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Abstract. Conventional approaches to image de-fencing use multiple
adjacent frames for segmentation of fences in the reference image and
are limited to restoring images of static scenes only. In this paper, we
propose a de-fencing algorithm for images of dynamic scenes using an
occlusion-aware optical flow method. We divide the problem of image
de-fencing into the tasks of automated fence segmentation from a sin-
gle image, motion estimation under known occlusions and fusion of data
from multiple frames of a captured video of the scene. Specifically, we
use a pre-trained convolutional neural network to segment fence pixels
from a single image. The knowledge of spatial locations of fences is used
to subsequently estimate optical flow in the occluded frames of the video
for the final data fusion step. We cast the fence removal problem in
an optimization framework by modeling the formation of the degraded
observations. The inverse problem is solved using fast iterative shrinkage
thresholding algorithm (FISTA). Experimental results show the effec-
tiveness of proposed algorithm.

Keywords: Image inpainting · De-fencing · Deep learning · Convolu-
tional neural networks · Optical flow

1 Introduction

Images containing fences/occlusions occur in several situations such as pho-
tographing statues in museums, animals in a zoo etc. Image de-fencing involves
the removal of fences or occlusions in images. De-fencing a single photo is strictly
an image inpainting problem which uses data in the regions neighbouring fence
pixels in the frame for filling-in occlusions. The works of [1–4] addressed the
image inpainting problem wherein a portion of the image which is to be inpainted
is specified by a mask manually. As shown in Fig. 1(a), in the image de-fencing
problem it is difficult to manually mark all fence pixels since they are numerous
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(a) (b) (c) (d)

Fig. 1. (a) A frame taken from a video. (b) Segmented binary fence mask obtained using
proposed CNN-SVM algorithm. (c) Inpainted image corresponding to (a) using the
method of [2]. (d) De-fenced image corresponding to (a) using the proposed algorithm.

and spread over the entire image. The segmented binary fence mask obtained
using the proposed algorithm is shown in Fig. 1(b). These masks are used in
our work to aid in occlusion-aware optical flow computation and background
image reconstruction. In Fig. 1(c), we show the inpainted image corresponding to
Fig. 1(a) obtained using the method of [2]. The de-fenced image obtained using
the proposed algorithm is shown in Fig. 1(d). As can be seen from Fig. 1(c),
image inpainting does not yield satisfactory results when the image contains
fine textured regions which have to be filled-in. However, using a video panned
across a fenced scene can lead to better results due to availability of additional
information in the adjacent frames.

Although, there has been significant progress in the area of lattice detection
[5,6] and restoration of fenced images/videos [6–10], segmentation of fence or
occlusion from a single image and de-fencing scenes containing dynamic elements
are still challenging problems. Most of the existing works assume global motion
between the frames and use images of static scene elements only [8–10]. Initial
work related to image de-fencing has been reported by Liu et al. [7], wherein
fence patterns are segmented via spatial regularity and the fence occlusions are
filled-in using an inpainting algorithm [2]. Recent attempts for image de-fencing
[9,10] use the parallax cue for fence pattern segmentation using multiple frames
from a video. However, these works [9,10] constrain the scene elements to be
static. Another drawback of [9] is that if the scene does not produce appreciable
depth parallax fence segmentation is inaccurate. A very recent image de-fencing
algorithm [6] exploits both color and motion cues for automatic fence segmen-
tation from dynamic videos.

