
Reconstructing Articulated Rigged Models
from RGB-D Videos

Dimitrios Tzionas1,2 and Juergen Gall1(B)

1 University of Bonn, Bonn, Germany
{tzionas,gall}@iai.uni-bonn.de

2 MPI for Intelligent Systems, Tübingen, Germany

Abstract. Although commercial and open-source software exist to
reconstruct a static object from a sequence recorded with an RGB-D
sensor, there is a lack of tools that build rigged models of articulated
objects that deform realistically and can be used for tracking or anima-
tion. In this work, we fill this gap and propose a method that creates
a fully rigged model of an articulated object from depth data of a sin-
gle sensor. To this end, we combine deformable mesh tracking, motion
segmentation based on spectral clustering and skeletonization based on
mean curvature flow. The fully rigged model then consists of a watertight
mesh, embedded skeleton, and skinning weights.

Keywords: Kinematic model learning · Skeletonization · Rigged model
acquisition · Deformable tracking · Spectral clustering · Mean curvature
flow

1 Introduction

With the increasing popularity of depth cameras, the reconstruction of rigid
scenes or objects at home has become affordable for any user [1] and together
with 3D printers allows novel applications [2]. Many objects, however, are non-
rigid and their motion can be modeled by an articulated skeleton. Although artic-
ulated models are highly relevant for computer graphic applications [3] including
virtual or augmented reality and robotic applications [4], there is no approach
that builds from a sequence of depth data a fully rigged 3D mesh with a skeleton
structure that describes the articulated deformation model.

In the context of computer graphics, methods for automatic rigging have
been proposed. In [3], for instance, the geometric shape of a static mesh is
used to fit a predefined skeleton into the mesh. More detailed human characters
including cloth simulation have been reconstructed from multi-camera video data
in [5]. Both approaches, however, assume that the skeleton structure is given.
On the contrary, the skeleton structure can be estimated from high-quality mesh
animations [6]. The approach, however, cannot be applied to depth data. At the
end, we have a typical chicken-and-egg problem. If a rigged model with predefined
skeleton is given the mesh deformations can be estimated accurately [7] and if
the mesh deformations are known the skeleton structure can be estimated [6].
c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part III, LNCS 9915, pp. 620–633, 2016.
DOI: 10.1007/978-3-319-49409-8 53

Reconstructing Articulated Rigged Models from RGB-D Videos 621

In this paper, we propose an approach to address this dilemma and create a
fully rigged model from depth data of a single sensor. To this end, we first create
a static mesh model of the object. We then reconstruct the motion of the mesh in
a sequence captured with a depth sensor by deformable mesh tracking. Standard
tracking, however, fails since it maps the entire mesh to the visible point cloud.
As a result, the object is squeezed as shown in Fig. 4. We therefore reduce the
thinning artifacts by a strong regularizer that prefers smooth mesh deformations.
Although the regularizer also introduces artifacts by oversmoothing the captured
motion, in particular at joint positions as shown for the pipe sequence in Fig. 1,
the mesh can be segmented into meaningful parts by spectral clustering based on
the captured mesh motion as shown in Fig. 5. The skeleton structure consisting
of joints and bones is then estimated based on the mesh segments and mean
curvature flow.

As a result, our approach is the first method that creates a fully rigged model
of an articulated object consisting of a watertight mesh, embedded skeleton, and
skinning weights from depth data. Such models can be used for animation, vir-
tual or augmented reality, or in the context of robot-object manipulation. We
perform a quantitative evaluation with five objects of varying size and deforma-
tion characteristics and provide a thorough analysis of the parameters.

2 Related Work

Reconstructing articulated objects has attracted a lot of interest during the past
decade. Due to the popularity of different image sensors over the years, research
focus has gradually shifted from reconstructing 2D skeletons from RGB data
[8–11] to 3D skeletons from RGB [12–15] or RGB-D data [4,16,17].

A popular method for extracting 2D skeletons from videos uses a
factorization-based approach for motion segmentation. In [8,9] articulated
motion is modeled by a set of independent motion subspaces and the joint loca-
tions are obtained from the intersections of connected motion segments. A prob-
abilistic graphical model has been proposed in [10]. The skeleton structure is
inferred from 2D feature trajectories by maximum likelihood estimation and the
joints are located in the center of the motion segments. Recently, [11] combine a
fine-to-coarse motion segmentation based on iterative randomized voting with a
distance function based on contour-pruned skeletonization. The kinematic model
is inferred with a minimum spanning tree approach.

