Chapter 9
Automatic Atlas-Free Multiorgan

Segmentation of Contrast-Enhanced
CT Scans

Assaf B. Spanier and Leo Joskowicz

Abstract Automatic segmentation of anatomical structures in CT scans is an essen-
tial step in the analysis of radiological patient data and is a prerequisite for large-
scale content-based image retrieval (CBIR). Many existing segmentation methods
are tailored to a single structure and/or require an atlas, which entails multistructure
deformable registration and is time-consuming. We present a fully automatic atlas-
free segmentation of multiple organs of the ventral cavity in contrast-enhanced CT
scans of the whole trunk (CECT). Our method uses a pipeline approach based on
the rules that determine the order in which the organs are isolated and how they are
segmented. Each organ is individually segmented with a generic four-step proce-
dure. Our method is unique in that it does not require any predefined atlas or a costly
registration step and in that it uses the same generic segmentation approach for all
organs. Experimental results on the segmentation of seven organs—Iliver, left and
right kidneys, left and right lungs, trachea, and spleen—on 20 CECT scans of the
VISCERAL Anatomy training dataset and 10 CECT scans of the test dataset yield
an average DICE volume overlap similarity score of 90.95 and 88.50%, respectively.

Source code is available at:
http://www.cs.huji.ac.il/~caslab
https://bitbucket.org/shpanier/cbir_anatomy3
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9.1 Introduction

Volumetric medical images, including computed tomography (CT) and magnetic
resonance imaging (MRI) are pervasive in routine clinical practice. Worldwide, the
number of these images reaches into the hundreds of millions per year and is growing
at a fast pace [19]. Radiologists and physicians rely upon these images for diagnosis,
treatment strategy and follow-up evaluation. Currently, these medical images and the
patient records associated with them are used primarily for diagnosis and follow-up
of the primary condition without further analysis between and across the patients.
The vast amount of information in these valuable clinical datasets represents an
untapped gold mine that could support a wide variety of clinical tasks, such as the
retrieval of patient cases with similar radiology images, image-based retrospective
incidental findings, large-scale radiological population and epidemiological studies,
and preventive medicine by early radiological detection. Indeed, the application of
big data analytics to the field of medical imaging has been largely absent despite
the fact that clinical imaging represents the largest single component of the medical
health record.

Radiology content-based image retrieval (CBIR) is a key enabler for the utilization
of previously acquired imaging data to assist radiologists in the decision-making
process [11, 24, 31]. A CBIR system is an image search engine that retrieves medical
records of patients with similar images from large archives. CBIR systems rely on
the automatic extraction of imaging features from a non-annotated medical images
database. The features include specific properties of anatomical structures, such as
organ volume, shape and texture, which are automatically computed from the image
and are used to compare images.

Today, most of the CBIR systems are based on global feature extraction [4]. Global
features are extracted from the images with no prior knowledge regarding the con-
tent of the image, the organs and/or the pathologies and their location in the image.
However, there is a discrepancy between the low-level features that are automatically
extracted by the computer and the high-level concepts of human vision and image
understanding: this gap is known as the semantic gap [8]. The isolation and delin-
eation of individual structures in the images—referred to as segmentation—provides
a strong shape and location prior that is expected to improve the quality of the auto-
matic feature extraction process, thereby significantly improving the performance of
CBIR systems [25, 27].

The automatic segmentation of anatomical structures in volumetric medical
images is widely recognized as a difficult and time-consuming task. Anatomical
structures are numerous and complex: each has unique, distinctive characteristics and
shows extensive biological variability across the patients [22]. In volumetric images,
many structures have similar radiological tissue properties—attenuation coefficients
in CT and relaxation times in MRI—which result in very low or no contrast between
adjacent structures. Volumetric images also show great variability due to a plethora of
CT/MRI scanners and scanning protocols, which produce scans with very different
image properties, e.g. resolution, contrast and noise.
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Numerous segmentation algorithms have been developed in the past three decades.
These include region growing, ray casting [16], energy active contours [3], graph
cut [2], level sets [30], statistical shape model [10], rule-based methods [26] and
hybrid methods [5, 9]. Additionally, a large variety of methods for segmentation
of nearly all anatomical structures, organs and pathologies in CT scans have been
proposed. Examples of reviews of the existing approaches for some of the main
organs include Mharib et al. [18] for liver segmentation, Sluimer et al. [28] for lungs
segmentation and Freiman et al. [6] for kidney segmentation.