The proposed algorithm for image de-fencing uses a video captured by pan-
ning a camera relative to the scene and requires the solution of three sub-
problems. The first task is automatic segmentation of fence pixels in the frames
of the captured video. Importantly, unlike existing works [6–10], we propose a
machine learning algorithm to segment fences in a single image. We propose
to use a pre-trained convolutional neural network (CNN) for fence texel joint
detection to generate automatic scribbles which are fed to an image matting
[11] technique to obtain the binary fence mask. Note that sample portions of
images marked with yellow colored squares shown in Fig. 1(a) are treated as
fence texels in this work. To the best of our knowledge, we are the first to detect
fence texels using a pre-trained CNN coupled with an SVM classifier. Secondly,
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we estimate the pixel correspondence between the reference frame and the addi-
tional frames using a modified optical flow algorithm which incorporates the
knowledge of location of occlusions in the observations. It is to be noted that
existing optical flow algorithms find the relative shift only between pixels visible
in two frames. Accurate registration of the observations is critical in de-fencing
the reference image since erroneous pixel matching would lead to incorrect data
fusion from additional frames. The basic premise of our work is that image
regions occluded by fence pixels in the reference frame are rendered visible in
other frames of the captured video. Therefore, we propose an occlusion-aware
optical flow method using fence pixels located in the first step of our image de-
fencing pipeline to accurately estimate background pixel correspondences even at
occluded image regions. Finally, we fuse the information from additional frames
in order to uncover the occluded pixels in the reference frame using an opti-
mization framework. Since natural images are sparse, we use the fast iterative
shrinkage thresholding algorithm (FISTA) to solve the resulting ill-posed inverse
problem assuming l1 norm of the de-fenced image as the regularization prior.

2 Prior Work

The problem of image de-fencing has been first addressed in [7] by inpainting
fence pixels of the input image. The algorithm proposed in [12] used multi-
ple images for de-fencing, which significantly improves the performance due to
availability of occluded image data in additional frames. The work of [12] used a
deformable lattice detection method proposed in [5] for fence detection. Unfortu-
nately, the method of [5] is not a robust approach and fails for many real-world
images. Khasare et al. [8] proposed an improved multi-frame de-fencing tech-
nique by using loopy belief propagation. However, there are two issues with
their approach. Firstly, the work in [8] assumed that motion between the frames
is global. This assumption is invalid for more complex dynamic scenes where
the motion is non-global. Also, the method of [8] used an image matting tech-
nique proposed by [11] for fence segmentation which involves significant user
interaction. A video de-fencing algorithm [9], proposed a soft fence segmenta-
tion method where visual parallax serves as the cue to distinguish fences from
the unoccluded pixels. Recently, Xue et al. [10] jointly estimated the foreground
masks and obstruction-free images using five frames taken from a video. Apart
from the image based techniques, Jonna et al. [13] proposed a multimodal app-
roach for image de-fencing wherein they have extracted the fence masks with the
aid of depth maps corresponding to the color images obtained using the Kinect
sensor. Very recently, our works [14,15] addresses the image de-fencing problem.
However, the drawback of both the methods [14,15] is that they do not estimate
occlusion-aware optical flow for data fusion.

The proposed algorithm for image de-fencing addresses some of the issues
with the existing techniques. Firstly, we propose a machine learning algorithm
using CNN-SVM for fence segmentation from a single image unlike existing works
[6,9,10], which need a few frames to obtain the fence masks. Importantly, unlike
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the works of [9,10], the proposed algorithm does not assume that the scene is sta-
tic but we can handle scenes containing dynamic elements. For this purpose, we
propose a modified optical flow algorithm for estimation of pixel correspondence
between the reference frame and additional frames after segmenting occlusions.

3 Methodology

We relate the occluded image to the original de-fenced image using a degradation
model as follows,

Omym = yobs
m = Om[Fmx + nm] (1)

where ym are observations containing fences obtained from the captured video,
Om are the binary fence masks, Fm models the relative motion between frames,
x is the de-fenced image and nm is Gaussian noise. As described in Sect. 1,
the problem of image de-fencing was divided into three sub-problems, which we
elaborate upon in the following sub-sections.

3.1 Pre-trained CNN-SVM for Fence Texel Joint Detection

The important property of most outdoor fences is their symmetry about the
fence texel joints. Referring to Fig. 1(a), we observe that fence texels appear
repetitively throughout the entire image. Convolutional neural nets (CNN), orig-
inally proposed by [16], can be effectively trained to recognize objects directly
from images with robustness to scale, rotation, translation, noise etc. Recently,
Krizhevsky et al. [17] proved the utility of CNNs for object detection and classi-
fication in the ILSVRC challenge [18]. Since real-world fence texels exhibit vari-
ations in color, shape, noise, etc., we are motivated to use CNNs for segmenting
these patterns robustly.