In order to obtain 3D skeletons from RGB videos, structure-from-motion
(SfM) approaches can be used. [12] perform simultaneous segmentation and
sparse 3D reconstruction of articulated motion with a cost function minimiz-
ing the re-projection error of sparse 2D features, while a spatial prior favors
smooth segmentation. The method is able to compute the number of joints and
recover from local minima, while occlusions are handled by incorporating par-
tial sequences into the optimization. In contrast to [18], it is able to reconstruct
complex articulated structures. [15] use ray-space optimization to estimate 3D
trajectories from 2D trajectories. The approach, however, assumes that the num-
ber of parts is known. In [13,14] markers are attached to the objects to get precise

622 D. Tzionas and J. Gall

3D pose estimations of object parts. They use a probabilistic approach with a
mixture of parametrized and parameter-free representations based on Gaussian
processes. The skeleton structure is inferred by computing the minimum span-
ning tree over all connected parts.

The recent advances in RGB-D sensors allow to work fully in 3D. An early
approach [16] uses sparse KLT and SIFT features and groups consistent 3D
trajectories with a greedy approach. The kinematic model is inferred by sequen-
tially fitting a prismatic and a rotational joint with RANSAC. In [4] the 3D
trajectories are clustered by density-based spatial clustering. For each cluster,
the 3D pose is estimated and the approach [14] is applied to infer the skeleton
structure. Recently, [17] presented a method that combines shape reconstruction
with the estimation of the skeleton structure. While these approaches operate
only with point clouds, our approach generates fully rigged models consisting of
a watertight mesh, embedded skeleton, and skinning weights.

3 Mesh Motion

Our approach consists of three steps. We first create a watertight mesh of the
object using a depth sensor that is moved around the object while the object
is not moving. Creating meshes from static objects can be done with standard
software. In our experiments, we use Skanect [19] with optional automatic mesh
cleaning using MeshLab [20]. In the second step, we record a sequence where the
object is deformed by hand-object interaction and track the mesh to obtain the
mesh motion. In the third step, we estimate the skeleton structure and rig the
model. The third step will be described in Sect. 4.

3.1 Preprocessing

For tracking, we preprocess each frame of the RGB-D sensor. We first discard
points that are far away and only keep points that are within a 3D volume.
This is actually not necessary but it avoids unnecessary processing like normal
computation for irrelevant points. Since the objects are manipulated by hands,
we discard the hands by skin color segmentation on the RGB image using a
Gaussian mixtures model (GMM) [21]. The remaining points are then smoothed
by a bilateral filter [22] and normals are computed as in [23].

3.2 Mesh Tracking

For mesh tracking, we capitalize on a Laplacian deformation framework simi-
lar to [24]. While in [7,25] a Laplacian deformation framework was combined
with skeleton-based tracking in the context of a multi-camera setup, we use the
Laplacian deformation framework directly for obtaining the mesh motion of an
object with unknown skeleton structure. Since we use only one camera and not
an expensive multi-camera setup, we observe only a portion of the object and
the regularizer will be very important as we will show in the experiments.

Reconstructing Articulated Rigged Models from RGB-D Videos 623

For mesh tracking, we align the mesh M with the preprocessed depth data
D by minimizing the objective function

E(M,D) = Esmooth(M) + γdef

(
Emodel→data(M,D) + Edata→model(M,D)

)
.

(1)

with respect to the vertex positions of the mesh M. The objective function con-
sists of a smoothness term Esmooth that preserves geometry by penalizing changes
in surface curvature, as well as two data terms Emodel→data and Edata→model that
align the mesh model to the observed data and the data to the model, respec-
tively. The impact of the smoothness term and the data terms is steered by the
parameter γdef .

For the data terms, we use the same terms that are used for articulated hand
tracking in [26]. For the first term

Emodel→data(M,D) =
∑

i

‖Vi − Xi‖22 (2)

we establish correspondences between the visible vertices Vi of the mesh M and
the closest points Xi of the point cloud D and minimize the distance. We discard
correspondences for which the angle between the normals of the vertex and the
closest point is larger than 45◦ or the distance between the points is larger than
10 mm.

