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Abstract. Visual place recognition is an important tool for robots to
localize themselves in their surroundings by matching previously seen
images. Recent methods based on Convolutional Neural Networks (CNN)
are capable of successfully addressing the place recognition task in RGB-
D images. However, these methods require many aligned and annotated
intensity and depth images to train joint detectors. We propose a new
approach by augmenting the place recognition process with individual
separate intensity and depth networks trained on synthetic data. As
a result, the new approach requires only a handful of aligned RGB-D
frames to achieve a competitive place recognition performance. To our
knowledge, this is the first CNN approach that integrates intensity and
depth into a joint robust matching framework for place recognition and
that evaluates utility of prediction from each modality.

1 Background

Visual place recognition is a task of detecting when two images in an
image sequence depict the same location, possibly under camera viewpoint or
illumination-related appearance changes [14]. This is a challenging problem in
computer vision that is particularly important for intelligent autonomous robot
systems. For instance, such systems include (but are not limited to) robots
that need to map their positions in space, accurately localize themselves within
their environment, and detect when they revisit a previous location. Typically,
matches are determined based on similarity of image pairs from widely available
and inexpensive RGB-D sensors, such as Kinect. This task is particularly chal-
lenging since the RGB appearance of a surface can vary dramatically with view-
point and lighting. Moreover, depth appearance can have dropouts, noise, and
other artifacts that hinder the extraction of repeatable features. Finally, long
traversal trajectories contain thousands of scans which require efficient image
search strategies.
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Fig. 1. Overview of the joint depth intensity CNN place recognition system. We use
synthetic 3D models of office and living rooms [6] to train a depth Siamese CNN net-
work. We then learn to match the network feature responses on unseen real depth
images with intensity feature responses from a pre-trained CNN [25] to obtain a
viewpoint-invariant RGB-D descriptor for place recognition.

Convolutional Neural Networks (CNN) have been recently shown to out-
perform methods relying on handcrafted features in place recognition tasks [1].
Furthermore, [10,20] compare performance of convolutional network layers, and
conclude that the middle layers of networks trained for related tasks such as
semantic place categorization [25], are especially suitable to address this problem.
However, such methods are effective only in scenes with viewpoint-independent
surface appearances and where training data with intensity image correspon-
dences are available.

Due to illumination changes, color information can be ambiguous, which
leads to a natural question of how effectively depth information can be used to
resolve ambiguities. Previous studies indicate that depth is somewhat inferior
to intensity for place recognition [17]. However, such findings are based on a
Bag of Words model [13], which produces descriptors that are, in turn, hand-
tuned rather than trained on data. Recently, [5,8,9] showed that joint RGB-D
networks outperform intensity only methods for object detection. Depending on
the definition of a ‘place match’, the problem of place recognition often does
not have a sufficient amount of annotated and aligned RGB-D training data to
train joint CNN models, and thus it is unclear how much each available modality
contributes to performance. At the same time, synthetic depth data was shown
to be very useful for dense semantic labelling [6] and for object detection [8],
where it is complementary to intensity, but often cannot be directly used to
improve joint models due to lack of RGB annotations.

In this paper, we investigate the performance of a depth CNN trained on
synthetic depth images for an indoor place recognition task. We obtain train-
ing data by synthesizing depth images from computer graphics models of scenes
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[6], by simulating camera movement along user generated realistic movement
trajectories. At training time, the network learns to predict 3D overlap in syn-
thetic depth; while at testing time, it is used to evaluate overlap on real data,
in combination with a RGB-D CNN descriptor. We combine the two modalities
in a robust matching framework and evaluate the relative contribution of each
method using robust statistical analysis. Finally, we release a large dataset of
synthetic trajectories with per-frame extrinsics annotations.

2 Approach

We introduce a CNN for matching pairs of RGB-D images that can be used to
enhance place recognition under limited data availability. Although CNNs are
known to be effective for RGB image matching [21], there are no joint RGB-D
indoor place recognition systems. This is due to the fact that existing indoor
datasets such as [18,23] lack the per-frame annotations and RGB-Depth sensor
alignments which are necessary to train a larger model.

