Chapter 6
Evaluation Metrics for Medical Organ
Segmentation and Lesion Detection

Abdel Aziz Taha and Allan Hanbury

Abstract This chapter provides an overview of the metrics used in the VISCERAL
segmentation benchmarks, namely Anatomy 1, 2 and 3. In particular, it provides an
overview of 20 evaluation metrics for segmentation, from which four metrics were
selected to be used in VISCERAL benchmarks. It also provides an analysis of these
metrics in three ways: first by analysing fuzzy implementations of these metrics
using fuzzy segmentations produced either synthetically or by fusing participant
segmentations and second by comparing segmentation rankings produced by these
metrics with rankings performed manually by radiologists. Finally, a metric selection
is performed using an automatic selection framework, and the selection result is
validated using the manual rankings. Furthermore, this chapter provides an overview
of metrics used for the Lesion Detection Benchmark.

Source code is available at:
https://github.com/visceral-project/EvaluateSegmentation

6.1 Introduction

The importance of using suitable metrics in evaluation stems from the fact that there
are different metrics, and each of them has particular sensitivities and thus mea-
sures particular aspects of similarity/discrepancy between the objects being evaluated
and the corresponding ground truth. Poorly defined metrics may lead to inaccurate
conclusions about the state-of-the-art algorithms, which negatively impacts system
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development. This chapter provides an overview of metrics used for the Anatomy
and Detection Benchmarks of the VISCERAL project [1].

Segmentation methods with high accuracy and high reproducibility are a main
goal in medical image processing. Therefore, assessing the accuracy and the quality
of segmentation algorithms is of great importance, which is a matter of the evaluation
methodology. Segmentation evaluation is the task of comparing two segmentations
by measuring the distance or similarity between them, where one is the segmentation
to be evaluated and the other is the corresponding ground truth segmentation. In
this chapter, we provide an overview of a metric pool consisting of twenty metrics
for evaluating medical image segmentations and a subset of four metrics that were
considered in the VISCERAL segmentation benchmarks.

The knowledge about the metrics in terms of their strength, weakness, sensitivities,
bias, as well as their ability to deal with fuzzy segmentation, is essential for taking
the decision about which metrics are to be used in the evaluation. In this chapter, we
provide an analysis of metrics with respect to their fuzzy definitions and discussion
about selecting suitable metrics for evaluating segmentation from a metric pool.

Apart from segmentation, the VISCERAL project had also the Lesion Detection
Benchmark, where lesions are to be localized by detection algorithms. In this chapter,
we provide an overview of the metrics and evaluation methodologies that were used
for the Detection Benchmark.

The remainder of this chapter is organized as follows: in Sect. 6.2, we provide an
overview of the metrics that were used in the VISCERAL Anatomy and Detection
Benchmarks. In Sect. 6.3, we validate a subset of the segmentations of the Anatomy
2 Benchmark against synthetic fuzzy variants of the ground truth and discuss the
results. In Sect. 6.4, we present an analysis based on the comparison between rankings
produced by the segmentation metrics and manual rankings made by radiologists.
Finally, this chapter is concluded in Sect. 6.5.

6.2 Metrics for VISCERAL Benchmarks

In this section, we provide an overview of the metrics that were used in the
VISCERAL benchmarks. In particular, we provide a pool of metrics for evaluating
medical image segmentation, from which four metrics were selected for the VIS-
CERAL Anatomy Benchmarks. Furthermore, we provide an overview of metrics
that were used for the Detection Benchmark.

6.2.1 Metrics for Segmentation

Medical image segmentation assigns each voxel of a medical image to a class, e.g. an
anatomical structure. While this assignment is crisp in binary segmentation, it takes
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Table 6.1 Overview of evaluation metrics for 3D image segmentation. The symbols in the second
column are used to denote the metrics throughout the chapter. The column “category” assigns each
metric to one of the categories above. The column “Fuzzy” indicates whether a fuzzy implementation
of the metric is available

Metric Symbol | Category Fuzzy
Dice coefficient DICE Spatial overlap based yes
Jaccard index JAC Spatial overlap based yes
True-positive rate (sensitivity, recall) TPR Spatial overlap based yes
True-negative rate (specificity) TNR Spatial overlap based yes
False-positive rate (= 1-specificity, fallout) | FPR Spatial overlap based yes
False-negative rate (= 1-sensitivity) FNR Spatial overlap based yes
F-measure (F1-measure = Dice) FMS Spatial overlap based yes
Global consistency error GCE Spatial overlap based no
Volumetric similarity VS Volume based yes
Rand index RI Pair counting based yes
Adjusted Rand index ARI Pair counting based yes
Mutual information MI Information theoretic based | yes
Variation of information voi Information theoretic based | yes
Interclass correlation icc Probabilistic based no
Probabilistic distance PBD Probabilistic based yes
Cohen’s kappa KAP Probabilistic based yes
Area under ROC curve AUC Probabilistic based yes
Hausdorff distance HD Spatial distance based no
Average distance AVD Spatial distance based no
Mabhalanobis distance MHD Spatial distance based no

other forms in fuzzy segmentation, e.g. the degree of membership or the probability
that a particular voxel belongs to a particular class. An automatic segmentation is
validated by comparing it with the corresponding ground truth segmentation using
an evaluation metric.