Most of the segmentation algorithms require prior models in the form of parameter
values, intensity thresholds, shape priors, atlases and a database of previous cases.
Some rely on user inputs such as seeds, regions of interest and/or initial delineations
to produce the segmentation. In addition, most of the segmentation algorithms are
optimized for a single structure and require significant effort to transfer/adapt to
new structures. Also, single structure segmentation methods usually do not take into
account the contextual information of the adjacent structures which may be exploited
for the identification task.

Multistructure segmentation methods have been recently proposed to exploit this
contextual information [23]. They usually require an atlas of the structures of inter-
est, which consists of parametric shape models of the structures and their relative
location in the body. This approach is currently the state of the art in brain structure
segmentation [1]. More recently, atlas-based methods have been developed for organ
segmentation of body CT scans [29, 33]. These methods require the construction of
atlases, which usually relies on the manual segmentation of the structures of interest
in the CT/MRI scans and their alignment to a reference scan. To obtain a segmenta-
tion of the structures of interest in a new scan, the atlas is matched to the scan and
the structure models using deformable registration techniques [21]. The drawbacks
of this approach are that the atlas construction is laborious, biased to the cases that
are used to construct it and thus may suffer from low specificity (the generality of
such a model may hamper the segmentation of a specific target image due to the large
intersubject variability in the learning cases). In addition, multiatlas-based methods
require deformable registration and incur a high computational cost.

To summarize, although many segmentation algorithms have been developed,
they are unlikely to be useful for radiology CBIR either due to their focus on a
single organ, their need for a predefined atlas, their lack of robustness and/or their
prohibitive computational cost.

In this paper, we present a robust multiorgan fully automatic atlas-free segmenta-
tion method for the organs of the ventral cavity in contrast-enhanced CT scans of the
whole trunk (CECT). Our method is specifically designed for radiology CBIR. It uses
a pipeline approach based on the rules that determine the order in which the organs
are isolated and how they are segmented. Each organ is individually segmented with
a generic four-step procedure. Our method is unique in that it does not require any
predefined atlas or registration and in that it uses the same generic segmentation
approach for all organs.
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Fig. 9.1 The CECT field of
view starts at about the
corpus mandibulae (i.e. in
between the skull base and
the neck) and ends at the
pelvis. The scan is enhanced
by an iodine-containing
contrast agent commonly
administered to improve
tissue contrast, in order to
detect pathological lymph
nodes or organ affection of
the lymphoma

We evaluate our method using the VISCERAL [17] publicly available database
and make our source code openly available for the benefit of the community.' Exper-
imental results on the 20 CECT scans of the VISCERAL Benchmark training dataset
and 10 CECT scans of the test dataset yield an average DICE volume overlap simi-
larity score of 90.95 and 88.50%, respectively.

9.2 Method

We describe next a new robust, multiorgan, fully automatic, atlas-free segmentation
method of the organs of the ventral cavity in CECT scans. The input is CECT scans
of the whole trunk (Fig. 9.1), with the patient properly positioned on their back. The
field of view starts between the skull base and the neck and ends at the pelvis, and
with none of the seven organs to be segmented missing. The output of our method
is a segmentation of the seven organs of the ventral cavity: the trachea, both lungs,
both kidneys, the spleen and the liver. Our method consists of two processes: the
first is a scan-specific characterization process that determines the grey values of
the high blood content organs (i.e. kidneys, spleen, and liver), and a localization of
six cross sections of interest in the scan. The second is a generic four-step pipeline

Thitp://www.cs.huji.ac.il/~caslab.
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Fig. 9.2 Our method consists of two processes: (1) a scan-specific characterization process that
locates six cross sections of interest in the scan along with the grey-level values of the high blood
content organs (Process 1) and (2) a four-step pipeline segmentation process for segmenting each
organ (Process 2)

segmentation process followed by a fine-tuning post-processing step. The method is
illustrated in Fig. 9.2 and summarized in Table 9.1.

Next, we describe the two processes, followed by details of the implementation
for seven ventral cavity organs: the trachea, the left and right lungs, the left and right
kidneys, the spleen and the liver.