The second data term

Edata→model(M,D) =
∑

i

‖Vi × di − mi‖22 (3)

minimizes the distance between a vertex Vi and the projection ray of a depth
discontinuity observed in the depth image. To compute the distance, the pro-
jection ray of a 2D point is expressed by a Plücker line [27] with direction di

and moment mi. The depth discontinuities are obtained as in [26] by an edge
detector applied to the depth data and the correspondence between a depth dis-
continuity and a vertex are obtained by searching the closest projected vertex
for each depth discontinuity.

Due to the partial view of the object, the data terms are highly under-
constrained. This is compensated by the smoothness term that penalizes changes
of the surface curvature [24]. The term can be written as

Esmooth(M) =
∑

i

‖LVi − LVi,t−1‖22 (4)

where Vi,t−1 is the previous vertex position. In order to model the surface cur-
vature, we employ the cotangent Laplacian [24] matrix L given by

Lij =

⎧⎪⎨
⎪⎩

∑
Vk∈N1(Vi)

wik, i = j

−wij , Vj ∈ N1(Vi)
0, otherwise,

where wij =
1

2|Ai|
(cot αij +cot βij)

(5)

624 D. Tzionas and J. Gall

Fig. 1. Tracked mesh with the deformable tracker presented in Sect. 3.2 and the cor-
responding 3D vertex trajectories. We present images for the sequences “spray” and
“pipe 1/2” showing the temporal evolution at 20 %, 40 %, 60 %, 80 % and 100 % of the
sequence.

where N1(Vi) denotes the set of one-ring neighbor vertices of vertex Vi. The
weight wij for an edge in the triangular mesh between two vertices Vi and Vj

depends on the cotangents of the two angles αij and βij opposite of the edge
(i, j) and the size of the Voronoi cell |Ai| that is efficiently approximated by half
of the sum of the triangle areas defined by N1(Vi).

We minimize the least squares problem (1) by solving a large but highly
sparse linear system using sparse Cholesky decomposition. For each frame, we
use the estimate of the previous frame for initialization and iterate between
computing correspondences and optimizing (1) 15 times.

4 Kinematic Model Acquisition

After having estimated the mesh motion as described in Sect. 3, we have for each
vertex the trajectory Ti. We use the trajectories together with the shape of the
mesh M to reconstruct the underlying skeleton. To this end, we first segment
the trajectories as described in Sect. 4.1 and then infer the skeleton structure,
which will be explained in Sect. 4.2.

4.1 Motion Segmentation

In contrast to feature based trajectories, the mesh motion provides trajectories
of the same length and a trajectory for each vertex, even if the vertex has never
been observed in the sequence due to occlusions. This means that clustering the
trajectories also segments the mesh into rigid parts.

Similar to 2D motion segmentation approaches for RGB videos [28], we define
an affinity matrix based on the 3D trajectories and use spectral clustering for
motion segmentation. The affinity matrix

Φij = exp (−λd(Ti, Tj)) (6)

is based on the pairwise distance between two trajectories Ti and Tj . Φij = 1
if the trajectories are the same and close to zero if the trajectories are very
dissimilar. As in [28], we use λ = 0.1.

Reconstructing Articulated Rigged Models from RGB-D Videos 625

To measure the distance between two trajectories Ti and Tj , we measure the
distance change of two vertex positions Vi and Vj within a fixed time interval.
We set the length of the time interval proportional to the observed maximum
displacement, i.e.

dt = 2max
i,t

‖Vi,t − Vi,t−1‖2. (7)

Since the trajectories are smooth due to the mesh tracking as described in
Sect. 3.2, we do not have to deal with outliers and we can take the maximum
displacement over all vertices. The object, however, might be deformed only at
a certain time interval of the entire sequence. We are therefore only interested
in the maximum distance change over all time intervals, i.e.

dv(Ti, Tj) = max
t

|‖Vi,t − Vj,t‖2 − ‖Vi,t−dt − Vj,t−dt‖2| . (8)

This means that if two vertices belong to the same rigid part, the distance
between them should not change much over time. In addition, we take the change
of the angle between the vertex normals N into account. This is measured in the
same way as maximum over the intervals

dn(Ti, Tj) = max
t

∣∣arccos
(
NT

i,tNj,t

)
− arccos

(
NT

i,t−dtNj,t−dt

)∣∣ . (9)

The two distance measures are combined by

d(Ti, Tj) = (1 + dn(Ti, Tj)) dv(Ti, Tj). (10)

The distances are measured in mm and the angles in rad. Adding 1 to dn was
necessary since dn can be close to zero despite of large displacement changes.

