
A Radial Search Method for Fast Nearest
Neighbor Search on Range Images

Federico Tombari1, Samuele Salti1, Luca Puglia2(B), Giancarlo Raiconi3,
and Luigi Di Stefano1

1 Dipartimento di Informatica - Scienza e Ingegneria,
University of Bologna, Bologna, Italy

{federico.tombari,samuele.salti,luigi.distefano}@unibo.it
2 Dipartimento di Informatica, University of Salerno, Salerno, Italy

lpuglia@unisa.it
3 D.I.E.M., University of Salerno, Salerno, Italy

gianni@unisa.it

Abstract. In this paper, we propose an efficient method for the prob-
lem of Nearest Neighbor Search (NNS) on 3D data provided in the form
of range images. The proposed method exploits the organized structure
of range images to speed up the neighborhood exploration by operating
radially from the query point and terminating the search by evaluat-
ing adaptive stop conditions. Despite performing an approximate search,
our method is able to yield results comparable to the exhaustive search
in terms of accuracy of the retrieved neighbors. When tested against
open source implementations of state-of-the-art NNS algorithms, radial
search obtains better performance than the other algorithms in terms
of speedup, while yielding the same level of accuracy. Additional experi-
ments show how our algorithm improves the overall efficiency of a highly
computational demanding application such as 3D keypoint detection and
description.

1 Introduction and Related Work

In the past few years there has been a growing interest in processing 3D data
for computer vision tasks such as 3D keypoint detection and description, surface
matching and segmentation, 3D object recognition and categorization. The rele-
vance of such applications has been fostered by the availability, in the consumer
market, of new low-cost RGB-D cameras, which can simultaneously capture
RGB and range images at a high frame rate. Such devices are either based on
structured light (e.g. Microsoft Kinect, Asus Xtion) or Time-of-Flight (TOF)
technology (e.g., Kinect II), and belong to the class of active acquisition meth-
ods. On the other hand, low-cost RGB-D sensors belonging to the class of passive
acquisition technologies are mostly based on stereo cameras [13] or Structure-
from-Motion.

Independently from the specific technology being used, each sensor acquires
3D data in the form of range images, a type of 3D representation that stores
c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part III, LNCS 9915, pp. 563–577, 2016.
DOI: 10.1007/978-3-319-49409-8 49

564 F. Tombari et al.

depth measurements obtained from a specific point in 3D space (i.e., sensor
viewpoint) — for this reason, it is sometimes referred to as 2.5D data. Such
representation is organized, in the sense that each depth value is logically stored
in a 2D array, so that spatially correlated points can be accessed by looking at
nearby positions on such grid. By estimating the intrinsic parameters of the sen-
sors, usually available via calibration, the (x, y, z) coordinates associated to each
depth value can be directly obtained. Conversely, point clouds are unorganized
3D representation that simply stores 3D coordinates in an unordered list.

Arguably the most ubiquitous task performed on 3D data for the aforemen-
tioned computer vision applications is represented by the Nearest Neighbors
Search (NNS), i.e. given a query 3D point, find its k nearest neighbors (kNN
Search), or, alternatively, all its neighbors falling within a sphere of radius r
(Radius Search). This is for example necessary for computing standard surface
differential operators such as normals and curvatures. In addition, NNS is a
required step also for keypoint detection and description on 3D data, which are
deployed, in turn, for 3D object recognition and segmentation. Another relevant
example (among many others) of the use of NNS is the Iterative Closest Point
(ICP) [5] algorithm, a key step for most 3D registration, 3D reconstruction and
SLAM applications.

When NNS has to be solved on a point cloud, being it an unorganized type of
3D data representation, efficient indexing scheme are typically employed to speed
up the otherwise mandatory linear search. Nevertheless, despite such schemes
are particularly efficient, the NNS on point clouds can still be extremely time
consuming, since the complexity grows with the size of the point cloud. In
particular, over the years several methods have been proposed to solve opti-
mally the NNS problem in the fastest way possible based on heuristic strategy
[6], clustering techniques (e.g. hierarchical k-means, [8]) or hashing techniques
[2]. Currently, the most popular approach is the kd-tree approach [7], or its
3D-specific counterpart known as octree.