9.2.1 Process 1: Scan-Specific Characterization

The goal of the scan-specific characterization process is to locate six cross sections of
interest in the CECT scan along with the grey-level values of the high blood content
organs. There are three steps in this process: (1) isolation of the bone skeleton and
the breathing system (lungs and trachea), (2) localization of six cross sections of
interest inside the body and (3) identification of the grey-level values of the high
blood content organs (i.e. kidneys, spleen and liver). Below is a detailed description
of each step.

1. Bone Skeleton and Breathing System Isolation: We start by isolating the
patient’s body from the background (air and scan gantry) based on the location
and intensity values. We then identify the bone skeleton and the breathing sys-
tem (lungs and trachea). Next, we isolate the largest connected components that
contain grey levels above 250 HU for the skeleton and the largest connected com-
ponents that contain grey levels between —1000 and —500 HU for the breathing
system.

2. Cross-Sectional Localization: We define six cross sections of interest, which
will be used to define the ROI of the various organs, they are marked by labels
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(a) (b)

Fig. 9.3 Localization of six cross sections: AA—the narrowest slice of bones in the beginning of the
lumbar region; BB—the inferior slice of the breathing system; CC—the widest slice of the breathing
system; and DD—the superior slice of the breathing system (which is also the narrowest slice of the
breathing system). EE—the sagittal symmetrical plane; FF—a plane bisecting the spinal column
at 45°

AA through FF in Fig. 9.3. Four of the cross sections are axial, one is sagittal and
one is diagonal. The cross sections are: (1) the narrowest slice of bones in the
beginning of the lumbar region (marked by AA), hereinafter the narrowest slice
and widest slice are defined by measuring the perimeter of the 2D convex hull
in the axial slice; (2) the inferior slice of the breathing system (marked by BB);
(3) the widest slice of the breathing system (marked by CC); (4) the superior slice
of the breathing system, which is also the narrowest slice of the breathing system
(marked by DD); (5) the sagittal plane through the middle of the spinal column
(marked by EE); and (6) the plane that passes through the centre of the spinal
column at 45° (marked by FF). Slice AA is found by starting at slice BB and
moving inferiorly slice by slice along the axial planes, when the bone perimeter
increases by over 200%, that slice is defined as AA. To define planes EE and FF,
we construct a bounding box around the bone cross section at slice BB; EE is the
sagittal symmetrical plane bisecting it; and FF is the plane bisecting it at 45°.

3. Grey-Level-Value Identification: We first identify the grey level of the lungs’
blood vessels by isolating all voxels with values that are greater than zero inside
the lungs (Fig. 9.4). We denote the average and the standard deviation of these
blood vessels’ grey-level values as wpy and opy, respectively. Next, we apply
the k-means clustering algorithm with k£ = 2 on all voxels confined by slices
AA, CC and to the left of EE and that have grey-level values between zero and
wpy + 3opy. We denote the average of those two cluster centres as Lyeqn- These
values will be used to define the thresholds that differentiate between the kidneys,
the spleen and the liver.
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Fig. 9.4 Tllustration of
grey-level values estimation:
Inside the breathing system
(blue), all voxels that contain
grey-level values greater
than zero (red) are the lungs’
blood supply. The grey-level
values of other organs in the
scan are estimated by
computing the average and
standard deviation of those
voxels

9.2.2 Process 2: Generic Four-Step Segmentation

In the generic four-step segmentation process, organs are isolated and segmented,
from the simplest one to the most difficult one. Using the cross sections and the grey-
level values identified by the first process, the four-step framework is applied to the
organs in the following order. First, the breathing system organs (i.e. the trachea and
the lungs) are segmented. Next, the high blood content organs (i.e. kidneys, spleen,
and liver) are segmented, first those on the left, which are better separated, then
those on the right. For each organ, the process starts with a coarse segmentation that
is refined along the further steps until the final segmentation is obtained. The organ
segmentation order prevents the ambiguous assignment of the same image region to
multiple organs, as previously segmented image regions are excluded from the later
segmentation process. We describe next the four successive steps. In addition, Table
9.1 summarizes the details and parameters for this process.

1. ROI Identification—The region of interest (ROI) is extracted and constitutes a
coarse initial segmentation. This step is organ-dependent and is based on the
location of the organ in the ventral cavity in the current scan.