We describe the metrics for validating medical segmentation in Table 6.1, which
were selected based on a literature review of papers in which medical volume seg-
mentations are evaluated. Only metrics with at least two references (papers) of use
are considered. These metrics were implemented in the EvaluateSegmentation' tool
for evaluating medical image segmentation. Taha and Hanbury [4] provide defini-
tions and a comprehensive analysis of these metrics as well as guidelines for metric
selection based on the properties of the segmentations being evaluated and the seg-
mentation goal.

!EvaluateSegmentation is open source software for evaluating medical image segmentation avail-
able at https://github.com/visceral-project/EvaluateSegmentation.
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Based on the relations between the metrics, their nature and their definition, we
group them into six categories, namely:

e Spatial overlap based (Category 1): These are metrics defined based on the
spatial overlap between the two segmentations being compared, namely the four
basic overlap cardinalities—true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN).

e Volume based (Category 2): Metrics from this category are based on comparing
the volume of the segmented region, i.e. they aim to measure the number of voxels
segmented compared with the number of voxels in the true segmentation (ground
truth).

e Pair counting based (Category 3): Metrics from this category are based on (’2’)
tuples that represent all possible voxel pairs in the image. These tuples can be
grouped into four categories depending on where the voxels of each pair are placed
according to each of the segmentations being compared. These four groups are
Group I: if both voxels are placed in the same segment in both segmentations;
Group II: if both voxels are placed in the same segment in the first segmentation
but in different segments in the second; Group III: if both voxels are placed in the
same segment in the second segmentation but in different segments in the first; and
Group 1V: if both voxels are placed in different segments in both segmentations.

¢ Information theoretic based (Category 4): Metrics of this category are based on
basic values of information theory such as entropy and mutual information.

e Probabilistic based (Category 5): These metrics consider the segmentations
being compared as two distributions. Under this consideration, the metrics are
defined based on the classic comparison methods of statistics of these distribu-
tions.

e Spatial distance based (Category 6): These metrics aim to summarize distances
between all pairs of voxels in the two segmentations being compared, i.e. they
provide a one-value measure that represents all pairwise distances.

The aim of this grouping is to enable a reasonable selection when a subset of metrics
is to be used, i.e. selecting metrics from different groups to avoid biased results.

For the evaluation of medical image segmentation in the VISCERAL Anatomy
Benchmarks, four metrics were selected from the 20 metrics presented in Table 6.1.
The following criteria were considered:

e The metrics were selected so that they cover as many different categories as pos-
sible from those categories described above.

e From those metrics that meet the criteria above, metrics were selected that have
the highest correlation with the rest of the metrics in each category.

Based on these criteria, the following metrics were considered for validating seg-
mentations in all the segmentation benchmarks of the VISCERAL project: the Dice
coefficient (DICE), the average distance (AVD), the interclass correlation (ICC) and
the adjusted Rand index (ARI).
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6.2.2 Metrics for Lesion Detection

The Detection Benchmark considered pathology instead of anatomy. The goal of the
benchmark is to automatically detect lesions in images acquired in clinical routine.

In the Detection Benchmark, an annotated lesion, L;, is represented by three points,
namely the centre of the lesion, C;, and two other points, D1; and D2;, indicating the
diameter of the lesion. Participating algorithms are expected to provide per lesion
exactly one point, P;, as near as possible to the centre of the lesion, C;.

As mentioned above, it is expected that exactly one point per lesion is retrieved
by each participating algorithm. To penalize algorithms that may try to improve the
evaluation results by providing many points per lesion, all other points retrieved are
considered as false positives. However, annotators have looked at specific regions
of the volume, which means that one cannot be sure that other regions are free of
lesions. In other words, participating algorithms could detect lesions that were not
annotated. To avoid penalizing such lesions, binary masks are used for each volume,
which mask only those regions that were manually annotated. Retrieved points that
lie outside the mask are not considered in the confusion matrix.

The evaluation of the Detection Benchmark takes place at three different levels:

1. Lesion level: For each annotated lesion, two values are measured, namely

e Minimum Euclidean distance, min(d;): For each annotated lesion, the dis-
tance to the nearest point retrieved by the participating algorithm is measured
as shown in Fig. 6.1. This distance is provided for each annotated lesion,
regardless of whether the lesion is considered as detected or not.

e Detection: A lesion is considered as detected if the point P;, provided by the
algorithm, is within the sphere centred on C; and has the diameter given by
the points D1; and D2;. In particular, a radius of the sphere, r, is considered,
which is equal to the distance between the centre C; and the farthest of the
points D1; and D2;. That is, a lesion is detected iff min(d) < r. In Fig. 6.1,
the lesion is detected by the point P1;, but not by P2;.
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2. Volume level: The confusion matrix (true positives, false positives, true negatives
and false negatives) is calculated per volume, based on the detection values cal-
culated at lesion level. From this confusion matrix, the precision (percentage of
correctly detected lesions) and the recall (percentage of total lesions detected)
are calculated for each volume and participating algorithm. As it is expected that
algorithms provide exactly one point per lesion, all further points provided by an
algorithm for the same lesion are considered as false positives.