Based on (6), we build the normalized Laplacian graph [29]

L = D− 1
2 (D − Φ)D− 1

2 (11)

where D is an n × n diagonal matrix with

Dii =
∑

j

Φij (12)

and perform eigenvalue decomposition of L to get the eigenvalues λ1, . . . , λn,
(λ1 ≤ · · · ≤ λn), as well as the corresponding eigenvectors v1, . . . ,vn. The num-
ber of clusters k is determined by the number of eigenvalues below a threshold
λthresh and the final clustering of the trajectories is then obtained by k-means
clustering [29] on the rows of the n × k matrix F = [v1 . . . vk].

In practice, we sample uniformly 1000 vertices from the mesh to compute
the affinity matrix. This turned out to be sufficient while reducing the time to
compute the matrix. For each vertex that has not been sampled, we compute
the closest sampled vertex on the mesh and assign it to the same cluster. This
results in a motion segmentation of the entire mesh as shown in Fig. 2b.

626 D. Tzionas and J. Gall

Fig. 2. The steps of our pipeline. (a) Initial mesh (b) Motion segments (c) Mean
curvature skeleton where the endpoints are shown with cyan, the junction points with
yellow, the virtual point due to collision with white and the motion joints with magenta
(d) Initial skeleton (e) Refined skeleton after removal of redundant bone (f) Final
skeleton after replacement of the colliding bone with two non-colliding ones and a
virtual joint.

Algorithm 1. Overview of the steps of our algorithm.
Deformable motion capture

- Perform deformable tracking of the object Sect. 3.2 - Eq. (1)

Motion segmentation of the object
- Generate dense vertex trajectories from tracking result Sect. 4.1
- Sample 1000 trajectories for tractability Sect. 4.1
- Build an affinity matrix of vertex trajectories Sect. 4.1 - Eq. (6–10)
- Segment mesh by spectral clustering Sect. 4.1 - Eq. (11)

Kinematic model acquisition for the object
- Infer joints at intersections of mesh segments Sect. 4.2
- Infer skeleton topology Sect. 4.2
- Compute skinning weights Sect. 4.2

4.2 Kinematic Topology

Given the segmented mesh, it remains to determine the joint positions and topol-
ogy of the skeleton. To obtain a bone structure, we first skeletonize the mesh
by extracting the mean curvature skeleton (MCS) based on the mean curvature
flow [30] that captures effectively the topology of the mesh by iteratively con-
tracting the triangulated surface. The red 3D curve in Fig. 2c shows the mean
curvature skeleton for an object. In order to localize the joints, we compute the
intersecting boundary of two connected mesh segments using a half-edge repre-
sentation. For each intersecting pair of segments, we compute the centroid of the
boundary vertices and find its closest 3D point on the mean curvature skeleton.
In this way, the joints are guaranteed to lie inside the mesh. In order to create
the skeleton structure with bones, we first create auxiliary joints without any
degree of freedom at the points where the mean curvature skeleton branches or
ends as shown in Fig. 2c. After all 3D joints on the skeleton are determined, we
follow the mean curvature skeleton and connect the detected joints accordingly
to build a hierarchy of bones that defines the topology of a skeleton structure.

Reconstructing Articulated Rigged Models from RGB-D Videos 627

Although the number of auxiliary joints usually does not matter, we reduce
the number of auxiliary joints and irrelevant bones by removing bones that link
an endpoint with another auxiliary joint if they belong to the same motion seg-
ment. The corresponding motion segment for each joint can be directly computed
from the mean curvature flow [30]. We finally ensure that each bone is inside the
mesh. To this end, we detect bones colliding with the mesh with a collision detec-
tion approach based on bounding volume hierarchies. We then subdivide each
colliding bone in two bones by adding an additional auxiliary joint at the middle
of the mean curvature skeleton that connects the endpoints of the colliding bone.
The process is repeated until all bones are inside the mesh. In our experiments,
however, one iteration was enough. This procedure defines the refined topology
of the skeleton that is already embedded in the mesh. The skinning weights are
then computed as in [3].