To address this issue, we synthesize a set of trajectories in computer graphics
models of rooms that are then used to create synthetic depth frames. We train
a CNN on pairs of the synthetic depth images to learn a match predictor (depth
images that overlap significantly). Finally, at testing time, we combine that CNN
with one trained on RGB images to recognize matches between real RGB-D
images, and evaluate the statistical contribution of each component.

The key idea behind this approach is that synthetic 3D models can be used
to produce sufficient amount of depth data to train a CNN, and that it is not
necessary to have access to a large collection of aligned RGB and depth images
to construct a joint predictor. Although a similar methodology has been used
previously for object detection [5,8,16,22], it has never been employed for indoor
place recognition.

3 Overview

We evaluate the capacity of joint intensity and depth place recognition method
in improving recognition of previously visited places. Our input data consists
of a sequence of RGB-D scans, where the correspondences between depth and
RGB are known. The scans are acquired as the robot moves along a trajectory
and its sensors periodically take snapshots of the current state.

In the next section, we describe the details of network training and descriptor
extraction from each RGB-D frame.

3.1 Synthetic Dataset

We employ scenes from the SceneNet dataset [6] to draw custom trajectories and
to generate synthetic depth scans to be used as training data for the network.
Overall, we generated 134 unique trajectories for the bathroom, living room,
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and office scenes, where each trajectory circles the room several times to create
a variety of realistic loop closure examples. Each trajectory is created by drawing
two Bezier curves that circle around a room (see Fig. 1). The first curve represents
the camera location, and the second curve represents a set of points that the
camera observes. Camera movement is animated along these paths, producing
a sequence of camera poses and corresponding 640 × 480-pixel depth frames
simulated from a pinhole camera. The trajectories are intended to mimic the
way an experienced user would scan the room – i.e., the motion is smooth,
every scene object is viewed from multiple viewpoints, with varying time spent
in different parts of the scene. The resulting trajectories contain 3,000 camera
viewpoints each, and we use every 10-th viewpoint for training.

3.2 Depth Descriptor

Depth descriptors are extracted by calculating depth features from a CNN
trained on depth data. Since our goal is to detect same objects under differ-
ent viewpoints, we use 3D point overlap as a similarity estimator. Note that this
is a more challenging metric than translation along the camera trajectory (which
is often used for evaluation in place recognition systems), because the same over-
lap amount allows larger camera pose differences between frames. However, since
selected frames are typically passed to a geometric alignment algorithm to gen-
erate pairwise transformations, a large amount of overlap is a suitable predictor
that the correct transformation will be predicted.

We compute overlap O for each scan pair (i, j) as O = (Pi∩Pj)/max{Pi, Pj},
where Pi and Pj are sets of 3D points in each frame, and the union is the set
of points within a threshold ε of each other (ε = 7.5 cm in all experiments).
Normalizing overlap by the maximum number of points ensures that if one of the
scans captures a small portion of the other, a case which is visually ambiguous,
this example is not selected for training.

Training Setup. Each example given to the network for training is a pair of
depth images and a label. We generate the set of all pairs of depth images for each
trajectory. Each example is assigned a positive label if the 3D overlap between
these images is greater than T ; otherwise a negative label is assigned. This
threshold represents our confidence that such a network yields visually similar
pairs, but with sufficient room for viewpoint changes. In our experiments, we
find that choosing T of 75 % yields the most visually recognizable selections as
determined by an observer. We also balance the number of positive and negative
examples from each training trajectory. Overall, the training data consists of
1, 442, 252 depth image pairs, where depth is encoded using the HHA encoding
[4], which is known to be compatible with popular existing CNN architectures.
Training process is performed in the Caffe library [11].

Network Architecture and Loss. We use a Siamese CNN architecture [3]
with two Alexnet branches to learn pose-invariant descriptors. The Siamese
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architecture equipped with a Contrastive Loss function is known to be espe-
cially suitable for distance metric learning from examples [3]. We compare the
outputs of several bottom layers and obtain the best performance from the fc6
layer which we then use for joint descriptor calculations. To evaluate the quality
and amount of our synthetic depth data, we train the network from scratch using
stochastic gradient descent with 100, 000 iterations.