2. Thresholding—After ROl identification, we threshold the CECT scan to fine-tune
the coarse segmentation of the organ based on its unique grey-level characteristics.
Note that the thresholding value derived in Process 1 is organ specific and scan
specific.

3. 2D Seed Identification—A representative 2D axial slice of the organ in the CECT
scan is identified. This slice serves as the set of seeds for the region-growing step.

4. Slice Region Growing—Organ segmentation by 3D region growing starting from
the 2D seed (2D axial slice) to obtain the final segmentation of the organ.

Figure 9.5 illustrates each of the four steps for the segmentation of the lungs.
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Fig. 9.5 Tllustration of the Step 1 Step 2

four steps of Process 2 on the
lungs: (1) The breathing
system (lungs and trachea) Thresholding
ROI, (2) thresholding it with
a scan-specific and
structure-specific value,

(3) 2D axial slice that serves
as the set of seeds for region
growing, (4) 3D region
growing starting from the 2D
seed upwards and
downwards inside the ROI

Step 3 Step 4

2D Seed Slice Region
Identification Growing

2D-Seed

4

9.2.3 Process 2: Implementation details

Below are the details of the implementation of the four-step segmentation process
for seven ventral cavity organs: the trachea, the left and right lungs, the left and right
kidneys, the spleen and the liver.

Step 1: ROI Identification
The ROI of each organ is obtained as follows:

Lungs and Trachea: The lungs and trachea are located within the region confined
by slices BB and DD, as illustrated in Fig. 9.5, Step 1.

Left Kidney and Spleen: The left kidney and spleen are located within the region
defined by slices AA, CC and the area to the left of FF, as illustrated in Fig. 9.6.

Right Kidney and Liver: The right kidney and the liver are located within the region
defined by slices AA, CC and the area to the right of FF as illustrated in Figs. 9.6
and 9.7.
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Fig. 9.6 Two views of the kidneys’ and spleen’s ROIL. The ROI is defined by slices AA, CC and
the area to the left of FF for the left kidney and spleen and the area to the right of FF for the right
kidney

Fig. 9.7 Two views of the same liver ROI. Slices AA, CC and the area to the right of FF define
the ROI

Step 2: Thresholding

We threshold the CECT scan to refine the coarse segmentation obtained from the
ROL

Lungs and Trachea: Inside the ROI, a threshold is applied to include all voxels
in the range [—1000HU, —500HU], and then, the largest connected component is
selected (Fig. 9.5, Step 2).
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Trachea

Left:Kidney Right Kidney

(d) (e) ()

Fig. 9.8 Illustration of the location of the organs’ 2D seed (green plane): Inside the ROI, the axial
slice with the widest perimeter is selected for (a) the lungs, (d) left kidney and (e) the right kidney.
The axial slice with the narrowest perimeter is selected for the trachea (b). The first slice above the
left kidney is selected for the spleen (c) and the liver (f)

Kidney, Liver and Spleen: For the kidneys, we threshold inside the ROI by including
only the voxels in the range [[imean, v + 30py]. For the liver and spleen, we
only include the voxels in the range [ugy — 0.508v, Wimean]- We US€ [imean as the
threshold to separate the kidneys, which are significantly richer in blood vessels,
from the spleen and liver.

Step 3: 2D Seed Identification
The 2D axial slice selection is organ specific and is performed as follows:

Lungs and Trachea: Inside the lungs and trachea ROIs (Fig. 9.5, Step 1), the axial
slice with the narrowest perimeter (DD) is selected as the 2D seed for the trachea. The
axial slice with the widest perimeter (CC) is selected as the 2D seed for the lungs.
Note that the widest axial slice of the lungs contains two connected components, for
the left and right lungs (Fig. 9.8a, b).

Kidneys: Inside the kidneys’ ROI, the axial slice with the widest perimeter is selected
as the 2D seed for the kidneys (Fig. 9.8d, e).

Liver and Spleen: The first slice above the left kidney is selected as the 2D seed for
the liver and spleen (Fig. 9.8c, f).
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(a) before | (b) after

Fig. 9.9 Axial slice showing the results of the spectral cluster algorithm to isolate each lung

Step 4: Slice Region Growing

For each organ, we perform the region growing from the axial 2D seed. The seed is
extended slice by slice along the axial planes, within the coarse segmentation obtained
in Step 3, to include the entire organ. The unique segmentation characteristics for
each organ are as follows:

Lungs: Inevitably, in the lungs, some axial slices might appear as a single connected
component. To avoid this and to isolate each lung on those slices, we use the spectral
clustering algorithm [20] with two clusters. Figure 9.9 illustrates the result of using
the spectral clustering algorithm.