As a result, we obtain a fully rigged model consisting of a watertight mesh,
an embedded skeleton structure, and skinning weights. The entire steps of the
approach are summarized in Algorithm1. Results for a few objects are shown in
Fig. 5.

5 Experiments

We quantitatively evaluate our approach for five different objects shown in
Table 1: the “spray”, the “donkey”, the “lamp”, as well as the “pipe 1/2” and
“pipe 3/4” which have a joint at 1/2 and 3/4 of their length, respectively. We
acquire a 3D template mesh using the commercial software skanect [19] for the
first three objects, while for the pipe we use the publicly available template
model used in [26]. All objects have the same number of triangles, so the aver-
age triangle size varies from 3.7 mm2 for the “spray”, 13.8 for the “donkey”,
24.8 for the “lamp” and 4.4 for the “pipe” models. We captured sequences of
the objects while deforming them using a Primesense Carmine 1.09 RGB-D sen-
sor. The recorded sequences, calibration data, scanned 3D models, deformable
motion data, as well as the resulting models and respective videos for the pro-
posed parameters are available online1.

We perform deformable tracking (Sect. 3.2) to get 3D dense vertex trajec-
tories as depicted in Fig. 1. Deformable tracking depends on the weight γdef

in the objective function (1) that steers the influence of the smoothness and
data terms. As depicted in Fig. 4, a very low γdef gives too much weight to the
smoothness term and prevents an accurate fitting to the input data, while a big
γdef results in over-fitting to the partial visible data and a strong thinning effect
can be observed. The thinning gets more intense for an increasing γdef .

Despite of γdef , our approach also depends on the eigenvalue threshold λthr

for spectral clustering. To study the effect of the parameters, we created a test
dataset. For each object, we scanned the objects in four different poses. To this
end, we fixed the object in a pose with adhesive tape and reconstructed it by
moving the camera around the object. The target poses of the objects are shown
1 http://files.is.tue.mpg.de/dtzionas/Skeleton-Reconstruction.

http://files.is.tue.mpg.de/dtzionas/Skeleton-Reconstruction

628 D. Tzionas and J. Gall

Fig. 3. Each object is scanned in four target poses with increasing difficulty and pose
estimation from an initial state is performed for evaluation while spanning the para-
meter space of (γdef , λthresh). For the “donkey” object both a front and a top view are
presented.

Fig. 4. Deformable tracking for γdef = 0.001, 0.005, 0.01, 0.05, 0.1 (from left to right)
that steers the influence of the smoothness and data terms in Eq. (1). We depict the
front (top) and side view (bottom) for the last frame of the sequences “spray” and
“donkey”.

in Fig. 3. To measure the quality of a rigged model for a parameter setting, we
align the model M(θ) parametrized by the rotations of the joints and the global
rigid transformation to the reconstructed object O from an initial pose. For the
alignment, we use only the inferred articulated model, i.e. we estimate the rigid
transformation and the rotations of the joints of the inferred skeleton. As data
term, we use

1
|M(θ)| + |O|

⎛
⎝ ∑

V(θ)∈M(θ)

‖V(θ) − VO‖22 +
∑

VO∈O
‖VO − V(θ)‖22

⎞
⎠ (13)

based on the closest vertices from mesh M(θ) to O and vice versa. This measure
is also used to measure the 3D error in mm after alignment.

Table 1 summarizes the average 3D vertex error for various parameter set-
tings, with the highlighted values indicating the best qualitative results for each
object, while Fig. 5 shows the motion segments and the acquired skeletons for the
best configuration. The optimal parameter γdef seems to depend on the triangle
size since the smoothness term is influenced by the areas of the Voronoi cells
|Ai| (5) and therefore by the areas of the triangles. The objects “Donkey” and
“Lamp” have large triangles (>10 mm2) and prefer γdef = 0.05, while the objects
with small triangles (<10 mm2) perform better for γdef = 0.005. Spectral clus-
tering on the other hand works well for λthr = 0.7 when reasonably sized parts
undergo a pronounced movement, however, a higher value of λthr = 0.98 is better

Reconstructing Articulated Rigged Models from RGB-D Videos 629

Table 1. Evaluation of our approach using the target poses shown in Fig. 3. We create
a rigged model while spanning the parameter space for the deformable tracking weight
γdef and the spectral clustering threshold λthr. The rigged model is aligned to the
target poses by articulated pose estimation. We report the average vertex error in mm.

for small parts undergoing a small motion compared to the size of the object
like the handle of the “spray”. As shown in Fig. 6, a high threshold results in an
over-segmentation and increases the number of joints. An over-segmentation is
often acceptable as we see for example in Fig. 2b or in Fig. 5 for the “spray” and
the “lamp”. In general, a slight over-segmentation is not problematic for many
applications since joints can be disabled or ignored for instance for animation.

