n lies in coNP in

the �p norm for 2 ≤ p ≤ ∞. The first hardness result for CRP was presented
by Haviv and Regev, they proved that there exists some constant such that it is
Π2-hard in the �p norm for any sufficiently large value of p [12]. In 2015, Haviv
[13] proposed the Remote Set Problem (RSP) on lattices which can be viewed
as a generalized search variant of CRP. The goal of RSP is to find a set of points
containing a point which is far from the lattice under a deterministic algorithm
in �p norm for 2 ≤ p ≤ ∞. By the deterministic polynomial time algorithm for
RSP, Haviv showed that CRP√

n/ log n
lies in NP which improved the factor from

[10], and proved that approximation GAPCRP can be reduced to approximation
GAPCVP.

In the study of CRP, we usually find a point whose distance from the lat-
tice approximates the covering radius. There is a deterministic construction of
all the Mn linear combinations of the n basis vectors with all coefficients in
{0, 1/M, . . . , 1− 1/M} where M is an integer. Micciancio [10] showed that there
exists at least one of them whose distance from the lattice approximates the
covering radius to within a factor of 1 − 1/M . In order to decrease the number
of exponential points in the above construction [10], Haviv proposed RSP and
gave a deterministic algorithm (see Sect. 3) that outputs n/k ·2k linear combina-
tions of vectors in basis with coefficient in {0, 1/2} (i.e. M = 2) by partitioning
the n basis vectors into n/k sets of size k [13]. The algorithm outputs a set of
n/k · 2k points containing a point whose �p distance from a lattice is at least
1/(2cp) · √

k/n · ρ(p)(L) for 2 ≤ p < ∞, where cp is a constant. For p = ∞,
there is a similar result. Haviv analyzed RSP with respect to Banach spaces and
obtained the results which hold for any �p norm for 2 ≤ p ≤ ∞. Here, we will
consider the variant of Remote Set Problem which is denoted by V-RSP with
respect to any �p norm for 1 ≤ p ≤ ∞.

Our Contributions. In this paper, we consider the variant of Remote Set
Problem (V-RSP) on lattices. Using elementary method, we prove that V-RSP
can be adapted to any �p norm for 1 ≤ p ≤ ∞.
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The Remote Set Problem [13] is defined and depends on two parameters d, γ
to be minimized, where d is the size of the output set S by the algorithm for
RSP and γ ≥ 1 is the remoteness parameter for which S contains a point whose
distance from L is at least 1/γ · ρ(p)(L). Here, we give the definition for V-RSP
which only depends on remoteness parameter γ:

– γ ≤ 1 is a parameter such that the algorithm finds a set containing a point
whose distance from L is at least γ · ρ(p)(L) for the input lattice L and γ.

– the size of the output set S by the algorithm can be represented by parameter
γ: |S| ≤ O(n/(αγ) · Mαγ), where α = nM/(M − 1) and M ≥ 2 is an integer.

Our definition for V-RSP only depends on the parameter γ. The size of the
output set by the algorithm for V-RSP is a function of γ. Therefore, we establish
relationships between the size of the output set S and the remoteness parameter
γ. The algorithm for RSP in [13] is also applied to solve V-RSP (see Algorithm 1).
The algorithm for V-RSP outputs the set S of vectors as a linear combinations of
the basis vectors with all coefficients in {0, 1/M, . . . , 1 − 1/M} where M ≥ 2 by
partitioning the n basis vectors into n/k sets of size k = �(nM/c(M −1))·γ� ≥ 1.
We show that the deterministic algorithm that on input rank n lattice L and
γ ≤ 1 outputs a set S of size |S| ≤ O(n/k · Mk) containing at least one points
which is (1 − 1/M) · k/n · ρ(p)(L) far from L. Moreover, we show that the
complexity classes that V-RSP belong to with the change of parameter γ. Using
the triangle inequality of norm, the analysis for V-RSP can be adapted to any �p

norm for 1 ≤ p ≤ ∞. In the analysis of the algorithm for V-RSP, we use Hölder’s
Inequality to obtain that the output set containing a point has �2 distance from
a lattice compared with the covering radius in any �p norm for 1 ≤ p ≤ ∞. We
also prove that the relationships between the output set containing a point has
�2 distance from a lattice and ρ(p)(L) for 1 ≤ p ≤ ∞. For p = ∞, we do not
rely on Komlós Conjecture which is essential in [13]. We also obtain that the
relationships between �p distance for 1 ≤ p ≤ ∞ and ρ(2)(L).