Convolutional neural networks belong to a class of deep learning techniques
which operate directly on an input image extracting features using a cascade of
convolutional, activation and pooling layers to finally predict the image category.
The key layer in CNN is the convolutional layer whose filter kernels are learnt
automatically via backpropagation. The commonly used non-linear activation
functions are sigmoid, tanh, rectified linear unit (ReLU) and maxout [19] etc. The
pooling layers sub-sample the input data. Overfitting occurs in neural networks
when the training data is limited. Recently, a technique called Dropout [20]
has been proposed which can improve the generalization capability of CNNs by
randomly dropping some of the neurons.

However, since CNNs use supervised learning they need huge labeled datasets
and long training time. A possible solution to this problem is to use transfer learn-
ing [21,22], wherein pre-trained models are used to initialize the weights and fine-
tune the network on a different dataset. One can also preserve the pre-trained fil-
ter kernels and re-train the classifier part only. In this work, we used a CNN pre-
trained on ImageNet [18] as a feature extractor by excluding the softmax layer.
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Fig. 2. The architecture of the pre-trained CNN [17].

The architecture of the CNN in Fig. 2 trained on ImageNet contains five convo-
lutional layers followed by three fully-connected layers and a softmax classifier.
Max-pooling layers follow first, second and fifth convolutional layer.

In Fig. 3(a), we show the 96 filter kernels of dimensions 11 × 11 × 3 learned
by the first convolutional layer on input images. In this work, we propose to
use CNN as a generic feature extractor followed by a support vector machine
classifier (CNN-SVM). A given RGB input image is resized to 224× 224× 3 and
fed to the proposed CNN-SVM a feature vector of size 4096 is extracted from
the seventh fully-connected layer.

)c()b()a(

Fig. 3. (a) 96 learned filter kernels of size 11 × 11 × 3 extracted from the first convo-
lutional layer. (b) Sample fence texel joints. (c) Examples of non-fence texel joints.

An SVM classifier has been trained to detect fence texels using on these fea-
tures of dimension 4096 extracted by the pre-trained CNN from a dataset of
20, 000 fence texel joints and 40, 000 non-fence texel sub-images. In Figs. 3(b)
and (c), we show samples of fence texel texels and non-fence texels, respectively.
During the testing phase, a sliding window is used to densely scan the test image
shown in Fig. 4(a) from left to right and top to bottom with a stride of 5 pixels.
The overall workflow of the proposed fence segmentation algorithm is shown in
Fig. 4. Detected fence texels are joined by straight edges as shown in Fig. 4(b).
In Fig. 4(c) we show the response obtained by Canny edge detection [23] algo-
rithm after dilating the preliminary fence mask shown in Fig. 4(b) and treated
as background scribbles. The combination of both foreground and background
scribbles is shown in Fig. 4(d), wherein foreground scribbles are obtained by ero-
sion operation on the image in Fig. 4(b). We fed these automatically generated
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Fig. 4. Schematic of fence mask segmentation.

scribbles to the method of [11] and obtain the alpha map in Fig. 4(e). Finally,
the binary fence mask shown in Fig. 4(f) is generated by thresholding the alpha
map obtained from [11].

3.2 Occlusion Aware Optical Flow

The image alignment problem becomes more complex when real-world videos
contain dynamic objects. Handling motion boundaries and occlusions in videos
for optical flow computation is still challenging. Internal occlusions due to the
layered dynamic objects and external occlusions such as fences make the problem
tougher. In some practical applications of computer vision such as view synthe-
sis, image de-fencing, etc. we need to compute the correspondence of all pixels
between two images despite occlusions. Many algorithms for estimating optical
flow are proposed in the literature [24–27], which are based on modifications
of the basic variational framework proposed by Horn et al. [28] addressing its
various shortcomings. Recently, significant progress has been made in order to
compute dense optical flow in a robust manner [25,29,30]. The state-of-the-art
optical flow algorithms [24,25] integrate descriptor matching between two images
in a variational framework. It is due to a robust function in the variational frame-
work that the algorithm in [24] can handle small internal occlusions. However,
it fails to tackle large external occlusions. The algorithm of [29] computes dense
correspondence between images by performing sparse-dense interpolation under
contour and motion boundary assumption. An occlusion aware optical flow algo-
rithm is proposed by [31], wherein occlusions in images are handled using a
three-step procedure. Initially, the method in [31] estimates occlusion-ignorant
optical flow. Subsequently, occlusions are computed using this unreliable opti-
cal flow. Finally, the algorithm in [31] corrects the optical flow using estimated
occlusions.