3. Anatomical structure (organ) average level: To test whether the scores of lesion
detection are generally dependent on the anatomical structure in which the lesions
are, we calculate the score averages (the averages of the Euclidean distances
between lesion centres and detection points) over each organ.

6.3 Analysis of Fuzzy Segmentation Metrics

Sometimes, medical volume segmentations are fuzzy. Such segmentations can be
the result of averaging annotations done by different annotators. Fuzzy segmentation
can also be the result of fusing automatic segmentations, which results in a silver
corpus [2]. Depending on the approach used, automatic segmentations generated
by segmentation algorithms can also be fuzzy. In contrast to binary segmentation,
fuzzy segmentations are represented as memberships of voxels in classes (anatom-
ical structures). Instead of a binary association, a voxel is rather associated with a
class with a probability specifying the degree of membership to this class. Note that
binary segmentation is just a special case of fuzzy segmentation, where the degree
of memberships to a particular class can be either zero or one.

In this section, we analyse the impact of using fuzzy metrics in evaluating medical
image segmentation. This is done by analysing the rankings produced by binary and
fuzzy metrics of segmentations as well as segmentation algorithms. Segmentation
ranking here means ordering segmentations according to their similarities to their
corresponding ground truth segmentations. We analyse this from several sides trying
to answer the following questions: (1) considering the case when the segmentations
being evaluated/ranked are of mixed types (fuzzy and binary), which of the following
two evaluation methods is to be used: (a) evaluating both types using fuzzy metrics
based on the fact that binary segmentation is a special case of fuzzy segmentation,
or (b) cutting fuzzy segmentations at a particular threshold and then using binary
evaluation metrics? (2) The same question holds for the case when the ground truth
segmentations and the segmentations being evaluated are of different types?

In the following, we define some notations and settings to be used in this section.
Since binary segmentation is a special case of fuzzy segmentation, in which proba-
bilities are either O or 1, this implies that fuzzy metrics can be used to compare the
following combinations of segmentations, which we will denote as evaluation cases
throughout this section:

Case i: binary segmentation evaluated against binary ground truth
Case ii: binary segmentation evaluated against fuzzy ground truth
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Case iii: fuzzy segmentation evaluated against binary ground truth
Case iv: fuzzy segmentation evaluated against fuzzy ground truth

We define two types of evaluation that can be used for each of the evaluation cases
above. The first type is threshold evaluation. Here, the ground truth segmentation,
as well as the segmentation being evaluated, is cut at a threshold of 0.5 as a first step
and then compared using an evaluation metric. The second type is fuzzy evaluation
in which the segmentations are compared directly using fuzzy metrics.

The aim of this analysis is to infer how sensitive metrics are against image fuzzi-
fication. This analysis is motivated by the following: on the one hand, if there is
fuzzy ground truth available and the segmentations being evaluated are fuzzy as well
(Case iv), then metrics with high fuzzification sensitivity are required to distinguish
the accuracy of the systems. On the other hand, when binary segmentations are to
be compared with fuzzy ones (Case ii and Case iii), the question to be answered is,
which type of evaluation (threshold evaluation or fuzzy evaluation) should be used?

In the Anatomy 1 and 2 Benchmarks, only binary ground truth segmentation
has been used. Most of the participating algorithms provided binary segmentation,
i.e. from Case i. However, only one of the participating algorithms produced fuzzy
segmentations, i.e. Case iii. This algorithm is denoted as Algorithm A throughout this
section. To complete the analysis, the other cases (Case ii and Case iv) and different
types of segmentations are involved, which are described in the following:

e Binary ground truth (BGT): This is the official binary ground truth, used for vali-
dating the challenge.

e Synthetic fuzzy ground truth (FGT): Since there are only binary ground truth
segmentations available, the fuzzy ground truth was generated synthetically: from
each of the ground truth segmentations, a fuzzy variant was produced by smoothing
the corresponding ground truth using a mean filter.

e Fuzzy silver ground truth (FSGT): In another variant, a fuzzy silver corpus is
generated by fusing all the automatic segmentations.

e Binary silver ground truth (BSGT) [2]: The silver corpus was generated by fusing
all the automatic segmentations and then cutting them at threshold 0.5, i.e. BSGT
is FSGT cut at 0.5.

e Fuzzy automatic segmentation (FAS): These are the fuzzy segmentations produced
by one of the participating algorithms, namely Algorithm A.

e Binary automatic segmentations (BAS): These are the automatic segmentations
produced by all of the participating algorithms except Algorithm A.

Metrics considered in this analysis are those metrics in Table 6.1 that have fuzzy
implementation (column “Fuzzy”). More about the fuzzy implementation of the
metrics is available in [4].

