
UnrealCV: Connecting Computer Vision
to Unreal Engine

Weichao Qiu(B) and Alan Yuille

Johns Hopkins University, Baltimore, MD, USA
qiuwch@gmail.com, alan.l.yuille@gmail.com

Abstract. Computer graphics can not only generate synthetic images
and ground truth but it also offers the possibility of constructing virtual
worlds in which: (i) an agent can perceive, navigate, and take actions
guided by AI algorithms, (ii) properties of the worlds can be modi-
fied (e.g., material and reflectance), (iii) physical simulations can be
performed, and (iv) algorithms can be learnt and evaluated. But cre-
ating realistic virtual worlds is not easy. The game industry, however,
has spent a lot of effort creating 3D worlds, which a player can inter-
act with. So researchers can build on these resources to create virtual
worlds, provided we can access and modify the internal data structures
of the games. To enable this we created an open-source plugin UnrealCV
(Project website: http://unrealcv.github.io) for a popular game engine
Unreal Engine 4 (UE4). We show two applications: (i) a proof of concept
image dataset, and (ii) linking Caffe with the virtual world to test deep
network algorithms.

1 Introduction

Computer vision has benefited enormously from large datasets [7,8]. They enable
the training and testing of complex models such as deep networks [13]. But per-
forming annotation is costly and time consuming so it is attractive to make syn-
thetic datasets which contain large amounts of images and detailed annotation.
These datasets are created by modifying open-source movies [2] or by construct-
ing a 3D world [9,17]. Researchers have shown that training on synthetic images
is helpful for real world tasks [11,14,16,18,21]. Robotics researchers have gone
further by constructing 3D worlds for robotics simulation, but they emphasize
physical accuracy rather than visual realism. This motivates the design of real-
istic virtual worlds for computer vision where an agent can take actions guided
by AI algorithms, properties of the worlds can be modified, physical simulations
can be performed, and algorithms can be trained and tested. Virtual worlds
have been used for autonomous driving [5], naive physics simulations [1] and
evaluating surveillance system [19]. But creating realistic virtual worlds is time
consuming.

The video game industry has developed many tools for constructing 3D
worlds, such as libraries of 3D object models. These 3D worlds are already real-
istic and the popularity of games and Virtual Reality (VR) drives towards even
c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part III, LNCS 9915, pp. 909–916, 2016.
DOI: 10.1007/978-3-319-49409-8 75

http://unrealcv.github.io


910 W. Qiu and A. Yuille

greater realism. So modifying games and movies is an attractive way to make
virtual worlds [5]. But modifying individual games is time-consuming and almost
impossible for proprietary games. Hence our strategy is to modify a game engine,
so that all the games built on top of it can be used. We develop a tool, UnrealCV,
which can be used in combination with a leading game engine, Unreal Engine
4 (UE4), to use the rich resources in the game industry. UnrealCV can also be
applied to 3D worlds created for virtual reality, architecture visualization, and
computer graphics movies, provided they have been created using UE4. More
precisely, UnrealCV provides an UE4 plugin. If a game, or any 3D world, is com-
piled with this plugin then we can create a virtual world where we can access
and modify the internal data structures. This allows us to connect AI programs,
like Caffe, to it and use a set of commands provided by UnrealCV to obtain
groundtruth, control an agent, and so on. Figure 1 shows a synthetic image and
its ground truth generated using UnrealCV.

We stress that we provide an open-source tool to help create new virtual
worlds, which differs from work which produces a single virtual world [5] or
creates synthetic datasets [9,17]. We hope that our work can help build a bridge
between Unreal Engine and computer vision researchers.

Fig. 1. A synthetic image and its ground truth generated using UnrealCV. The virtual
room is from technical demo RealisticRendering, built by Epic Games. From left to
right are the synthetic image, object instance mask, depth, surface normal

2 Related Work

Virtual worlds have been widely used in robotics research and many robotics sim-
ulators have been built [12,20]. But these focus more on physical accuracy than
visual realism, which makes them less suitable for computer vision researchers.
Unreal Engine 2 (UE2) was used for robotics simulation in USARSim [3], but
UE2 is no longer available and USARSim is no longer actively maintained.