The basic cue behind the proposed image de-fencing algorithm is that
occluded image data in the reference frame is uncovered in additional frames
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of the captured video. Relative motion among observations needs to be esti-
mated to fuse the information uncovered in the additional images for filling in
occlusions in the reference frame. State-of-the-art optical flow algorithms esti-
mate the flow of visible areas between two images. However, as described above,
there are occlusions in images due to depth changes, dynamic scene elements
and external hindrances such as fences/barricades. If we apply the conventional
optical flow algorithms to register two images containing fence occlusions we
encounter two difficulties while aligning corresponding fence and background
pixels. Firstly, large motion discontinuities exist at the spatial location of fences
due to abrupt depth changes which corrupt the estimated optical flow. Secondly,
it is to be noted that the background pixels hidden behind the fence assume
the flow of fence pixels instead of their own ground truth motion. Hence, in this
work we modify the motion associated with fence pixels to that of surrounding
background pixel motion in order to reveal the occluded pixel information in the
warped adjacent frame.

In this paper, we re-formulate the optical flow algorithm of [32] to fit our
application of image de-fencing. Akin to [32], coarse to fine optical flow is esti-
mated using an incremental framework in Gaussian scale-space. Note that we
have already obtained the binary fence mask Om corresponding to the segmented
fence pixels in the observation ym. We insert this mask Om as occlusion oper-
ator inside the optical flow framework to deal with the motion inaccuracies at
fence locations. At the fence locations data cost is assumed to be zero and only
smoothness term in Eq. (3) guides optical flow estimation. We assume sparse gra-
dient prior (modeled using l1 norm) for both horizontal and vertical velocities.
At every scale, the optimized values are up-scaled and used as initial estimate
at the next fine scale.

Suppose w = [u, v] be the current estimate of horizontal and vertical flow
fields and ỹr, ỹt be the reference and tth adjacent images, respectively. Under
the incremental framework [32,33], one needs to estimate the best increment
dw = (du, dv) as follows

E(du, dv) = arg min
dw

‖ Fw+dwỹt − ỹr ‖1 +μ ‖ ∇(u + du) ‖1 +μ ‖ ∇(v + dv) ‖1
(2)

where Fw+dw is the warping matrix corresponding to flow w + dw, ∇ is the
gradient operator and μ is the regularization parameter. To use gradient based
methods, we replace the l1 norm with a differentiable approximation φ(x2) =√

x2 + ε2, ε = 0.001. To robustly estimate optical flow under the known fence
occlusions we compute the combined binary mask O = Fw+dwOt||Or obtained
by the logical OR operation between the reference fence mask and backwarped
fence from the tth frame using warping matrix Fw+dw. To estimate the optical
flow increment in the presence of occlusions we disable the data fidelity term by
incorporating O in Eq. (2) as

E(du, dv) = arg min
dw

‖ O(Fw+dwỹt− ỹr) ‖1 +μ ‖ ∇(u+du) ‖1 +μ ‖ ∇(v+dv) ‖1
(3)
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By first-order Taylor series expansion,

Fw+dwỹt ≈ Fwỹt + Yxdu + Yydv (4)

where Yx = diag(Fwỹtx), Yy = diag(Fwỹty ), ỹtx = ∂
∂x ỹt and ỹty = ∂

∂y ỹt. We
can write Eq. (3) as

arg min
dw

‖ OFwỹt + OYxdu + OYydv − Oỹr) ‖1 +μ ‖ ∇(u + du) ‖1
+μ ‖ ∇(v + dv) ‖1

(5)

To estimate the best increments du, dv to the current flow u, v we equate the
gradients

[
∂E
∂du ; ∂E

∂dv

]
to zero.