Relation to Haviv’s RSP. This paper is inspired by Haviv’s, but differs from
it in most of details. The definition for RSP in [13] depends on two parameters
d, γ ≥ 1 to be minimized, where d is the size of the set constructed and γ is
the remoteness parameter. By the analysis the algorithm for RSP, Haviv showed
that a deterministic time algorithm for RSP that on full-rank lattice L outputs
a set S of points, at least one of which is O(

√
k/n) · ρ(p)(L) in any �p norm for

2 ≤ p ≤ ∞. Hence, the distance from the lattice of at least one of the points in
S approximates the covering radius to within a factor of O(

√
k/n). Haviv also

showed a polynomial time deterministic algorithm outputs a set of points, at least
one of which is

√
log n/n·ρ(p)(L) far from L for 2 ≤ p ≤ ∞. The proof techniques

in [13] involved a theorem on balancing vectors [5] and six standard deviations
theorem [19] of Spencer from Banach space theory, and specially depended on
Komlós Conjecture for �∞ norm. All the analysis of Haviv’s algorithm for RSP
in [13] is hold in any �p norm for 2 ≤ p ≤ ∞.
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Our definition for V-RSP only depends on parameter γ ≤ 1, the size of the set
is bounded by γ and can not minimize arbitrarily. We prove that the output of the
deterministic time algorithm for V-RSP contains a point in S whose distance
from lattice L is at least O(k/n) · ρ(p)(L) in any �p norm for 1 ≤ p ≤ ∞.
This implies that the distance of a point in S from the lattice approximates
the covering radius to within a factor of O(k/n). Moreover, when we choose
k = �M/(M −1) ·√n · logM n�, we also obtain that the set S containing a point
which is

√
logM n/n · ρ(p)(L) far from L for 1 ≤ p ≤ ∞ in a deterministic time.

The approximation factor is similar to Haviv’s
√

log n/n. We also analyze the
complexity of V-RSP. The proof techniques for V-RSP only use some elementary
inequalities involving triangle inequality of norm and Hölder’s Inequality. And
our results for V-RSP are adapted to any �p norm for 1 ≤ p ≤ ∞.

Organization. The rest of the paper is organized as follows. In Sect. 2 we
introduce basic notations about lattices and some important inequalities that
we need in the paper. In Sect. 3 we propose the variant of Remote Set Problem
(V-RSP) and analyze V-RSP.

2 Preliminaries

Let R
m be a m-dimensional Euclidean space. A norm ‖ · ‖ is a positive real-

valued function on R
m that satisfies the triangle inequality, i.e., a function ‖ · ‖ :

R
m −→ R such that

– ‖x‖ ≥ 0 with equality only if x = 0.
– ‖kx‖ = |k|‖x‖.
– ‖x + y‖ ≤ ‖x‖ + ‖y‖.

for all x,y ∈ R
m and k ∈ R. For 1 ≤ p < ∞, the �p norm of a vector x =

(x1, x2, . . . , xm) ∈ R
m is defined as ‖x‖p = (

∑m
i=1 |xi|p)1/p and for p = ∞ the

�∞ norm is defined as ‖x‖∞ = max
1≤i≤m

|xi|. The �p distance between two vector

x,y ∈ R
m is defined as distp(x,y) = ‖x − y‖p. For any vector x ∈ R

m and any
set S ⊆ R

m, the �p distance from x to S is distp(x,S) = min
y∈S

distp(x,y).

A lattice L is the set of all linear combinations that generated by n linearly
independent vectors b1, . . . , bn in R

m(m ≥ n), that is

L = {
n∑

i=1

xibi|xi ∈ Z, 1 ≤ i ≤ n}.

The integer n is the rank of the lattice, m is the dimension of the lattice. The
sequence of linear independent vectors b1, . . . , bn ∈ R

m is called a basis of the
lattice. We represent b1, . . . , bn by the matrix B of m rows and n columns, that
is, B = [b1, . . . , bn] ∈ R

m×n. The lattice L generated by a basis B is denoted
by L = L(B) = {Bx : x ∈ Z

n}.
In the following, we consider the covering radius which is an important para-

meter associated with lattices.
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Definition 1 (Covering Radius). The covering radius of L, denoted ρ(L), is
defined as the smallest radius ρ such that the (closed) spheres of radius ρ centered
at all lattice points cover the entire space, i.e., any point in span(L) is within
distance ρ from the lattice.