Note that the widest axial slice of the lungs, used as the 2D seeds at Step 3, occurs
around the heart, which pushes the lungs out of its way, thus acting as a natural
separator, so the lungs do not appear as a single connected component.

Trachea: The region growing is performed upwards to the top of the ROI and down-
wards to the first bifurcation.

Kidneys, Liver, Spleen: The region growing is performed upwards and downwards
from the seed slice within the ROI. Between each pair of slices, the region growing
continues only into the largest connected component that intersects with the current
slice. All smaller intersected components are removed, as ventral cavity organs are
relatively smooth, so two adjacent voxels of the same organ cannot exceed some
level of variability (Fig. 9.10). This process is repeated throughout the slices inside
the ROIL.

9.2.4 Post-processing at the End of Process 2

A final post-processing fine-tuning sequence is performed on the kidneys, liver and
spleen in order to finalize their segmentation. This post-processing sequence is dif-
ferent for each organ.

Kidneys: First, holes in the image are filled. Next, all connected components that
have fewer than 50 pixels are removed. Then, the largest 3D connected component
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The region growing
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(if exist) are removed largest connected component
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Fig. 9.10 Schematic illustration of the liver, spleen and kidneys region growing between two adja-
cent slices. The current slice contains a single component. The next slice contains two components.
The region growing proceeds into the largest component (blue) that intersects with the current slice,
where the smaller intersected components are removed (red)

is selected. And finally, a closing operation with a disc-shaped structuring element
with a radius of 3 pixels is performed.

Liver: First, all connected components that have fewer than 50 pixels are removed.
Next, the largest 3D-connected component is selected. And finally, holes in the image
are filled.

Spleen: A closing operation with a disc-shaped structuring element with a radius of
4 pixels is performed.

Note that the morphological operators are 2D and are applied to the axial slices.

To further increase the overall accuracy and the robustness of our method, we use
a simple control mechanism to detect major failures in the segmentation process.
When the volume of a segmented organ is less than 30% of the mean volume for that
organ from the 20 ground truths of the training set, we classified the segmentation as
a failure. We exclude failure cases for two reasons. First, we follow the VISCERAL
Benchmark guidelines for the results. The guidelines exclude empty files from the
evaluation, so we added a quality-assurance step with a rigorous threshold to filter
out these cases. Second, note that the segmentation algorithm is the first step of a
content-based image retrieval (CBIR) system, the goal is to retrieve the 10-30 most
relevant scans. Those failure cases are marked with N/A in Table 9.2.

9.3 The VISCERAL Benchmark

The VISCERAL Anatomy2 Benchmark dataset [17] consists of four modalities: CT
and MR scans of the whole body (wb), CECT scans of the whole trunk and T1
contrast-enhanced MR scans of the abdomen. Each modality has 30 clinical scans (a
training dataset of 20 scans was made available to participants before the benchmark,
and a test dataset of 10 scans used only by the organizers). All scans were acquired
between 2004 and 2008. Our method was submitted for the CECT whole trunk
modality.
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Fig. 9.11 Multiorgan segmentation results of four representative CECT scans of the VISCERAL
Challenge

The CECT whole trunk scans were acquired from adult patients with malignant
lymphoma. Their field of view starts between the skull base and the neck and ends
at the pelvis. In-plane resolution is 0.604 — 0.793 mm; the in-between plane res-
olution is 3 mm. A VISCERAL team radiologist manually produced ground truth
segmentation for each scan.

The VISCERAL training and test datasets were uploaded to the Azure cloud
framework. The training dataset was made available to all registered benchmark
participants. In this unique cloud-based evaluation benchmark [14], the participants
were required to submit their source code and the testing was conducted by the orga-
nizers. The participants received a virtual cloud computing 8-core CPU instance with
16-GB RAM. Both the executable and the required libraries were installed by the
participants in the virtual machines. The test dataset was not accessible to the partic-
ipants. The organizers ran the virtual machines with the participants’ segmentation
software on the test data. The goal of this framework is to generate an objective and
unbiased evaluation of the different algorithms with the same test dataset and the
same computing capabilities for all the participants.