[
YT

x O
TWdOYx + μL YT

x O
TWdOYy

YT
y O

TWdOYx YT
y O

TWdOYy + μL

] [
du
dv

]

=
[−Lu − YT

x O
TWdOFwỹt + YT

x O
TWdOỹr

−Lv − YT
y O

TWdOFwỹt + YT
y O

TWdOỹr

]

where L = DT
xWsDx + DT

y WsDy, Ws = diag(φ′(|∇u|2)) and Wd =
diag(φ′(|OFwỹt−Oỹr|2)). We define Dx and Dy are discrete differentiable oper-
ators along horizontal and vertical directions, respectively. We used conjugate
gradient (CG) algorithm to solve for dw using iterative re-weighted least squares
(IRLS) framework.

3.3 FISTA Optimization Framework

Once the relative motion between the frames has been estimated we need to fill-
in the occluded pixels in the reference image using the corresponding uncovered
pixels from the additional frames. Reconstructing de-fenced image x from the
occluded observations is an ill-posed inverse problem and therefore prior infor-
mation for x has to be used to regularize the solution. Since natural images are
sparse, we employed l1 norm of the de-fenced image as regularization constraint
in the optimization framework as follows,

x̂ = arg min
x

[
∑

m

‖ yobs
m − OmFmx ‖2 +λ ‖ x ‖1

]

(6)

where λ is the regularization parameter.
Since the objective function contains l1 norm as a regularization function,

it is difficult to solve Eq. 6 with the conventional gradient-based algorithms.
Here, we employed one of the proximal algorithms such as FISTA [34] iterative
framework to handle non-smooth functions for image de-fencing. The key step
in FISTA iterative framework is the proximal operator [35] which operates on
the combination of two previous iterates.
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Algorithm 1. FISTA image de-fencing
1: Input:λ, α, z1 = x0 ∈ R

M×N , t1 = 1
2: repeat
3: xk = proxα(g)(zk − α∇f(zk))

4: tk+1 =
1+

√
1+4t2

k
2

5: zk+1 = xk +
(

tk−1
tk+1

)
(xk − xk−1)

6: k ← k + 1
7: until (‖ xk − xk−1 ‖2≤ ε)

The proximal operator is defined as the solution of the following convex
optimization [36]

proxα(g)(x) = arg min
y

{g(y) +
1
2α

‖ y − x ‖2} (7)

If g(y) is l1 norm, then proxα(g)(x) = max(|x|−λα, 0)sign(x). The gradient for
data matching cost f is given as follows

∇f(z) =
∑

m

FT
mOT

m(OmFmz − yobs
m ) (8)

4 Experimental Results

Initially, we report both qualitative and quantitative results obtained using the
proposed fence segmentation algorithm on various datasets. Subsequently, we
show the impact of accounting for occlusions in the incremental flow framework.
Finally, we report image de-fencing results obtained with the FISTA optimiza-
tion framework. To demonstrate the efficacy of the proposed de-fencing system,
we show comparison results with state-of-the-art fence segmentation, and de-
fencing methods in the literature. We used only three frames from each cap-
tured video for all the image de-fencing results reported here using the proposed
algorithm. For all our experiments, we fixed λ = 0.0005 in Eq. 6. We ran all our
experiments on a 3.4 GHz Intel Core i7 processor with 16 GB of RAM.