Computer vision researchers have created large 3D repositories and virtual
scenes [4,6,10,15]. Note that these 3D resources can be used in the combined
Unreal Engine and UnrealCV system.

Games and movies have already been used in computer vision research. An
optical flow dataset was generated from the open source movie Sintel [2]. TORCS,
an open source racing game, was converted into a virtual world and used to train
an autonomous driving system [5]. City scenes were built [9,17] using the Unity



UnrealCV: Connecting Computer Vision to Unreal Engine 911

game engine to produce synthetic images. By contrast, UnrealCV extends the
functions of Unreal Engine and provides a tool for creating virtual worlds instead
of generating a synthetic image/video dataset or producing a single virtual world.

3 Unreal Engine

A game engine contains the components shared by many video games, such
as rendering code and design tools. Games built using a game engine combine
components from the engine with the game logic and 3D models. So modifying
a game engine can affect all games built on top of it.

Fig. 2. Images produced by UE4, (a) (b) An architectural visualization and an urban city
scene from Unreal Engine marketplace. (c) An open-source outdoor scene KiteRunner.
(d) A digital human from the game Hellblade, shown in the conference GDC2016

We chose UE4 as our platform for these reasons: (I) It is fully open-source
and can be easily modified for research. (II) It has the ability to produce realistic
images, see Fig. 2. (III) It provides nice tools and documentation for creating a
virtual world. These tools integrate well with other commercial software and
well maintained. (IV) It has a broad impact beyond the game industry and
is a popular choice for VR and architectural visualization, so high-quality 3D
contents are easily accessible.

4 UnrealCV

UE4 was designed to create video games. To use it to create virtual worlds, a few
modifications are required: (I) The camera should be programmably controlled,
instead of by the keyboard and mouse, so that an agent can explore the world.
(II) The internal data structure of the game needs to be accessed in order to
generate ground truth. (III) We should be able to modify the world properties,
such as lighting and material.

UnrealCV extends the function of UE4 to help create virtual worlds. More
specifically, UnrealCV achieves this goal by a plugin for UE4. Compiling a game
with the plugin installed embeds computer vision related functions to produce
a virtual world. Any external program can communicate with this virtual world
and use a set of commands provided by UnrealCV to perform various tasks. For
example, the command vget /camera/0/rotation can retrieve the rotation of
the first camera in the scene.



912 W. Qiu and A. Yuille

Architecture. UnrealCV consists of two parts. The first is the UnrealCV server,
which is embedded into a virtual world to access its internal data structure. The
second is the UnrealCV client whose function is provided by a library which
can be integrated into any external program, like Caffe, enabling the program
to send commands defined by UnrealCV to the server to perform various tasks.
The architecture is shown in Fig. 3.

Fig. 3. The UnrealCV server is an UE4 plugin embedded into a game during compila-
tion. An external program uses the UnrealCV client to communicate with the game.

The UnrealCV server is an UE4 plugin. After installing the plugin to UE4,
the UnrealCV server code will be embedded into a game during compilation.
The server will start when the game launches and wait for commands. The
UnrealCV client uses a socket to communicate with the server. We implemented
the client code for Python and MATLAB. Socket is a method of communicating
between programs and is universal across programming languages and operating
systems. So it is easy to implement a client for any language and platform that
can support socket.

The server and client communicate using a plain text protocol. The client
sends an UnrealCV command to the server and waits for a response. The com-
mand can be used to do various tasks. It can apply force to an object; can modify
the world by changing the lighting or object position; can get images and anno-
tation from the world. For example, the commands vget /camera/0/image and
vget /camera/0/depth can get the image and depth ground truth. The com-
mand will save image as PNG file and return its filename. Depth will be saved
as high dynamical range (HDR) image file, since the pixel value of PNG is
limited within [0 . . . 255]. The command vset /camera/0/position 0 0 0 sets
the camera position to [0, 0, 0]. An UnrealCV command contains two parts. The
first part is an action which can be either vget or vset. The vget means getting
information from the scene without changing anything and vset means changing
some property of the world. The second part is an URI (Uniform Resource Iden-
tifier) representing something that UnrealCV can control. The URI is designed
in a hierarchical modular structure which can be easily extended.