In the remainder of this section, two experiments regarding fuzzy metrics are
presented. In Sect. 6.3.1, the sensitivity of metrics to fuzzification is investigated by
considering for each metric the discrepancy of similarities measured in two cases:
the first is when binary segmentations are compared, and the second is when fuzzy
representations of the same segmentation are compared. In Sect. 6.3.2, the impact
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of comparing segmentations of different types (fuzzy and binary) on the evaluation
results is investigated, e.g. it is tested whether using binary ground truth to validate
the fuzzy segmentation using fuzzy metrics has a negative impact on the evaluation
result compared with using a binary representation of the segmentations by cutting
them at a threshold of 0.5 as a prior step.

6.3.1 Metric Sensitivity Against Fuzzification

The aim of this experiment is to infer how invariant metrics are against fuzzification
of images. To this end, we compare each binary volume in the silver corpus (BSGT)
with its corresponding volume from the fuzzy silver corpus (FSGT) using each of
the 16 metrics for which fuzzy implementations exist. This results in 16 metric
values (similarities and distances) per comparison (segmentation pair), which are
then averaged over all pairs to get 16 average metric values, presented in Fig. 6.2.
The assumption is that metrics that measure less average discrepancy between the
binary volumes and their fuzzy variants are more invariant against fuzzification.

Results in Fig. 6.2 show that metrics are differently invariant against fuzzification,
that is, they have different capabilities in discovering changes due to fuzzification.
Metrics that include the true negatives (TN) in their definitions (e.g. ARI, ACU
and TNR) are in general less sensitive to fuzzification, in contrast to other metrics
not considering the TN, such as DICE, KAP and JAC. Also, one can observe that
the discrepancy metrics FPR, PBD and VOI are also invariant against fuzzification
because they provide very small distances (<< 0.02 voxel) between binary images
and their corresponding smoothed images.

Similarity metrics Distance metrics
1 0.016
03 0.014
0.8
0.012
0.7
0.6 0.01
0.5 0.008
0.4
0.006
0.3
0.2 0.004
0.1 0.002
C R RGO R SRS 0
F& TR LIS P o8 FPR PBD GCE vol

Fig. 6.2 The average similarity between binary volumes and their corresponding fuzzy variant
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6.3.2 Ranking Systems Using Binary/Fuzzy Ground Truth

The aim of this experiment is to infer how system rankings, using metrics, change
when using fuzzy instead of binary ground truth in two cases: when the segmentations
being evaluated are binary (Case i and Case ii) and when they are fuzzy (Case iii and
Case iv). The segmentations that were used in this experiment are BGT, FGT, BAS
and FAS. Figures 6.3, 6.4 and 6.5 show the results of the experiment performed for
three selected metrics, namely Dice coefficient (DICE), interclass correlation (ICC)
and adjusted Rand index (ARI), respectively. The three metrics are selected to repre-
sent three different metric categories in Table 6.1 for which fuzzy implementations
exist. There are seven systems (Systems A to L) to be ranked according to their per-
formance, which is measured by average quality of the segmentations produced by
these systems, i.e. the metric values resulting from comparing these segmentations
with the corresponding ground truth. The averages are built separately for each of
the seven organs (left kidney, right kidney, liver, left lung, right lung, left psoas major
muscle and right psoas major muscle), which means the systems are ranked for each
organ separately. The participating algorithms B to L produce only binary volumes,
whereas Algorithm A produces only fuzzy segmentations.

The ranking is performed in three different configurations: in the first, which we
denote by “binary GT”, the ground truth is binary (BGT) and the segmentations are
unchanged (fuzzy for Algorithm A and binary otherwise). This covers Case i and Case
iii. In the second configuration, which we denote by “fuzzy GT”, the ground truth
is fuzzy (FGT) and the segmentations are unchanged. This covers Case ii and Case
iv. In the third configuration, denoted by “threshold at 0.5, the fuzzy segmentations
of Algorithm A are cut at a 0.5 threshold to get binary representations. The other
binary segmentations and the ground truth are unchanged; thus, all images involved in
this case are binary. In the first and second configurations, fuzzy evaluation metrics
are used, whereas in the third configuration, binary evaluation metrics (threshold
evaluation) are used.

In the figures, we included standard deviation columns and a standard deviation
row to indicate the discrepancy (deviation) between the algorithms as well as between
the three cases.