3.3 Intensity Descriptor

We employ a pre-trained CNN for descriptor extraction on intensity images,
trained for semantic place categorization [25]. In particular, we use an AlexNet
CNN trained on 205 scene categories of Places Database (2.5 million images) [25].
We also compare the Caffenet implementation [11]; however, we find PlacesNet
layer fc6 to be superior (see Supp. Material), echoing conclusion of [20].

3.4 Learning a Joint Descriptor

Given two RGB-D frames, our goal is to estimate their distance. Because the
distances between only the depth or only the intensity parts may be unreliable,
we combine the distances from both modalities using a robust joint model, which
we describe below. Given a pair of frames Fp and Fq, we start by extracting depth
and intensity descriptors, (dp, ip) and (dq, iq), respectively. We then use a small
set of aligned RGB-D frames to estimate the joint parameters of the model. In
particular, let D = ||dp − dq|| and I = ||ip − iq|| be distances in the depth and
intensity descriptor spaces, respectively. Our goal is to estimate overlap O as
a function of D and I. We consider two models where O is either a linear or
polynomial function of D and I, that is, O ∼ D+I (1) and O ∼ D+I+D× I (2).
Both models are highly sensitive to atypical observations and outliers. To reduce
outlier impact, we use a robust MM-type estimator, which is known to deliver
highly robust and efficient estimates, to obtain model parameters [12,15,24].
Given aligned data from any trajectory (we used ICL Living Room Sequence 3),
we estimate coefficients of (2) using 100 bootstrap iterations (i.e. sampling with
replacement). In each polynomial model, we balance the number of overlapping
and non-overlapping pairs. We describe the statistical properties of these models
and their evaluation on a place recognition task in the next section.

4 Evaluation

Model Assessment. Our analysis indicates that both linear terms (Depth and
Intensity) and the crossterm (D × I) are highly statistically significant), and
thus all three terms contain meaningful addition in explaining variation of O.
The relationship follows our hypothesis that overlap decreases with increasing
distances between the intensity or between depth images (we provide values
of the coefficients and standard deviations in Suppl. Material). In addition, we
compare the mean adjusted R2 values from models O ∼ D (density only), O ∼ I
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(intensity only), O ∼ I + D × I (intensity and depth, non-robust), and O ∼
I + D × I (intensity and depth, robust), which result in the adjusted R2 values
of 0.30, 0.68, 0.69, and 0.70, respectively. These findings indicate importance
of each component to explain variability of our system and superiority of the
polynomial model O ∼ I + D × I. Additionally, the mean coefficients from the
robust model perform well across all test datasets, while the mean coefficients
from the non-robust model perform substantially worse (see Supp. Material).
These findings indicate sensitivity of a conventional estimators to outliers and
importance of using a more robust MM-estimator.

Place Recognition Results. The goal of our work is to provide a robust view-
invariant RGB-D place recognition descriptor, and we evaluate of our method
on trajectories from three publicly available benchmark datasets, namely, ICL-
NUIM [7], TUM RGB-D [19], and Sun3D [23]. All datasets are pre-processed in
the same way as the training dataset to obtain 3D overlap pairs (subsampled to
every 10th frame and depth converted to HHA encoding). The ability of descrip-
tors to recognize the same location can be evaluated by F-scores. We calculate
the precision and recall at equally spaced thresholds between the smallest and
the largest descriptor distances of all pairs of scans, for each combination of
method and dataset (so that predicted positives are pairs whose descriptor dis-
tances are below this threshold, selected among all non-consecutive scan pairs).
In each dataset, the true positive pairs are those pairs of frames which have a
small overlap in 3D space (less than 30 %, the threshold used in geometric align-
ment algorithms [2]). The F-scores are calculated from precision and recall for
all thresholds and for all methods, and the top score is selected for each method.

Fig. 2. Best F-scores obtained by each model (under its optimal parameters).
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Figure 2 shows the top F-scores of each method in each dataset. The joint
object detection method of [5] consistently ranks lower than both Placesnet [25]
and DepthAlexnet (synthetic data only), which is expected without additional
fine-tuning. DepthAlexnet outperforms Placenet [25] in 4/20 cases, and the joint
model outperforms Placesnet [25] in 12/20 cases, and performs comparably well
in others. Interestingly, DepthAlexnet outperforms method of [5] in many cases,
suggesting that depth can be a good predictor on its own when sufficient syn-
thetic data is available for training.