Features. The design of UnrealCV gives it three features:

Extensiblity: The commands are defined in a hierarchical modular way. Set-
ting the light intensity can be achieved by vset /light/[name]/intensity
to change the light color, a new command vset /light/[name]/color can be



UnrealCV: Connecting Computer Vision to Unreal Engine 913

added without affecting the existing commands. UnrealCV is open-source and
can be extended by us or other researchers.

Ease of Use: Since we provide compiled binaries of some virtual worlds, such as
a realistic indoor room, using UnrealCV is as simple as downloading a game and
running it. Hence researchers can use UnrealCV without knowledge of UE4. The
design supports cross-platform and multi-languages (Python, MATLAB). It is
straightforward to integrate UnrealCV with external programs and we show an
example with Caffe in Sect. 5.

Rich Resources: UnrealCV only uses the standard Application Programming
Interface (API) of UE4, making it compatible with games built with UE4. We
will provide virtual worlds with UnrealCV integrated and also host a model zoo
to share virtual worlds created by the community.

5 Applications

In this section we created a virtual world based on the UE4 technical demo
RealisticRendering1 which contains an indoor room with sofa, TV, table, book-
shelves, floor lamp, etc. The virtual world can be downloaded from our project
website. We demonstrate two applications of this virtual world in this section.

Generating a Synthetic Image Dataset. We use a script to generate a
synthetic image dataset from the virtual world. Images are taken using random
camera positions. The camera is set to two different heights, human eye level and

Fig. 4. Images with different camera height and different sofa color. (Color figure
online)

Algorithm 1. Generate a synthetic image dataset from a virtual world
vget /objects ; // Get objects information
for all camera position do

/* Set the virtual camera position */
vset /camera/0/location [x] [y] [z];
vset /camera/0/rotation [yaw] [pitch] [roll];
/* Get image and ground truth */
vget /camera/0/image;
vget /camera/0/depth, vget /camera/0/object mask;

end

1 https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/.

https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/


914 W. Qiu and A. Yuille

a Roomba robot level. The lighting, material property and object location can
also be changed to increase the variety of the data, or to diagnose the strengths
and weaknesses of an algorithm. Images with different camera height and sofa
color can be seen in Fig. 4. Ground truth, such as depth, surface normals and
object instance masks, is generated together with the images, shown in Fig. 1.
The ability to generate rich ground truth is particularly useful for training and
testing algorithms which perform multiple tasks and for detailed understanding
of a scene. The UnrealCV commands used to generate this synthetic image
dataset are shown in Algorithm 1. The synthetic images are on our website and
a tutorial shows how to generate them step-by-step.

Diagnosing a Deep Network Algorithm. We take a Faster-RCNN model2

trained on PASCAL and test it in the virtual world by varying rendering config-
urations. The testing code uses the UnrealCV client to control the camera in the
virtual world and the Faster-RCNN code tries to detect the sofa from different
views. We moved the position of the camera but constrained it to always point
towards the sofa shown in Fig. 4. We got the object instance mask of the sofa
and converted it into ground truth bounding box for evaluation. Human subject
can easily detect the sofa from all the viewpoints. The Average Precision (AP)
result shows surprisingly large variation as a function of viewpoint, see Table. 1.
For each az/el combination, the distance from the camera to the sofa was varied
from 200 cm to 290 cm. The symbol “-” means the sofa is not visible from this
viewpoint. More generally, we can vary parameters such as lighting, occlusion
level, and camera viewpoint to thoroughly test an algorithm.

Table 1. The Average Precision (AP) when viewing the sofa from different view-
points. Observe the AP varies from 0.1 to 1.0 showing the sensitivity to viewpoint.
This is perhaps because the biases in the training cause Faster-RCNN to favor specific
viewpoints.