9.4 Results and Discussion

Table 9.2 shows the results for the training dataset; Table 9.3 summarizes the results
for the test dataset. The high values of DICE similarity coefficients demonstrate the
reliability of our method. In the recent VISCERAL Challenge, for air-containing
organs, our method was ranked as one of the top [13]. Figure 9.11 shows four repre-
sentative examples of the multiorgan segmentation results.

Note that the only organ for which our segmentation averages below 90% accuracy
is the liver. This stems from the fact that the liver is the most complex organ in
the body, with very high variance among the individuals, and varying grey levels
according to the phase in which the scan was obtained.

Our approach throughout the paper is based on the anatomical analysis. The aim
of the ROIs is to identify the location of the organs defined by medical-anatomical
knowledge. The thresholds for separating the kidneys from the spleen/liver are based
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Table 9.2 DICE similarity score per organ for the training dataset (20 CECT scans)

Subject | Trachea | Leftlung | Right Right Left Liver Spleen
id lung kidney kidney

10000100 | 0.96 0.97 0.97 0.88 0.82 0.91 0.94
10000104 | 0.83 0.98 0.97 0.90 0.92 N/A 0.78
10000105 | N/A 0.93 0.92 0.86 0.90 0.94 0.94
10000106 |0.89 0.98 0.97 0.92 0.94 0.90 0.89
10000108 | 0.89 0.98 0.98 0.89 0.93 0.92 0.81
10000109 | 0.94 0.96 0.95 0.90 0.91 0.87 0.92
10000110 | 0.84 0.98 0.98 0.95 0.95 0.85 0.92
10000111 | 0.95 0.96 0.97 0.92 0.91 N/A 0.94
10000112 | 0.91 0.97 0.94 N/A 0.92 0.74 0.83
10000113 | 0.91 0.97 0.98 0.95 0.95 0.91 0.96
10000127 |0.82 0.97 0.97 N/A N/A 0.73 N/A
10000128 | 0.85 0.96 0.98 0.89 0.91 0.87 0.93
10000129 | 0.84 0.98 0.98 N/A N/A 0.93 N/A
10000130 | 0.85 0.96 0.96 0.91 0.91 0.86 0.95
10000131 | 0.96 0.96 0.95 0.93 0.94 0.86 091
10000132 | 0.96 0.77 0.95 0.91 0.92 0.92 0.94
10000133 | 0.87 0.97 0.95 0.92 0.92 0.90 0.78
10000134 | 0.92 0.99 0.98 0.90 0.92 0.85 0.92
10000135 | 0.94 0.98 0.95 0.89 0.91 0.92 0.85
10000136 | N/A 0.98 0.97 0.93 0.91 0.84 0.95
Average | .90 0.96 0.96 091 0.92 0.87 0.90

on the fact that the kidneys are significantly richer in blood vessels. The fact that
the widest axial slice of the lungs occurs around the heart, which acts as a natural
separator, ascertains the lungs do not appear as a single connected component at that
point.

An advantage of the cloud-based evaluation framework is that it required us to
develop robust and portable software, which we published as open source that can
be integrated in different platforms such as the clinical environment.

If one of the organ segmentations failed during the pipeline process, all following
organs will fail too. This is because of the dependency between segmentation steps.
Such a scenario occurred for subjects 10000127 and 10000129 (Table 9.2), for the
segmentation of the left kidney failed and as a result segmentation of all succeeding
organs—spleen and the right kidney—failed. This could also happen in cases of
nephrectomy (kidney removal).

Table 9.3 Results: Average DICE similarity score per organ for the test dataset (10 CECT scans)
Test Trachea |Leftlung | Right lung | Right kidney | Left kidney | Spleen
dataset 85.1 97.0 96.8 87.0 82.9 82.2
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Fig. 9.12 The enlarged
spleen of subject 1000112:
In some rare cases, organs
might extend outside the
ROI; this happens in cases of
enlarged organs

Note that segmentations 10000127 and 10000129 were tagged as failure by our
control mechanism which excludes any segmentation result if it is below 30% of
the average volume calculated for the organ. Working in the field of big data, we
consider it much more preferable to retrieve fewer cases, but be more assured they
are highly relevant cases, than to risk retrieving less relevant cases, because they
were mis-segmented.