In addition to exact algorithms, also approximated methods have been pro-
posed, which trade-off a non optimal search accuracy with a higher speed-up
with respect to the linear search. In [4], a modified kd-tree approach known as
Best Bin First (BBF) is presented, where a priority queue with a maximum size
is deployed to limit the maximum number of subtrees visited while traversing
the tree bottom up, i.e. from the leaf node to the root. In [3] a similar approach
is proposed, where the stop criteria is imposed as a bound on the precision of the
result. More recently, [15] proposed the use of an ensemble of trees where the split
on each dimension is computed randomly and that rely on an unified priority
queue: such approach is known as multiple randomized kd-trees, or randomized
kd-forest. In [12], a library including several approximated NNS algorithms is
proposed, including multiple randomized kd-trees [15], BBF kd-tree [4] and hier-
archical k-means [8]. In addition, [12] also proposes a method to automatically
determine the best algorithm and its parameters given the current dataset. Such,
library, known as Fast Library for Approximate Nearest Neighbors (FLANN),
is one of the most used libraries for NNS on point clouds: for example, it is the

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 565

default choice for NNS within the Point Cloud Library (PCL) [1], the reference
library for 3D computer vision and robotic perception.

Although all the aforementioned methods for approximated NNS on points
clouds can be used also on range images simply by turning this 3D data repre-
sentation into a point cloud, it is possible to leverage on the organized trait of
such data representation to speed up the search. Nevertheless, exploiting the 2D
grid available when dealing with range images is not trivial, since nearest neigh-
bor on the 2D grid are not guaranteed to be nearest neighbors also in 3D space
(think about two points lying nearby on the image plane but on two different
sides of a depth border). Furthermore, and especially for the Radius Search case,
it is not trivial to turn a metric radius into a pixel-wise radius in the general
case, when calibration data are not available.

In literature, the specialization of NNS to the case of range images is almost
unexplored. One of the most relevant techniques is the one implemented in the
PCL library for both the Radius Search and the kNN Search, where the main
idea is to adaptively define the extent in pixels of the search area on the image
based on the 3D data as well as the camera parameters. In particular, in the kNN
Search case, the query point is first projected onto the range image by explicitly
taking into account the intrinsic camera parameters and the camera pose. In
case the projected point lays outside the range image, the nearest element in the
image is used as start position. Then, the first k nearest neighbors are sought
for by looking in the nearby positions on the image plane. The search area in
pixel is then defined based on the distance, projected on the image plane, of
the query to the farthest point among the found k neighbors, which is finally
searched exhaustively to refine the list of retrieved neighbors. Instead, in the
Radius Search case, the intrinsic parameters and the camera pose are used also
to translate the input metric radius into the pixel-wise radius of the search area
on the image plane, by projecting the estimated 3D spherical neighborhood onto
the image plane of the sensor. Additionally, each neighbor on the range image
2D grid is also checked with respect to its 3D distance from the query before
being added to the list of neighbors. Notably, this radius search algorithm is
similar to the one presented in [10], where NNS is applied to the specific task of
normal estimation on range images.

In this work we present a method, dubbed Radial Search Method (RSM),
which can be used as an alternative to the methods available in PCL [1] for fast
approximate NNS on range images. The idea of our approach is, starting from
the query point, to incrementally look for neighbors on the 2D grid along radial
regions of increasing radius. Specific stop conditions are employed to terminate
the search when the candidates obtained are estimated to approximate well
enough the real set of neighbors. In particular, we propose two variants of such
approach, derived for both the kNN Search and the Radius Search problems.
Notably, and advantageously with respect to [1,10], our method does not require
to know neither the intrinsic parameters of the sensor nor the sensor pose. By
means of experimental results on 3D data obtained with a consumer RGB-D
camera, we evaluate the performance of our approach against the NNS methods

566 F. Tombari et al.

in PCL and against the FLANN randomized kd-forest approach in terms of
both accuracy as well as efficiency. In addition, we also show how RSM can help
improving the performance of a typical 3D computer vision application of NNS
such as 3D keypoint detection and description.