The first observation is regarding Algorithm A, which produces fuzzy segmenta-
tions. Here, Algorithm A has the best ranking when the corresponding segmentations
are evaluated using a 0.5 threshold or against a fuzzy ground truth, but it has a con-
siderable disadvantage when using the binary ground truth. Thus, it is strongly rec-
ommended to use a threshold option when the segmentations/ground truth is mixed
in terms of binary and fuzzy modes. The second observation is that the sensitivity
in the resulting rankings is dependent on the deviations between the average scores
of the systems; the lower the deviation, the more the rankings change between the
three cases. That is, if the algorithms are similar in their performance, then using a
binary instead of a fuzzy ground truth, or the opposite, has a considerable impact on
the system ranking. For example, the average scores of the systems have the highest
deviation with kidney and liver, so the rankings of the systems are exactly the same
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Ranking using the DICE measure in different combinations of binary and fuzzy images
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Fig. 6.3 a Validating segmentations using the DICE in three different combinations of binary/fuzzy
segmentations. The standard deviations of the scores are to show the quality variance between the
algorithms and the score variance between the combinations. b The resulting system ranking. ¢
Score details of the right lung as a selected case. d The resulting system ranking for the right lung
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Fig. 6.4 The results of the same experiment as in Fig. 6.3, but performed using the interclass
correlation (ICC) as an evaluation metric

in the three cases. On the contrary, system average scores have low deviations with
lungs and psoas major muscles; therefore, the rankings of the systems considerably
change between the three cases. We recommend therefore to take the score deviations
into account when there are mixed fuzzy and binary segmentations/ground truth.



98 A.A. Taha and A. Hanbury

Ranking using the Adjusted Rand Index (ARI) measure in different combinations of
it et L nghtiey

3 3 3 3 3 3 3
= = = = = = -
s H H g H H 5
zl = = A ] = A 2l = 2] = =z =
i i 3 i A i il : 3 3 il £
3| 3 3 3 ol 2l = + 3
sl 2| 5| 3| 8| B E| 3| s| 3| F| B[ sl 3| B 3| s| B[ B s B|F B s 3 E
SI05 | (S8 Ex e N EINE |2 e || EENE| Ne N8 0308 | E 5| F 3| N5 WE] e N IE =

0.900.518|0.525 [0.008 0.837 0,545 (0,266 0,505 0.513[0,533| o : gs]o.308 853, o, ,847)
0,760/0,755(0,760{0.002]0.6220,618|0,622|0,002]0,927]0,924|0,927| 0,002] 0,957 10,951 0,957 [ 0,003 0,959 {0,954 ]0.955| 0, 0031 0,833 0,825 0,833 0,004 0,823 0,814 | 0,823 0,004
0,873/0.865 0,873 |0.00¢|0.870| 0,862 |0.870|0.004|0.933| 0. 928 {0,933 | 0,002 0,957 | 0,951 |0 967|0.003] 0,961 |0.955 | 0.961 0,003 0,812 | 0,808 0,812 | .00+ 0,769 | 0,761 |0 7es | 0,004
0,867 0,860 0,867 |0.003| 0,867 | 0,859 0,867 |0.004|0.9300.926 {0,930 0,002 0.958| 0,952 | . 9580,003] 0,960 0.954 | 0.960| 2,003 0,833 | 0,825 |0.833 | 0,00+ o823 | 0,814 0,828 | 0,004

0,820[0,813(0,820(0 003} 0,870[0,862[0,870(0,00410,929]0,925(0,929(0 002]0,9590,953(0,955(0,003] 0,961 (0,955 |0, 3¢ 0,827|0,818/0,827|0,00410,827(0,818/0.4

0,865 0,863 0,859 |0,003] 0,904 0,897 |0.904 | 0,003 0,529 0.925 |0.929| 0,002] 0,957 |0.951 0,957 | 0,003] 0,959 | 0,954 |0.955| 0,003 0.827 | 0,819 0,827 | 0,004 0,518 0,809 | 0,818 0,004]

0.778[0.773|0,776/0,002]0,748/0.743)0,748|0,002]0,629]0.826(0,829(0,001] 0,951 0,946 0,951 | 0,002] 0,958 0,954 10,958 0,002 0,7770.7720.777 0,003/ 0,747 0,741 /0,747 | 0,003

0.784(0.780(0,784|0.002|0,787 0,783 0,787 |0,002]0,658]0, 855 (0,858 (0 001]0.970/0.962|0.970|0,004]0,972 10,965 10.972|0,004] 0,806 | 0,799 |0.80% | 001{ 0,787 |0, 7800, 787 |0 000
0,746(0,743(0,746(0 00110, 790[0,786(0,790(0.002 {0,863 0,861 (0,863 [0, 0010,9710,963]0,971 [0 X ,966(0,974(0,00410,784 (0,778 0,784 3]0,776(0,770(0,776 |0 003