Another limitation can come from the construction of the ROI. There are some
rare cases where the organs extend outside the ROI; this happens in cases of enlarged
organs that vary from the standard shape. Such an example is shown in Fig. 9.12.

9.5 VISCERAL Benchmark Perspective

Five other groups participated in the VISCERAL Anatomy2 Benchmark for the
CECT modality. Below is a short description of their methods, followed by a short
discussion.

Kechichian et al. [15] propose a generic method based on a multilabel graph cut
optimization approach that uses location likelihood of organs and prior information
of spatial relationships between them. Organ atlases are mapped and used. To derive
organ intensity likelihoods, prior and likelihood models are then introduced in a
joint centroidal Voronoi image clustering and graph cut multiobject segmentation
framework. Wang et al. [32] segmented 10 anatomical structures in CT contrast-
enhanced and non-enhanced scans. Their multiorgan segmentation pipeline follows
a top-down approach based on the level set segmentation of the ventral cavity. After
dividing the cavity into the thoracic and abdominal cavities, the major structures are
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segmented based on statistical shape and their location information is used to seg-
ment the lower-level structures. Jimenez del Toro et al. [12] segment structures in CT
contrast-enhanced and non-enhanced scans with a hierarchical multiatlas approach.
Based on the spatial anatomical correlations between the organs, the bigger and
higher-contrast organs are segmented first. These initial volume transformations form
the basis for identifying the smaller structures with less defined boundaries. Goksel
et al. [7] describe segmentation methods for both CT and MR anatomical structures.
They use a multiatlas-based technique that uses Markov random fields to guide the
registrations. A multiatlas template-based approach fuses the different deformable
registrations to detect the segmentation. Xuhui et al. [34] propose a coarse liver seg-
mentation using prior models for the shape, appearance and contextual information
of the liver. An AdaBoost voxel-based classifier creates a liver probability map that
is augmented in the last step with freeform deformation with a gradient appearance
model. Next, we describe and compare these methods according to the different
characteristics.

The methods of [7, 12, 15] are based on the registration to an atlas while the
methods of [32, 34] require registration to a statistical shape model. Registration
requires a presegmented dataset and is a time-consuming process and subject to
inaccuracies. Only our work obviates the need for costly registration.

Most of the methods, including [12, 15, 32, 34] and our method, are based on
a hierarchical process—organs are segmented in a predefined order to minimize
segmentation errors and that of [7] segments all organs at once by image registration
to a multiorgan atlas. We believe that hierarchical-based methods yield better results
when compared to the method of [7] because they allow mutual information sharing
between the segmentation processes of different organs.

While the VISCERAL Challenge is aimed at both enhanced and non-enhanced CT
scans, our method is currently applicable only for enhanced CTs. Other methods are
also applicable for non-enhanced CTs, thanks to the use of atlas/shape information.
Currently, we are working on adapting our approach for non-enhanced CTs as well.

9.6 Conclusion

We have presented a new fully automatic atlas-free segmentation method of multiple
organs of the ventral cavity in CT scans. Our method is unique in that it obviates
the need for a predefined atlas and/or costly registration and in that it uses the same
generic segmentation approach for all organs. Experimental results on 20 CECT scans
of the VISCERAL Anatomy?2 training dataset and 10 CECT scans of the Anatomy2
test dataset yield an average DICE volume overlap similarity score of 90.95 and
88.50%, respectively.

Automatic segmentation of anatomical structures in CT scans is an essential step
in the analysis of radiological patient data and is a prerequisite for large-scale content-
based image retrieval (CBIR) systems. Worldwide, the number of volumetric medical
images (CT, MRI, etc.) reaches into the hundreds of millions per year and represents
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the largest single component of the medical health record. This untapped gold mine
of medical data awaits the application of big data analytics, such as CBIR, to enable
large-scale population and epidemiological studies, preventive medicine by early
detection and assist radiologists in the decision-making process. The cloud-based
evaluation framework of the VISCERAL Benchmarks [14] required source code
to be submitted for testing by the organizers, the code was independently tested
and we published it online’—it is now freely available for the benefit of the CBIR
community. Future work consists of extending our approach to additional imaging
modalities such as non-enhanced CT, handling scans of patients with organs missing,
and testing the applicability of our method in an end-to-end CBIR scheme.
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