Fig. 5. Results for the best configuration (γdef , λthr) for each object. The images
show the motion segments and the inferred 3D skeleton, where the joints with DoF are
depicted with red color. (Color figure online)

630 D. Tzionas and J. Gall

Fig. 6. Results for the four configurations (γdef , λthr) that arise from the proposed
parameters. The images show for each object the motion segments and the inferred 3D
skeleton, where the joints with DoF are depicted with red color. (Color figure online)

A slight increase of the degrees of freedom also does not slow down articulated
pose estimation, it even yields sometimes a lower alignment error as shown in
Table 1.

We also evaluated our method on the public sequences “Bending a Pipe” and
“Bending a Rope” of [26], in which the skeleton was manually modeled with 1
and 35 joints, respectively. As input we use the provided mesh of each object and
the RGB-D sequences to infer the skeleton. We use the tracked object meshes
of [26] as ground-truth and measure the error as in (13), but averaged over all
frames. We first evaluate the accuracy of the deformable tracking in Table 2,
which performs best with γdef = 0.005 as in the previous experiments. If we
track the sequence with the inferred articulated model using a point-to-plane
metric as in [26], the error decreases. While the best spectral clustering threshold
λthr for the pipe is again 0.70, the rope performs best for 0.98 due to the small
size of the motion segments and the smaller motion differences of neighboring
segments. We also report the error when the affinity matrix is computed only
based on dv without dn (10). This slightly increases the error for the pipe with

Reconstructing Articulated Rigged Models from RGB-D Videos 631

Table 2. Evaluation of our method and resulting kinematic models for the public
sequences “Bending a Pipe” and “Bending a Rope” of [26]. We report the average
vertex error in mm.

optimal parameters. The motion segments and the acquired skeletons for the
best configurations are also depicted in Table 2.

6 Conclusion

We presented an approach that generates fully rigged models consisting of a
watertight mesh, an embedded skeleton and skinning weights that can be used
out of the box for articulated tracking or animation. In that respect we operate
fully in 3D capitalizing on deformable tracking, spectral clustering and skele-
tonization based on mean curvature flow. The thorough evaluation of the para-
meters provides a valuable intuition about the important factors and opens up
possibilities for further generalization in future work. For instance, a regularizer
that is adaptive to the areas of the triangles can be used for deformable tracking
to compensate seamlessly for the varying triangle sizes across different objects.
Furthermore, we have shown in our experiments that the proposed approach
generates nicely working rigged models and has prospects for future practical
applications.

Acknowledgements. The authors acknowledge financial support by the DFG Emmy
Noether program (GA 1927/1-1).

632 D. Tzionas and J. Gall

References

1. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense
surface mapping and tracking. In: International Symposium on Mixed and Aug-
mented Reality (ISMAR) (2011)

2. Sturm, J., Bylow, E., Kahl, F., Cremers, D.: Copyme3d: Scanning and printing
persons in 3d. In: German Conference on Pattern Recognition (GCPR) (2013)

3. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM
Trans. Graph. (TOG) 26(3), 72 (2007)

4. Pillai, S., Walter, M.R., Teller, S.: Learning articulated motions from visual demon-
stration. In: Robotics: Science and Systems (RSS) (2014)

5. Stoll, C., Gall, J., de Aguiar, E., Thrun, S., Theobalt, C.: Video-based reconstruc-
tion of animatable human characters. ACM Trans. Graph. (TOG) 29(6), 139:
1–139: 10 (2010)

6. De Aguiar, E., Theobalt, C., Thrun, S., Seidel, H.P.: Automatic conversion of mesh
animations into skeleton-based animations. Comput. Graph. Forum (CGF) 27(2),
389–397 (2008)