5 Conclusion and Future Work

We propose a novel outlier resistant place recognition descriptor in RGB-D. We
show that synthetic depth can be employed to train view-invariant CNNs that
are useful for place recognition tasks. We also show that combining descriptors
from depth and intensity images shows improvement over intensity-only based
place recognition, even when only a few aligned RGB-D trajectories are available
for training.1
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4. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from RGB-
D images for object detection and segmentation. In: Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 345–360. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10584-0 23

5. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer.
In: CVPR (2016)

6. Handa, A., Pătrăucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Under-
standing real world indoor scenes with synthetic data. In: CVPR (2016)

7. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for rgb-d visual
odometry, 3d reconstruction and slam. In: ICRA (2014)

8. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modal-
ity hallucination. In: CVPR (2016)

9. Hoffman, J., Gupta, S., Leong, J., Guadarrama, S., Darrell, T.: Cross-modal adap-
tation for rgb-d detection. In: ICRA (2016)

10. Hou, Y., Zhang, H., Zhou, S.: Convolutional neural network-based image represen-
tation for visual loop closure detection. arXiv preprint arXiv:1504.05241 (2015)

11. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: ACM MM (2014)

1 Disclaimer: The outlined concepts are not commercially available. Due to regulatory
reasons their future availability cannot be guaranteed.

http://arxiv.org/abs/1411.1509
http://dx.doi.org/10.1007/978-3-319-10584-0_23
http://arxiv.org/abs/1504.05241


908 E. Sizikova et al.

12. Koller, M., Stahel, W.A.: Sharpening wald-type inference in robust regression for
small samples. Computational Statistics and Data Analysis 55, 2504–2515 (2011)

13. Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua,
P.: View-based maps. Int. J. Robot. Res. 29, 941–957 (2010)

14. Lowry, S., Sunderhauf, N., Newman, P., Leonard, J.J., Cox, D., Corke, P., Milford,
M.J.: Visual place recognition: a survey. IEEE Trans. Robot. 32, 1–19 (2016)

15. Salibian-Barrera, M., Yohai, V.J.: A fast algorithm for S-Regression estimates. J.
Comput. Graph. Stat. 15, 414–427 (2006)

16. Papon, J., Schoeler, M.: Semantic pose using deep networks trained on synthetic
RGB-D. In: ICCV (2015)

17. Scherer, S.A., Kloss, A., Zell, A.: Loop closure detection using depth images. In:
ECMR (2013)

18. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33715-4 54

19. Sturm, J., Magnenat, S., Engelhard, N., Pomerleau, F., Colas, F., Cremers, D.,
Siegwart, R., Burgard, W.: Towards a benchmark for RGB-D slam evaluation. In:
RSS RGB-D Workshop on Advanced Reasoning with Depth Cameras (2011)

20. Sünderhauf, N., Dayoub, F., Shirazi, S., Upcroft, B., Milford, M.: On the perfor-
mance of convnet features for place recognition. arXiv preprint arXiv:1501.04158
(2015)

21. Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu,
Y.: Learning fine-grained image similarity with deep ranking. In: CVPR (2014)

22. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3D pose
estimation. In: CVPR (2015)

23. Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed
using SfM and object labels. In: ICCV (2013)

24. Yohai, V.J.: High breakdown-point and high efficiency robust estimates for regres-
sion. Ann. Stat. 15, 642–656 (1987)

25. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: NIPS (2014)

http://dx.doi.org/10.1007/978-3-642-33715-4_54
http://arxiv.org/abs/1501.04158

	Enhancing Place Recognition Using Joint Intensity - Depth Analysis and Synthetic Data
	1 Background
	2 Approach
	3 Overview
	3.1 Synthetic Dataset
	3.2 Depth Descriptor
	3.3 Intensity Descriptor
	3.4 Learning a Joint Descriptor

	4 Evaluation
	5 Conclusion and Future Work
	References