4.1 Fence Segmentation

For validating the proposed algorithm for fence segmentation, we have evaluated
our algorithm on state-of-the-art datasets [9,10,37]. We also show segmentation
results on a proposed fenced image dataset consisting of 200 real-world images
captured under diverse scenarios and complex backgrounds. We report quan-
titative results on PSU NRT [37] dataset and qualitative results on [9,10,37]
datasets. As discussed in Sect. 3.1, we have extracted features from 20, 000 fence,
40, 000 non-fence texel images using a pre-trained CNN to train an SVM classi-
fier. The trained classifier is used to detect joint locations in images via a sliding
window protocol. We compare the results obtained using a state-of-the-art lattice
detection algorithm [5] and the proposed algorithm on all the datasets.
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Initially, in Fig. 5(a) we show a fenced image from the PSU NRT dataset
[37]. Fence texels are detected using our pre-trained CNN-SVM approach and
are jointed by straight edges, as shown in Fig. 5(f). Note that all fence texels are
detected accurately in Fig. 5(f). In contrast, the method of [5] failed completely
to extract the fence pixels as seen in Fig. 5(k). The output of Fig. 5(f) is used to
generate foreground and background scribbles which are fed to the image matting
technique of [11]. The final binary fence mask obtained by thresholding the
output of [11] is shown in Fig. 5(p). Next, we have validated both the algorithms
on image taken from a recent dataset [10] shown in Fig. 5(b). In Fig. 5(g), we
show the fence texels detected using our pre-trained CNN-SVM approach and
joined by straight edges. In contrast, the method of [5] failed completely to
extract the fence pixels as seen in Fig. 5(l). The output of Fig. 5(g) is used to
generate scribbles as outlined in Sect. 3.1. These foreground and background
scribbles are fed to the image matting technique of [11]. The final binary fence
mask obtained by thresholding the output of [11] is shown in Fig. 5(q). Finally, we
perform experiments on images from the proposed fenced image dataset. Sample
images taken from the dataset are shown in Figs. 5(c)–(e). In Figs. 5(h)–(j), we
show the fence segmentations obtained using the proposed pre-trained CNN-
SVM algorithm. We observe that the proposed algorithm detected all the fence
texel joints accurately. The lattice detected using [5] are shown in Figs. 5(m)–(o).
We can observe that the approach of [5] partially segments the fence pixels in
Fig. 5(m). Note that in Fig. 5(o) the algorithm of [5] completely failed to segment
fence pixels. The final binary fence masks obtained by thresholding the output
of [11] are shown in Figs. 5(r)–(t).

A summary of the quantitative evaluation of the fence texel detection method
of [5] and the pre-trained CNN-SVM based proposed algorithm is given in
Table 1. The F-measure obtained for [5] on PSU NRT [37] dataset and proposed
fenced image datasets are 0.62 and 0.41, respectively. In contrast, F-measure for
the proposed method on PSU NRT dataset [37] and our fenced image datasets
are 0.97 and 0.94, respectively.

Table 1. Quantitative evaluation of fence segmentation

NRT database [37] Our database

Method Precision Recall F-measure Precision Recall F-measure

Park et al. [5] 0.95 0.46 0.62 0.94 0.26 0.41

pre-trained
CNN-SVM

0.96 0.98 0.97 0.90 0.98 0.94

4.2 Optical Flow Under Known Occlusions

To demonstrate the robustness of proposed optical flow algorithm under known
occlusions, we use frames from videos of fenced scenes in [6,9,10]. We show
two frames from a video sequence named “football” from [9] in the first column
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(a) (f) (k) (p)

(b) (g) (l) (q)

(c) (h) (m) (r)

(d) (i) (n) (s)

(e) (j) (o) (t)

Fig. 5. First column: sample images from NRT [10,37] and proposed fenced image
datasets, respectively. Second column: fence masks generated using the proposed pre-
trained CNN-SVM algorithm. Third column: fence detection using [5]. Fourth column:
final binary fence masks corresponding to images in the first column obtained by gen-
erating scribbles using fence detections in images of the second column which are fed
to the method of [11].

of Fig. 6. The video sequences named “fence1” and “fence4” are taken from the
work of [10]. Two frames from each of these videos are shown in second and third
columns of Fig. 6, respectively. Video sequences named “lion” and “walking” are
taken from [6] and a couple of observations from each of them are depicted
in fourth and fifth columns of Fig. 6, respectively. In the third row of Fig. 6, we
show the color coded optical flows obtained using [24] between respective images
shown in each column of first and second row of Fig. 6. Note that the images
shown in third row of Fig. 6 contain regions of erroneously estimated optical flow
due to fence occlusions. In contrast, the flow estimated using proposed algorithm
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Fig. 6. First and second row: frames taken from videos reported in [6,9,10]. Third
row: optical flow computed between the first and second row images using [24]. Fourth
row: de-fenced images obtained using the estimated flow shown in the third row. Fifth
row: occlusion-aware optical flow obtained using the proposed algorithm.

under known fence occlusions are shown in the fifth row of Fig. 6. Note that the
optical flows estimated using the proposed method contain no artifacts.