Elevation Azimuth

90 135 180 225 270

0 - 0.713 0.769 0.930 0.319

30 0.900 1.000 0.588 1.000 0.710

60 0.255 0.100 0.148 0.296 0.649

6 Conclusion

This paper has presented a tool called UnrealCV which can be plugged into the
game engine UE4 to help construct realistic virtual worlds from the resources of
the game, virtual reality, and architecture visualization industries. These virtual
worlds allow us to access and modify the internal data structures enabling us
2 We use the implementation: https://github.com/rbgirshick/py-faster-rcnn.

https://github.com/rbgirshick/py-faster-rcnn


UnrealCV: Connecting Computer Vision to Unreal Engine 915

to extract groundtruth, control an agent, and train and test algorithms. Using
virtual worlds for computer vision still has challenges, e.g., the variability of
3D content is limited, internal structure of 3D mesh is missing, realistic physics
simulation is hard, and transfer from synthetic images remains an issue. But more
realistic 3D contents will be available soon due to the advance of technology and
the rising field of VR. As an industry leader, UE4 will benefit from this trend.
UnrealCV is an open-source tool and we hope other researchers will use it and
contribute to it.

Acknowledgment. We would like to thank Yi Zhang, Austin Reiter, Vittal
Premachandran, Lingxi Xie and Siyuan Qiao for discussion and feedback. This project
is supported by the Intelligence Advanced Research Projects Activity (IARPA) with
contract D16PC00007.

References

1. Battaglia, P.W., Hamrick, J.B., Tenenbaum, J.B.: Simulation as an engine of phys-
ical scene understanding. Proc. Nat. Acad. Sci. 110(45), 18327–18332 (2013)

2. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33783-3 44

3. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation, pp. 1400–1405. IEEE (2007)

4. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: ShapeNet: an information-rich
3D model repository. arXiv preprint arXiv:1512.03012 (2015)

5. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: DeepDriving: learning affordance for
direct perception in autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2722–2730 (2015)

6. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans. arXiv
preprint arXiv:1602.02481 (2016)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal
Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

9. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object
tracking analysis. arXiv preprint arXiv:1605.06457 (2016)

10. Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: SceneNet:
understanding real world indoor scenes with synthetic data. arXiv preprint
arXiv:1511.07041 (2015)

11. Hattori, H., Naresh Boddeti, V., Kitani, K.M., Kanade, T.: Learning scene-specific
pedestrian detectors without real data. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3819–3827 (2015)

12. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: Proceedings of the 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, (IROS 2004), vol. 3, pp. 2149–2154.
IEEE (2004)

http://dx.doi.org/10.1007/978-3-642-33783-3_44
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1602.02481
http://arxiv.org/abs/1605.06457
http://arxiv.org/abs/1511.07041


916 W. Qiu and A. Yuille

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

14. Marin, J., Vázquez, D., Gerónimo, D., López, A.M.: Learning appearance in virtual
scenarios for pedestrian detection. In: 2010 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 137–144. IEEE (2010)

15. Mottaghi, R., Rastegari, M., Gupta, A., Farhadi, A.: “What happens if...” learning
to predict the effect of forces in images. arXiv preprint arXiv:1603.05600 (2016)

16. Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3D
models. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1278–1286 (2015)

17. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA
dataset: a large collection of synthetic images for semantic segmentation of urban
scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3234–3243 (2016)

18. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: Viewpoint estimation in
images using CNNs trained with rendered 3D model views. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2686–2694 (2015)

19. Taylor, G.R., Chosak, A.J., Brewer, P.C.: OVVV: using virtual worlds to design
and evaluate surveillance systems. In: 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–8. IEEE (2007)

20. Todorov, E., Erez, T., Tassa, Y.: MUJoCo: a physics engine for model-based con-
trol. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 5026–5033. IEEE (2012)

21. Vazquez, D., Lopez, A.M., Marin, J., Ponsa, D., Geronimo, D.: Virtual and real
world adaptation for pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell.
36(4), 797–809 (2014)

http://arxiv.org/abs/1603.05600

	UnrealCV: Connecting Computer Vision to Unreal Engine
	1 Introduction
	2 Related Work
	3 Unreal Engine
	4 UnrealCV 
	5 Applications
	6 Conclusion
	References