7. Liu, Y., Gall, J., Stoll, C., Dai, Q., Seidel, H.P., Theobalt, C.: Markerless motion
capture of multiple characters using multiview image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. (PAMI) 35(11), 2720–2735 (2013)

8. Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajecto-
ries of articulated objects. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2006)

9. Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid
shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern Anal.
Mach. Intell. (PAMI) 30(5), 865–877 (2008)

10. Ross, D.A., Tarlow, D., Zemel, R.S.: Learning articulated structure and motion.
Int. J. Comput. Vis. (IJCV) 88(2), 214–237 (2010)

11. Chang, H.J., Demiris, Y.: Unsupervised learning of complex articulated kinematic
structures combining motion and skeleton information. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2015)

12. Fayad, J., Russell, C., Agapito, L.: Automated articulated structure and 3d shape
recovery from point correspondences. In: International Conference on Computer
Vision (ICCV) (2011)

13. Sturm, J., Pradeep, V., Stachniss, C., Plagemann, C., Konolige, K., Burgard, W.:
Learning kinematic models for articulated objects. In: International Joint Confer-
ence on Artificial Intelligence (IJCAI) (2009)

14. Sturm, J., Stachniss, C., Burgard, W.: A probabilistic framework for learning kine-
matic models of articulated objects. J. Artif. Intell. Res. (JAIR) 41(2), 477–626
(2011)

15. Yücer, K., Wang, O., Sorkine-Hornung, A., Sorkine-Hornung, O.: Reconstruction
of articulated objects from a moving camera. In: ICCVW (2015)

16. Katz, D., Kazemi, M., Bagnell, A.J., Stentz, A.: Interactive segmentation, tracking,
and kinematic modeling of unknown 3d articulated objects. In: IEEE International
Conference on Robotics and Automation (ICRA) (2013)

17. Mart́ın-Mart́ın, R., Höfer, S., Brock, O.: An integrated approach to visual per-
ception of articulated objects. In: IEEE International Conference on Robotics and
Automation (ICRA) (2016)

Reconstructing Articulated Rigged Models from RGB-D Videos 633

18. Tresadern, P., Reid, I.: Articulated structure from motion by factorization. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

19. Skanect: http://skanect.occipital.com. Accessed 19 Aug 2016
20. MeshLab: http://meshlab.sourceforge.net. Accessed 19 Aug 2016
21. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection.

Int. J. Comput. Vis. (IJCV) 46(1), 81–96 (2002)
22. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal

processing approach. Int. J. Comput. Vis. (IJCV) 81(1), 24–52 (2009)
23. Holzer, S., Rusu, R.B., Dixon, M., Gedikli, S., Navab, N.: Adaptive neighbor-

hood selection for real-time surface normal estimation from organized point cloud
data using integral images. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2012)

24. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE
Trans. Vis. Comput. Graph. (TVCG) 14(1), 213–230 (2008)

25. Gall, J., Stoll, C., De Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion
capture using joint skeleton tracking and surface estimation. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2009)

26. Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing
hands in action using discriminative salient points and physics simulation. Int. J.
Comput. Vis. (IJCV) 118, 172–193 (2016)

27. Pons-Moll, G., Rosenhahn, B.: Model-based pose estimation. In: Moeslund, T.B.,
Hilton, A., Krüger, V., Sigal, L. (eds.) Visual Analysis of Humans: Looking at
People, pp. 139–170. Springer, London (2011). doi:10.1007/978-0-85729-997-0 9

28. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315,
pp. 282–295. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0 21

29. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: Advances in Neural Information Processing Systems NIPS (2002)

30. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons.
Comput. Graph. Forum (CGF) 31, 1735–1744 (2012)

http://skanect.occipital.com
http://meshlab.sourceforge.net
http://dx.doi.org/10.1007/978-0-85729-997-0_9
http://dx.doi.org/10.1007/978-3-642-15555-0_21

	Reconstructing Articulated Rigged Models from RGB-D Videos
	1 Introduction
	2 Related Work
	3 Mesh Motion
	3.1 Preprocessing
	3.2 Mesh Tracking

	4 Kinematic Model Acquisition
	4.1 Motion Segmentation
	4.2 Kinematic Topology

	5 Experiments
	6 Conclusion
	References