2 RSM Algorithm

Our approach is based on the incremental exploration of the neighborhood start-
ing from the query point, along concentric frames. While in the NNS search for
range images available in PCL [1], hereinafter referred to as organized, the search
is carried out over an image sub-region row after row (raster scan), in our method
the search is made in radial order as depicted in Fig. 1. This allows our algo-
rithm to evaluate less points in the neighborhood of the query point to obtain
a similar level of approximation in the search result. Another important char-
acteristic of our exploration strategy is that it is adaptive, i.e. the size of the
2D neighborhood that is considered changes at each query point by evaluating
a stop condition that depends on the improvements of the search at each step.

Let q be the query index and e an element of the range image. If the query
point is only available as a point in 3D space, it is projected onto the image
and the nearest element to the projection is used as starting point q. We define
a non-euclidean distance D̂(q, e) on a range image I as the minimum number
of horizontal, vertical or diagonal moves to reach e from q. We also use the
classic euclidean distance D(q, e) to measure the distance in 3D space between
the (x, y, z) points corresponding to q and e. Furthermore, we define Q as a min-
priority queue of (e, p) pairs in which e is the index of a range image element
and p = D(q, e) is the priority key. Finally, we define the frame at distance h
from a query point q as:

fh(q) = {e | D̂(q, e) = h}. (1)

Figure 2 shows the elements belonging to the sets of the first 3 frames, i.e. f1(q),
f2(q) and f3(q), of a query point q.

The key idea is to explore, at every iteration, the space of 3D point candidates
defined by one full frame of pixels around the query point, and to stop the search

Fig. 1. Depiction of Organized (left) and RSM (right) search strategies: the light-
colored square in the middle is the query point, while the darker a cell is the earlier it
is explored. (Color figure online)

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 567

Fig. 2. Elements in the set of frames f1(q), f2(q) and f3(q).

whenever the number of inliers (e.g., found nearest neighbors) in the currently
explored frame is too low. It is also important to make the exploration robust
with respect to the presence of invalid points in the range image. In fact in
many practical cases the acquired range images contains several invalid points,
due to limitations in the sensing range or in dealing with specific surfaces, such
as dark and reflective surfaces for active sensors, non-Lambertian surfaces and
low-textured regions for passive sensors. Figure 3 shows how the algorithm has
to work in the presence of invalid points. Even if an invalid point is encountered
along the exploration of a frame, the search must continue beyond it. In the
extreme case of one or more frames of invalid points, the stop condition should
offer a setup that allows to continue the search in the next valid frames to be
able to find other valid neighbors.

Fig. 3. The solution is represented by yellow points, while in gray we denote invalid
elements. On the left, an example of the solution in the absence of invalid points; on
the right, an example of the same neighborhood where some of the points are invalid,
e.g. due to a change in viewpoint. Bottom: a case where an entire frame is composed
of invalid points. The valid points in the neighborhood should still be evaluated and
inserted in the solution.

568 F. Tombari et al.

function RSM KNN(K, q, δ̃)
i ← 1
Q ← (q, 0)
while fi(q) ∈ image do

ι ← 0
ν ← 0
for all e ∈ fi(q) do

if is valid(e) then
ν ← ν + 1
if Q.size() < K then

Q.push(e, D(e, q))
ι ← ι + 1

else if Q.top > D(e, q) then
Q.pop()
Q.push(e, D(e, q))
ι ← ι + 1

end if
end if

end for
if ν > 0 then

δ ← δ + ν−ι
ν

else
δ ← δ + 1

end if
if δ > δ̃ then break
if ι > 0 then δ ← 0
i ← i + 1

end while
return Q

end function

Fig. 4. Pseudo-code for the RSM algorithm, kNN Search mode.

To meet all these goals, in our proposal two statistics are accumulated while
exploring each frame: one is the number of valid candidates ν (fi (q)), i.e. all
neighboring points with valid 3D coordinates, the other one is the number of
inliers for the current search, ι (fi (q)). At the end of the exploration of each
frame, the following stop condition is tested:

δ (fi (q)) = 1 − ν (fi (q)) − ι (fi (q))
ν (fi (q))

> δ̃ (2)

where δ̃ is a user defined parameter. Intuitively, if the percentage of outliers
(i.e., 1 minus the percentage of inliers) for the current frame is greater than a
pre-defined threshold, the search is terminated.