- |g =z |o | |m |o |~ |- » |algorithms compared
birmry 6T

z ]z |z [z [z lalu lu la le [a ln |vetm coue

0,784(0,780(0,784 |0,002]0.784|0,780|0,784|0,002]0,858)0,855| 0,858 | 0,001]0,970(0,962 | 0,970{ 0,00 ! 0, 0 79390, ,787|0,780|0,787 0,003
0,777 ﬂ 0,841]0,844|0,001]0,5660,9580,966|0,004]10,9720,965]0,972|0,004] 0,803 {0,797 |0,803]0,00310,777 0,771 (0,777 0,003,
| 0,815 | I | I |o.003fo.61) I | 0,785 (0,780 cl.rsslcaczlnu; 0,722|0,737]0.002,
| 1 | | 1 | A | | =T | =
std. | | | |O. | | | |-.¢°6|ﬂ. | | |..D,l|\’J. | [D.O.‘! 0 l
Ranking
A &
L] 5|
< 1
o 2
E 4
F 3
& ] 1
H &
1 7
1 8]
K 10|
L 12 12 130 000 11 11 i1jo000) 12| 12
Right lung - scores Right lung - rankings
0.980 € g 12
x 0975 i
E 0970
T 0965 &
s e
& 0960 56
= o
& 0855 oy
wvi
2, 0950
2 2
< 0945
0.940 0
A B CDEF G H I J K L A B CDEFGH I J K L
Algorithms compared Algorithms compared
—gp—hinary GT ——g=fuzzy GT —p—thresholdax 0.5 e DiNANY GT g fl2Zy 6T epthreshold 2 0.5

(c) (d)

Fig. 6.5 The results of the same experiment as in Fig. 6.3, but performed using the adjusted Rand
index (ARI) as an evaluation metric
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6.4 Analysis of Metrics Using Manual Rankings

In this section, we provide an analysis of the metrics based on the two manual rankings
of segmentations, done by two medical experts. Manual rankings provide a reference
for judging metrics and evaluation methods. That is, when evaluating segmentations
by comparing them with the corresponding ground truth using distance or similarity
metrics, one gets scores denoting how similar or different the segmentations are
from the ground truth. However, since different metrics provide different scores,
which produce different rankings, the aim of this analysis is to find the metric(s)
with the highest correlation with the manual rankings. Another aim of this analysis
is to validate the selection of the subset of four metrics from Table 6.1 used for the
evaluation of medical image segmentation in the VISCERAL Anatomy 1, 2 and 3
Benchmarks.

In Sect. 6.4.1, we describe the dataset that has been manually ranked and the
ranking methodology used. We then analyse the correlation between the manual
ranking and the rankings produced by metrics: in Sect. 6.4.2, the ranking is done at
segmentation level, while in Sect. 6.4.3, the ranking is done at system level. Finally,
we discuss the results of the manual ranking analysis in Sect. 6.4.4.

6.4.1 Dataset

To provide a manual ranking, 483 segmentations were selected by medical experts
from the output of the Anatomy 2 Benchmark participant algorithms. This segmen-
tation set has the following properties:

e The segmentations correspond to six organs/structures, namely liver, pancreas,
urinary bladder, aorta, left lung and right kidney. These structures were selected
by medical experts so that they cover different sizes, shapes and boundary com-
plexities.

e The segmentations correspond to 110 different volumes each representing a med-
ical case, where a medical case is defined as an anatomical structure in a particular
ground truth volume (e.g. the liver in each ground truth is considered a different
medical case).

e The segmentations were produced by seven participating algorithms. However,
different volumes (medical cases) were segmented by different numbers of algo-
rithms. This means that for some volumes, seven segmentations are available, but
for other volumes, there are fewer than seven. For the ranking analysis, only those
volumes were considered for which at least three segmentations are available.
These are only 92 volumes.

The segmentations described above have been ranked by two different radiologists
separately, resulting in two different rankings, which we call Manual Ranking 1
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Table 6.2 Criteria for the subjective scoring system used for manual ranking

Score Ranking criteria

1 Severe deviation to other organs, no connection with expected organ segmentation
2 Evident crossing of organ border, organ parts missing from segmentation

3 Irregular segmentation with respect to manual segmentation guidelines

4 Minor deviations from segmentation guidelines

5 Optimal segmentation, organ borders and adherence to segmentation guidelines

(MRKT1) and Manual Ranking 2 (MRK?2). The ranking was performed in a double-
blind way. The ranking criteria in Table 6.2 have been considered.

In each of the manual rankings, all segmentations corresponding to the same
medical case were considered as one group, within which these segmentations are
ranked using the criteria in Table 6.2.

Note that according to this ranking system, different segmentations may have the
same rank. For example, it is common with manual ranking that five segmentations
are ranked with 1, 2, 2, 2, 3, which is not common in case of ranking based on metric
values except if the metric values are discretized.

In order to test how the two manual rankers agree, the Pearson correlation coeffi-
cient between the two manual rankings was measured. The correlation between the
manual rankings, RNK1 and RNKI1, is 0.62. This is a moderate correlation, which
means that there is a non-negligible discrepancy between the manual rankings.

6.4.2 Manual Versus Metric Rankings at Segmentation Level

We analyse the correlation between rankings of groups of segmentations produced
by each of the metrics in Table 6.1 and rankings of the same segmentations based
on the manual rankings (MRK1 and MRK?2). This analysis is to infer which metrics
have the most correlation with the manual ranking.

The rankings in this experiment are at segmentation level, which means that
individual segmentations corresponding to the same medical case are ranked. To
this end, the segmentations were grouped so that each group consists of a medical
case and the corresponding segmentations. The segmentations in each group are then
ranked using each of the metrics by comparing each of the segmentations with its
corresponding ground truth. The segmentation with the lowest match is given the
lowest rank, and the best match is given the highest rank. This is in order to get a
ranking that is comparable with the manual ranking.