4.3 Image De-Fencing

To demonstrate the efficacy of the proposed image de-fencing algorithm, we con-
ducted experiments with several real-world video sequences containing dynamic
background objects. In Figs. 7(a), (d), (g), and (j), we show the images taken
from four different video sequences. The fence pixels corresponding to these
observations are segmented using the proposed pre-trained CNN-SVM and the
approach of [11]. In Figs. 7(b), (e), (h), and (k), we show the inpainted images
obtained using [2] which was the method used for obtaining the de-fenced image
after fence segmentation in [6]. Note that we can see several artifacts in the
inpainted images obtained using [2]. De-fenced images obtained using the pro-
posed algorithm are shown in Figs. 7(c), (f), (i), and (l), respectively. We observe
that the proposed algorithm has effectively reconstructed image data even for
dynamic real-world video sequences. Also, note that for all the results shown
in Figs. 7(c), (f), (i), and (l) we used only three observations from the captured
video sequences.
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)c()b()a(

)f()e()d(

)i()h()g(

)l()k()j(

Fig. 7. First column: one frame each taken from challenging real-world videos. Second
column: inpainted images obtained using exemplar-based image inpainting algorithm
[2] which was the approach used in [6] for image de-fencing. Third column: de-fenced
images obtained using the proposed algorithm corresponding to images in the first
column.

Next, we compare the proposed algorithm with recent state-of-the-art meth-
ods [6,9,10]. In Fig. 8(a), we show the de-fenced image obtained using [9]. The
corresponding result obtained by the proposed algorithm is shown in Fig. 8(e).
Note that the de-fenced image obtained in [9] is blurred whereas the proposed
algorithm generated a sharper image. We show a cropped region from both
Figs. 8(a) and (e) in the last row to confirm our observation. In Figs. 8(b) and
(f), we show the de-fenced results obtained by [10] and the proposed algo-
rithm, respectively. The de-fenced image obtained using the method in [10] is
distorted at some places which is apparent in Fig. 8(b). In contrast, the fence
has been removed completely with hardly any distortions in the result shown in
Fig. 8(f), which has been obtained using our algorithm. A cropped region from
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both Figs. 8(b) and (f) are shown in the last row to prove our point. The de-
fenced images obtained using a very recent technique [6] are shown in Figs. 8(c)
and (d), respectively. These results contain several artifacts. However, the de-
fenced images recovered using the proposed algorithm hardly contain any arti-
facts as shown in Figs. 8(g) and (h). A cropped regions from Figs. 8(c) and (d)
and Figs. 8(g) and (h) are shown in the last row for comparison purpose. Since
we use only three frames from the videos, our method is more computationally
efficient than [9,10] which use 5 and 15 frames, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Comparison with state-of-the-art image/video de-fencing methods [6,9,10]
using video sequences from their works. (a) De-fenced image obtained by [9]. (b) Recov-
ered background image using [10]. (c), (d) Inpainted images obtained by [2] which was
the method used in [6]. (e)–(h) De-fenced images obtained by the proposed algorithm
using occlusion-aware-optical flow shown in fifth row of Fig. 6. Last row: Insets from
the images of first and second rows, respectively, showing the superior reconstruction
of the de-fenced image by our algorithm.

5 Conclusions

In this paper, we proposed an automatic image de-fencing system for real-world
videos. We divided the problem of image de-fencing into three tasks and proposed
an automatic approach for each one of them. We formulated an optimization
framework and solved the inverse problem using the fast iterative shrinkage
thresholding algorithm (FISTA) assuming l1 norm of the de-fenced image as the
regularization constraint. We have evaluated the proposed algorithm on various
datasets and reported both qualitative and quantitative results. The obtained
results show the effectiveness of proposed algorithm. As part of future work, we
are investigating how to optimally choose the frames from the video for fence
removal.
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