Formally, the covering radius ρ(p)(L) is defined as the maximum distance
distp(x,L):

ρ(p)(L) = max
x∈span(L)

distp(x,L),

where x ranges over the linear span of L.
There exists a set of all the vector as a linear combinations of the basis vectors

with all coefficients in {0, 1/M, . . . , 1 − 1/M}. The following lemma shows that
at least one of the points in the set is quite far from the lattice.

Lemma 1 [10]. For every 1 ≤ p ≤ ∞, any basis B and an integer M > 0, there
exists a point

v = a1b1 + · · · + anbn

such that ai ∈ {0, 1/M, . . . , 1 − 1/M} for all i, and distp(v,L) ≥ (1 − 1/M) ·
ρ(p)(L).

The definition of the variant of Remote Set Problem (V-RSP) for any 1 ≤ p ≤ ∞
and γ ≤ 1 is in the following.

Definition 2 (V-RSP(p)
γ ). For an integer M ≥ 2, given a lattice basis B ∈

Q
m×n and γ ≤ 1, the variant of Remote Set Problem is to find a set S ⊆ span(L)

of size |S| ≤ O(n/(αγ) · Mαγ) such that S contains a point v satisfying

distp(v,L) ≥ γ · ρ(p)(L)

where α = nM/(M − 1).

The following inequalities are essential in this paper.

Lemma 2 (Equivalent Norms [9]). Let ‖·‖α and ‖·‖β be two different norms
on the same vector space V . There exists positive constants t, T such that

t‖x‖α ≤ ‖x‖β ≤ T‖x‖α

for any vector x ∈ V .

Theorem 1 (Hölder’s Inequality [9]). Fix an arbitrary norm ‖ · ‖ on R
m,

for any vector x ∈ R
m, we have the following inequalities:

– for any 1 ≤ p ≤ 2, ‖x‖2 ≤ ‖x‖p ≤ m1/p−1/2‖x‖2,
– for any 2 < p < ∞, m1/p−1/2‖x‖2 ≤ ‖x‖p ≤ ‖x‖2,
– for p = ∞, 1√

m
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2.
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3 The Variant of Remote Set Problem

3.1 Algorithm for the Variant of Remote Set Problem

In this section, based on Definition 2, we use triangle inequality to analyze the
algorithm for V-RSP which applies to any �p norm for 1 ≤ p ≤ ∞.

Theorem 2. For an integer M ≥ 2, for every 1 ≤ p ≤ ∞ and every k =
k(n, γ) = � nM

c(M−1)γ� ≥ 1, there exists a deterministic Mk · bO(1) time algorithm

for V-RSP(p)
γ that on input a lattice basis B ∈ Q

m×n and γ ≤ 1, outputs a set S

of size |S| = O(n/k · Mk) = O(n/(αγ) · Mαγ) containing a point which is quite
far from a lattice, where α = nM/(M − 1), n denotes lattice rank, m denotes
lattice dimension, b is the input size, c is a constant.

Proof. Our proof is similar to [13], but our technique is different since we only
use the triangle inequality of norm. We will give full proof for completeness here.

Assume that k = k(n, γ) divides n. First, we partition the lattice basis B =
(b1, b2, . . . , bn) into n/k sets of size k each, i.e., B = (B1,B2, . . . ,Bn/k). Then
the algorithm outputs a set S containing n/k · Mk vectors in span(B) that are
linear combinations of vectors in Bi with coefficients in {0, 1/M, . . . , 1 − 1/M}.
These vectors must be in some Si, i = 1, 2, . . . , n/k.

For every 1 ≤ i ≤ n/k, j = 1, 2, . . . , k,

Si = {v|v = a1b(i−1)k+1 + a2b(i−1)k+2 + · · · + akbik}

where aj ∈ {0, 1/M, . . . , 1 − 1/M}. The algorithm outputs S =
⋃n/k

i=1 Si. Hence,
we have |S| ≤ n/k · Mk and obtain S in time Mk · bO(1), where b is the input
size.

For 1 ≤ p ≤ ∞, we claim that there exists a vector w in S such that �p

distance from L(B) is at least (1−1/M)·k/n·ρ(p)(L(B)), i.e., distp(w,L(B)) ≥
(1 − 1/M) · k/n · ρ(p)(L(B)). Assume for contradiction that for every vector v
in S there exists a lattice vector y such that

distp(v,y) < (1 − 1/M) · k/n · ρ(p)(L(B)).