Table 6.3 shows the correlations between each of the metrics presented in Table
6.1 and each of the manual rankings, RNK1 and RNK2. The metrics are sorted
according to the correlation with RNK 1. Note that the highest correlation value (0.64)
is a moderate correlation, and many of the metrics have weak correlation. This is
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Table 6.3 Pearson correlation coefficient (CORR.) between each of the metrics presented in
Table 6.1 and the manual rankings MRK1 and MRK?2 at segmentation level. The metrics are sorted
according to the decreasing correlation

Manual Ranking 1 (MRNK 1) Manual Ranking 2 (MRNK 2)
Metric CORR. | Metric CORR.
Average distance AVD | 0.57 Rand index RI 0.56
Adjusted Rand index ARI 0.54 Variation of information VOI 0.56
Dice DICE | 0.54 Average distance AVD | 0.56
F-measure FMS 0.54 Accuracy ACU | 0.56
Interclass correlation ICC 0.54 Global consistency error | GCE | 0.55
Cohen’s kappa KAP 0.54 Adjusted Rand index ARI 0.52
Probabilistic distance PBD 0.54 Dice DICE | 0.52
Rand index RI 0.54 F-measure FMS 0.52
Jaccard index JAC 0.54 Interclass correlation ICC 0.52
Accuracy ACU | 0.53 Cohen’s kappa KAP 0.52
Variation of information VOI 0.53 Jaccard index JAC 0.52
Global consistency error | GCE | 0.53 Probabilistic distance PBD 0.51
Mutual information MI 0.47 Mutual information MI 0.46
Mahalanobis distance MHD | 0.44 Mahalanobis distance MHD | 041
Hausdorff distance HD 0.43 Hausdorff distance HD 0.40
Area under ROC curve AUC | 0.39 Positive predictive value PPR 0.38
True-positive rate TPR 0.39 Area under ROC curve AUC | 0.36
(sensitivity)
Volumetric similarity A 0.27 True-positive rate TPR 0.36
(sensitivity)
Positive predictive value PPR 0.27 Volumetric similarity VS 0.30
Fallout FPR 0.17 Fallout FPR 0.26
True-negative rate TNR | 0.17 True-negative rate TNR | 0.26
(specificity) (specificity)

expected, since ranking at segmentation level using the metrics considers very small
changes, which do not necessarily reflect an improvement, e.g. differences caused
by chance. For this reason, we provide another correlation analysis at system level,
in Sect. 6.4.3, that uses significance testing to decide whether one system has better
performance than another.

6.4.3 Manual Versus Metric Rankings at System Level

In this experiment, the evaluation metrics in Table 6.1 are validated by considering the
system (algorithm) rankings produced by these metrics. In contrast to the ranking at
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segmentation level in Sect. 6.4.2, here the systems are ranked based on averages of the
metrics of segmentations produced by these systems. In particular, for each metric, (i)
we build a system ranking by comparing metric values of the segmentations produced
by the systems using significance testing, and (ii) we calculate the correlation between
this ranking and a system ranking based on the manual ranks. The resulting correlation
for each metric is used as a quality measure of the metric, i.e. the best metrics are
those having the highest correlation with the manual ranking. In the remainder of
this section, the experiment is described and discussed in detail.

Validating a particular metric using a manual ranking goes in the following steps:
Separately for each organ, the average of the metric values for each system is calcu-
lated, i.e. the metric values of all segmentations corresponding to a particular organ
and produced by a particular system are averaged. We denote the resulting average
by the system score for the organ considered. This system score is used to build
a system ranking as discussed below. Note that although each organ is considered
separately, it is different from the experiment in Sect. 6.4.2 (at segmentation level)
because here we are averaging the metric values of more than one medical case, all
of them corresponding to the same organ, but in different volumes.

Based on these system scores, the systems are ranked using a significance test (the
sign test) to ensure that the difference between the system scores is significant. To this
end, the systems are sorted according to their average scores ascending. Then, the
ranks are given as follows: starting with the first system S| having the lowest system
score, it is given the rank 1. Then, for each next system S;, if there is a significant
difference to the previous system S;_;, according to a sign test, then S; is assigned
the next rank; otherwise, it is assigned the same rank as S;_;.

Now, we want to judge the resulting ranking using each of the manual rankings
as ground truth. However, the manual rankings available are at segmentation level.
Therefore, the manual ranks are averaged analogously over all segmentations pro-
duced by a particular system corresponding to the organ considered. The resulting
averages of the manual ranks are used to build a ground truth system ranking using
the same method as with the metric ranking (i.e. significance sign test). Now, the
correlation between the two rankings (system ranking based on the metrics and sys-
tem ranking based on the manual ranks) is calculated. Since each organ is considered
separately, we get a correlation value per organ for each metric, which are averaged
to get the overall correlation of the metric.

Table 6.4 shows, for each metric, the overall correlation (correlation averaged
over all organs). The same experiment is performed separately for each of the manual
rankings (MNRK 1 and MNRK 2).