To take into account the possibility that multiple frames are entirely com-
posed of invalid points or outliers we allow the parameter δ̃ to take integer values
greater than 1. In this case, the parameter counts the number of frames entirely

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 569

function RSM RADIUS(Radius, q, δ̃)
i ← 1
L ← (q, 0)
while fi(q) ∈ image do

ι ← 0
ν ← 0
for all e ∈ fi(q) do

if is valid(e) then
ν ← ν + 1
if D(q, e) < Radius then

L.push(e, D(e, q))
ι ← ι + 1

end if
end if

end for
if ν > 0 then

δ ← δ + ν−ι
ν

else
δ ← δ + 1

end if
if δ > δ̃ then break
if ι > 0 then δ ← 0
i ← i + 1

end while
return L.sort()

end function

Fig. 5. Pseudo-code for the RSM algorithm, Radius Search mode.

composed of invalid points or outliers to be consecutively met before stopping
the search. Every time such kind of frames are met, we set

δ (fi (q)) = δ (fi−1 (q)) + 1 (3)

and then check the stop condition.
The pseudo-code of the kNN Search can be found in Fig. 4. For each query

point, the algorithm keeps the discovered neighbors in a priority queue Q, which
holds the sorted result at the end of the search. Q is a min-priority queue in which
the order is based on the distance between the query point and the element.
Starting form the query point, we evaluate the frames in order of increasing
distance, push each valid element of the frame in the priority queue if needed,
and check if the termination criterion is met after processing every frame. After
initialization of the data structures, the search starts from the first frame and
continues until the stop criterion is met. In particular, the algorithm accumulates
for each frame the number of valid examined candidates ν, as well as the number
of those currently included in the nearest neighbor set, i.e. the inliers ι. With
this value, it updates the percentage of outliers in the explored frames, δ, taking

570 F. Tombari et al.

Fig. 6. Examples showing one object view of each of the four datasets used in our
experiments.

into account the previously exposed rules in case of fully invalid frames. When
such percentage exceeds the user provided parameter δ̃, the search ends.

The pseudo-code of the Radius Search can be found in Fig. 5. For each query
point, the algorithm keeps all the elements that have distance less than the
radius parameter R. All the points are successively stored in a list L, which
is sorted at the end of the search to return the points in distance order. The
overall structure of the algorithm is similar to the kNN Search, but due to the
nature of the radius search, if a point is pushed into the list it is never removed
because it surely belongs to the final solution. For the same reason, the list is
not kept sorted during the exploration, and is just sorted at the end, to save
computation time.

The only step that may introduce approximations in the result in both algo-
rithms is the stop criterion, the results being identical to the linear search one
in the case of exploration of the whole range image. Therefore, the parameter
δ̃ trades off search accuracy for efficiency: since an unnecessary high accuracy
negatively affects run-time performance, it is important to choose the right value
of such parameter. In the Experimental results section we will analyze the sen-
sitivity of the RSM algorithm to this parameter and provide guidelines on how
to choose it appropriately.

3 Experimental Results

In this section, we provide an experimental evaluation of the RSM method. The
method has been implemented in C++, and it is here compared with the ran-
domized kd-tree forest algorithm available in FLANN [12], as a representative of
the state of the art for approximated NNS on point clouds, as well as with the
organized NNS algorithm available in PCL [1], as a representative of approx-
imated NNS algorithms for range images. The comparison has been done on
a PC equipped with an Intel Xeon E312xx 2.00 GHz (4 cores) processor with
8 Gb of RAM. We have compiled our framework under Visual Studio 2013 with
optimization O2, and inline function expansion level set to Ob2. No evaluated
algorithm includes any kind of parallelization, so the tests are always run on a
single core.