By Lemma 1, there exists a point v = a1b1 + a2b2 + · · · + anbn such that
ai ∈ {0, 1/M, . . . , 1−1/M} for all i and distp(v,L(B)) ≥ (1−1/M)·ρ(p)(L(B)).

Let
v = v1 + v2 + · · · + vn/k

where vi = a(i−1)k+1b(i−1)k+1 + a(i−1)k+2b(i−1)k+2 + · · · + aikbik, aj ∈
{0, 1/M, . . . , 1 − 1/M} for j = (i − 1)k + 1, . . . , ik, 1 ≤ i ≤ n/k.

Clearly, vi ∈ Si ⊆ S, by assumption that there exists a lattice vector yi ∈
L(B) such that

distp(vi,yi) = ‖vi − yi‖p < (1 − 1
M

) · k

n
· ρ(p)(L(B)).
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Algorithm 1. The Variant of Remote Set Problem ([13]).
Input:

A lattice basis B = (B1, B2, . . . , Bn/k) ∈ Q
m×n, γ.

Output:
A set S ⊆ span(B) of n/k · Mk vectors at least one of which is (1 − 1/M) · n/k ·
ρ(p)(L(B)) far from L(B).
For every 1 ≤ i ≤ n/k

1.Define Bi = [b(i−1)k+1, . . . , bik].
2.Construct the set

Si = {v|v = a1b(i−1)k+1 + a2b(i−1)k+2 + · · · + akbik},
where aj ∈ {0, 1/M, . . . , 1 − 1/M}.

Return S =
⋃n/k

i=1 Si.

For every 1 ≤ i ≤ n/k, let βi = vi − yi. Using the triangle inequality, we
have

‖
n/k∑

i=1

βi‖p ≤ ‖β1‖p + ‖β2‖p + · · · + ‖βn/k‖p

< (1 − 1
M

) · n

k
· k

n
· ρ(p)(L(B))

= (1 − 1
M

) · ρ(p)(L(B)).

Since

v −
n/k∑

i=1

βi =
n/k∑

i=1

vi −
n/k∑

i=1

βi =
n/k∑

i=1

yi ∈ L(B),

we have

distp(v,L(B)) = distp(
n/k∑

i=1

βi,L(B))

≤ ‖
n/k∑

i=1

βi‖p

< (1 − 1
M

) · ρ(p)(L(B)).

This contradicts the choice of v. So, there exists a vector in S whose �p

distance from L(B) is quite far.
Using the triangle inequality, the algorithm for V-RSP is also holding in any

�p norm for 1 ≤ p ≤ ∞ and solves the case of 1 ≤ p < 2. When M = 2,
we can obtain a similar result to Haviv (see [13], Theorem 3.1), though our
approximation factor is a little weaker. However, our techniques are simpler.

By choosing k = �cM/(M − 1) · √
n logM n�, where c is a constant and n is

the lattice rank, we will derive that the output of our algorithm contains a point
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whose distance from lattice L is at least
√

logM n/n·ρ(p)(L). This approximation
factor is similar to Haviv’s. We will describe in the following.

Corollary 1. For an integer M ≥ 2, for every 1 ≤ p ≤ ∞ and k = �cM/

(M − 1) · √
n logM n�, there exists a deterministic time algorithm for V-RSP(p)

γ

that on input a lattice B ∈ Q
m×n and γ ≤ 1, outputs a set containing a point which

is
√

logM n/n · ρ(p)(L) far from lattice L, where n denotes lattice rank and c is a
constant.

3.2 The Complexity Classes for V-RSP

We will analyze the complexity classes for V-RSP(p)
γ with the change of parame-

ter γ, as stated in the following.

1. For every 1 ≤ p ≤ ∞ and 0 ≤ ε ≤ 1, for 1
n (1 − 1

M ) ≤ γ ≤ logε
M n
n (1 −

1
M ), there exists a deterministic polynomial time algorithm for V-RSP(p)

γ , and
V-RSP(p)

γ lies in Class P.
2. For every 1 ≤ p ≤ ∞ and ε > 1, for logM n

n (1 − 1
M ) ≤ γ ≤ logε

M n
n (1 − 1

M ),
there exists a deterministic (single) exponential time algorithm for V-RSP(p)

γ .