6.4.4 Discussion of the Manual Ranking Analysis

The following conclusions can be inferred from the results of the analysis using the
manual rankings (results presented in Tables 6.3 and 6.4).
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Table 6.4 Pearson correlation coefficient between each of the metrics presented in Table 6.1 and
the manual rankings MRK1 and MRK2 at system level. The metrics are sorted according to the
decreasing correlation

Manual Ranking 1 (MNRK 1) Manual Ranking 2 (MNRK 2)
Metric CORR. | Metric CORR.
Volumetric similarity VS 0.81 Mahalanobis distance MHD | 0.75
Jaccard index JAC 0.81 Hausdorff distance HD 0.66
Dice DICE | 0.81 Adjusted Rand index ARI 0.65
F-measure FMS 0.81 Dice DICE | 0.64
Interclass correlation ICC 0.81 F-measure FMS 0.64
Cohen’s kappa KAP 0.81 Interclass correlation ICC 0.64
Adjusted Rand index ARI 0.80 Cohen’s kappa KAP | 0.64
Area under ROC curve AUC | 0.72 Jaccard index JAC 0.62
True-negative rate TNR 0.72 Accuracy ACU | 0.56
(specificity)
Accuracy ACU | 0.71 Global consistency error | GCE | 0.56
Global consistency error | GCE | 0.71 Rand index RI 0.56
Rand index RI 0.71 Variation of information VOI 0.56
Variation of information VOI 0.71 Average distance AVD | 0.54
Positive predictive value PPR 0.64 Positive predictive value PPR 0.53
Mahalanobis distance MHD | 0.47 Fallout FPR 0.48
Probabilistic distance PBD 0.41 True-positive rate TPR 0.48
(sensitivity)
Average distance AVD 0.39 Volumetric similarity VS 0.47
Hausdorff distance HD 0.38 Probabilistic distance PBD 0.36
Fallout FPR 0.23 Area under ROC curve AUC | 0.34
True-positive rate TPR 0.23 True-negative rate TNR | 0.34
(sensitivity) (specificity)
Mutual information MI 0.19 Mutual information MI 0.14

Table 6.4 shows the correlations at system level that are significantly stronger
than the correlations of rankings at segmentation level (Table 6.3). Actually, this is
intuitive because the errors (differences from the manual ranking) in the ranking at
segmentation level are higher than in rankings at system level. This stems from the
fact thatranking single segmentations using metrics is sensitive to small differences in
the metrics, i.e. a segmentation with a higher similarity is ranked as better, regardless
of how small the similarity difference is. This is in contrast to manual rankings,
where small differences in the quality are ignored. Using significance testing in
ranking at system level solves the problem, since the ranking becomes similar to
the manual ranking: only systems that have significant performance difference are
assigned different rankings, otherwise the same rank. The results of this experiment
show the necessity of using significance tests for ranking.
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The four metrics selected for evaluating segmentation in the VISCERAL project,
namely the Dice coefficient (DICE), the interclass correlation (ICC), the average
Hausdorff distance (AVD) and the adjusted Rand index (ARI), are in general (except
for the AVG in Ranking 1) ranked at the top, which means they have strong correlation
with expert ranking. These four metrics have been selected from the 20 metrics based
on a correlation analysis on brain tumour segmentations from the BRATS challenge
[3], using the automatic metric selection method proposed in [5].

One observation is interesting for a further analysis, namely the differences in
how the metrics are placed in Table 6.4 for MNRK 1 and MNRK 2. For example,
the volumetric similarity (VS) is placed at the top for MNRK 1, but at the bottom in
MNRK 2. This is also the case for many other metrics. This can be explained by the
weak correlation between the two rankers, namely 0.62 (Sect. 6.4.1). However, these
differences should be related to the criteria considered in the manual ranking by each
of the rankers, i.e. the subjective rating of the different qualities of the segmentations.

6.5 Conclusion

We provide an overview of 20 evaluation metrics for medical volume segmentation
that have been implemented in the evaluation tool EvaluateSegmentation. From these
metrics, we select four metrics to be used for evaluating the segmentation tasks of
the VISCERAL benchmarks. We show in an analysis on synthetic fuzzy segmenta-
tions, generated using smoothing functions, that using binary ground truth to evaluate
fuzzy segmentations or the opposite (fuzzy ground truth to evaluate binary segmen-
tations) has a considerable impact on the system ranking, if the systems are similar in
their performance. Therefore, it is strongly recommended to always evaluate using
a threshold of 0.5 if the segmentations/ground truth is mixed in terms of fuzzy and
binary modes. Furthermore, we show that different metrics are differently invariant
against fuzzification, i.e. differently sensitive to the combinations of fuzzy/binary vol-
umes. In an analysis using manual rankings provided by two radiologists, compared
to the rankings produced by the 20 evaluation metrics, we show that the correlation
between metric rankings and manual rankings is significantly stronger when using
significance tests, since small performance differences are mostly ignored by manual
rankers. We also provide an evaluation methodology and metrics for evaluating the
VISCERAL Detection Benchmark.
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