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 571

The experiments were performed on four datasets composed of RGB-D
images acquired with a Kinect dataset, recently proposed in literature and pub-
licly available1. These datasets were originally proposed for the task of point
cloud registration, and each of them includes different views of an object with-
out the background: they are denoted here as Frog, Mario, Squirrel and Duck.
A sample view for each dataset is shown in Fig. 6. The measured average dis-
tance of each point from its nearest neighbor on this data is approximately 1 mm.
Each dataset includes at least 13 range images. On each range image, 1000 query
points have been randomly extracted from the available valid 3D point set, and
the results averaged over this set.

We evaluate both the execution times and the accuracy achieved by the tested
algorithms. To measure the accuracy, the NNS for each query point has been also
carried out by a brute force algorithm performing an exhaustive investigation,
and used as ground truth in order to count the number of correctly retrieved
neighbors by each approximated NNS algorithm.

3.1 Parameter Sensitivity Analysis

The first experimental analysis we carried out is a sensitivity analysis with the
goal of choosing a good value for parameter δ̃, which is the main parameter
the RSM algorithm relies on, in both kNN and Radius versions. In particular,
as anticipated, such parameter trades-off accuracy for efficiency: the higher it
is, the more precise the outcome of the search will be compared to that of an
exhaustive search, but also the longer the whole process will take.

Figure 7 reports the charts relatively to the results, in terms of accuracy and
efficiency, on the evaluated datasets where each curve is associated to different
values of parameter δ̃. The two top charts report results in the kNN Search
case, while the two bottom charts are relative to the Radius Search case. In
each case, the left chart measures the relative search accuracy with respect to
the exhaustive search (number of correct neighbors found), while the right chart
reports the average time to process 1000 query points in a range image. In the
kNN Search case, the x axis reports increasing values of k, while in the Radius
Search case, it reports increasing values of the radius (in meters), with values
typically used in most applications of such 3D NNS algorithms. In particular,
the tests were performed using, for the k parameter, a range of values between
2 and 150, while for the Radius parameter we have chosen a range from 0.005
to 0.030 m.

From the charts related to the accuracy, RSM shows to be equivalent to
the exhaustive search if the value of δ̃ is greater than or equal to 1. Yet, the
drop in performance is limited even if δ̃ is set to low values: the worst result
we get is to retrive 92% of the real neighbors when using δ̃ = 0.5 in the radius
search. This result confirms the intution that a radial search can be a good
exploration pattern for NNS and shows that the statistics used to define the
stop condition are able to limit the explored neighbors to the most interesting

1 http://www.vision.deis.unibo.it/lrf.

http://www.vision.deis.unibo.it/lrf

572 F. Tombari et al.

Fig. 7. Sensitivity analysis for the parameter δ̃. The accuracy is reported on the left
charts, the runtime on the right ones. Top charts: kNN Search; bottom charts: Radius
Search. The scale of the y axis in (a) and (c) has been expanded for better visualization
of the results.

ones. At the same time, looking at the reported runtime, as expected the lower
the value of the parameter, the faster the overall efficiency. The gap between
different approximation levels increases the larger k or radius get. As the gap
in runtime is limited between the different choices of δ̃, in the remainder of the
experimental Section, we will employ the value of δ̃ = 1, given that it yields the
highest efficiency among those reporting perfect accuracy.

3.2 Comparison with the State of the Art

Figure 8 shows the results in term of accuracy and runtime reported by the
evaluated methods (RSM, FLANN and Organized) on the test dataset. As before,
the top charts report the kNN Search case, while the bottom charts are relative
to the Radius Search case, each chart showing the results at increasing values
of the k and the radius parameter. In each case, the left chart measures the
relative search accuracy with respect to the exhaustive search (number of correct
neighbors found), while the right chart reports the average runtime over all the
images of the datasets when processing 1000 query points on each range image.

Interestingly, in terms of accuracy all methods report, in both Search cases,
a negligible loss of accuracy with respect to the exhaustive investigation. As far

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 573

Fig. 8. Accuracy (a, c) and runtime (b, d) reported by RSM, FLANN and Organized
methods on the evaluated dataset. The scale of the y axis in (a) and (c) has been
expanded for better visualization of the results.

as the runtime is concerned, FLANN shows to scale worse than the other meth-
ods when k or the radius increases. Nevertheless, when just a few neighbors are
sought, it turns out faster than Organized, which is surprising given that Orga-
nized has been specifically conceived for range images. RSM is consistently the
fastest for all k and radii. This confirms that taking advantage of the structure
inherent to range images can improve NNS efficiency with respect to using a gen-
eral purpose solution like FLANN, and that a more natural exploration pattern
like the radial one deployed by RSM can explore more promising areas of the
image first and terminate the search earlier than the raster-scan search deployed
by Organized.