3.3 An Additional Property of V-RSP

By the Theorem 2, we show that the algorithm for V-RSP can find a set of points
containing a point which is far from the lattice. We use the Hölder’s Inequality
in Theorem 1 to study the relationships between the �2 distance from a point of
the output set to a lattice L and the covering radius (ρ(p)(L)) of the lattice L for
every 1 ≤ p ≤ ∞. The case of 1 ≤ p < 2 is not mentioned in [13]. Specially, when
p = ∞, we do not depend on Komlós Conjecture. Similar to [13], the following
theorems are based on algorithm presented in the proof of Theorem 2.

Theorem 3. For an integer M ≥ 2, for every 1 ≤ p ≤ 2 and every k =
k(n, γ) = � nM

c(M−1)γ� ≥ 1, there exists a deterministic Mk · bO(1) time algorithm

for V-RSP(p)
γ that on input a lattice basis B ∈ R

m and γ ≤ 1 outputs a set
S of size |S| = O(n/k · Mk) = O(n/(αγ) · Mαγ) containing a point whose
�2 distance from L is at least 1/m1/p−1/2 · (1 − 1/M) · k/n · ρ(p)(L(B)), where
α = nM/(M−1), m denotes lattice dimension, b is the input size, c is a constant.
For a special case of full-rank lattice(m = n), one of the points whose �2 distance
is at least k/n1/p+1/2 · (1 − 1/M) · ρ(p)(L(B)).

Theorem 4. For an integer M ≥ 2, for every 2 < p ≤ ∞ and every k =
k(n, γ) = � nM

c(M−1)γ� ≥ 1, there exists a deterministic Mk · bO(1) time algorithm

for V-RSP(p)
γ that on input a lattice B ∈ R

m and γ ≤ 1, outputs a set S of size
|S| = O(n/k ·Mk) = O(n/(αγ) ·Mαγ) containing a point whose �2 distance from
L is at least (1 − 1/M) · k/n · ρ(p)(L(B)), where α = nM/(M − 1), m denotes
lattice dimension, b is the input size, c is a constant.
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In the following, we study the relationships between the �p(1 ≤ p ≤ ∞)
distance from a point of the output set to a lattice L and the covering radius
(ρ(2)(L)) of the lattice L.

Corollary 2. For an integer M ≥ 2, for every 1 ≤ p ≤ 2 and every k =
k(n, γ) = � nM

c(M−1)γ� ≥ 1, there exists a deterministic Mk · bO(1) time algorithm

for V-RSP(p)
γ that on input a lattice B ∈ R

m and γ ≤ 1 outputs a set S of
size |S| = O(n/k · Mk) containing a point whose �p distance from L is at least
(1 − 1/M) · k/n · ρ(2)(L(B)). For every 2 < p < ∞, one of points whose �p

distance is at least 1/m1/p−1/2 · (1 − 1/M) · k/n · ρ(2)(L(B)). For a the full-rank
lattice (m = n), one of the points whose �p distance is at least k/n1/p+1/2 · (1 −
1/M) · ρ(2)(L(B)), where m denotes lattice dimension, b is the input size, c is a
constant.

Corollary 3. For an integer M ≥ 2, for every p = ∞ and every k = k(n, γ) =
� nM

c(M−1)γ� ≥ 1, there exists a deterministic Mk · bO(1) time algorithm for

V-RSP(p)
γ that on input a lattice B ∈ R

m and γ ≤ 1 outputs a set S of size
|S| = O(n/k · Mk) containing a point whose �p distance from L is at least
1/

√
m · (1− 1/M) · k/n · ρ(2)(L(B)), where m denotes lattice dimension, b is the

input size, c is a constant.

4 Conclusion

In our paper, we propose the variant of Remote Set Problem (V-RSP) which
only relies on the parameter γ ≤ 1. From the algorithm for RSP, we knew
that the distance from the lattice of at least one of the point in the set S
approximates the covering radius to within a factor of O(

√
k/n) in �p norm

for 2 ≤ p ≤ ∞. However, using some elementary tools, we obtain that the
approximation is O(k/n) in the algorithm for V-RSP in �p norm for 1 ≤ p ≤ ∞.
This introduces a O(

√
k/n) loss in the approximation factors. We also can get

the same approximation factors at the cost of more time in the algorithm for
V-RSP. Hence, there is an interesting problem to reduce the gap between RSP
and V-RSP.
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