3.3 Relevance of NNS in Keypoint Detection

To complement previous results, we have compared FLANN, Organized and
RSM when used within a real and widely deployed application of the NNS prob-
lem such as 3D keypoint detection. As for the datasets, we have used the same
data used in the previous experiments. In this case, results have been measured
in terms of overall runtime of the whole detection process, so to measure out how
much the computational advantage brought in by RSM impact in terms of the
whole application. In addition, we have also measured the accuracy of the NNS

574 F. Tombari et al.

Fig. 9. Runtime reported, respectively, by the Harris3D detector (a, c) and the ISS
detector (b, d) when employing, respectively, RSM, FLANN and Organized methods
for the NNS.

in terms of the final application, i.e. by computing the relative repeatability [17]
between the extracted 3D keypoints on pairs of overlapping views. To perform
the repeatability evaluation, we have exploited the registration ground truth
available with the dataset, that provides the 3D translation and 3D rotation
registering each view into all other overlapping ones.

As for the choice of the 3D detectors, based on the analysis in [17] we have
selected the Intrinsic Shape Signatures (ISS) detector [18], which provides a good
trade-off between repeatability, distinctiveness and computational efficiency. In
addition, we have also included in the comparison the Harris3D detector [1],
which is an extension of the Harris corner detector [9] to the 3D case. For both
detectors, we have used the available implementation in PCL [1]. As typically
done by most 3D keypoint detectors [17], both methods rely on a NNS at each
point of the range image to compute a local saliency: the extrema of such saliency
are then used to localize distinctive keypoints. We have appropriately modi-
fied the code so to use, for the NNS, one method among RSM, Organized and
FLANN, which have been tested both in the kNN Search as well as in the Radius
Search version.

Figure 9 shows the results in terms of overall detection time for Harris3D (left
charts) and ISS (right charts), both in the kNN Search (top charts) and in the

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 575

Radius Search (bottom charts) case. These charts show that by deploying RSM,
we can clearly reduce the overall time required to perform keypoints detection,
especially when analyzing structures at larger scales, i.e. those defined by larger
k or radii, and confirm the practical importance of designing efficient methods
to solve the NNS in 3D data.

3.4 Relevance of NNS in Descriptor Computation

In Fig. 10 are shown the results relative to the descriptors tests. On the vertical
axis are shown the perfomances relative to the mean time for a descriptor com-
putation. As in the previous tests on the detectors the runtime is evaluated on
the Kinect datasets (Fig. 6), the keypoints used are obtained using ISS detectors.
Since PCL implements only radius searchability for each descriptor algorithm
only the RadiusNN search is compared in the tests. In the figures is possible
to see how much the performances are influenced by the neighborhood search.
First of all using Fast Point Feature Histograms (FPFH) [14] both RSM and
Organized are faster than FLANN (Fig. 10a), but since the main computation
is spent around the non-search part (the runtime axis is expressed in thousands
of milliseconds) they are very close in the diagram, more explicative results
were obtained using Signature of Histograms of OrienTations (SHOT) [16] and
Spin Images [11] (respectively Fig. 10b, c), looking closer is possible to see the
improvement given by RSM over both Organized and FLANN methods. Further-
more, comparing descriptors results is impossible to notice differences between
a description obtained using FLANN algorithm compared to one obtained using
RSM or Organized.

FPFH a) SHOT b) Spin Images c)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

tim
e

(m
s)

radii

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

tim
e

(m
s)

radii

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

tim
e

(m
s)

radii

Fig. 10. Mean runtime reported for each keypoint descriptor evaluation, respectively
we have FPFH (a), SHOT (b) and Spin Images (c), every descriptor was evaluated
with RadiusNN search on a ISS type keypoint.

4 Concluding Remarks

In this paper, we have proposed a new method for NNS on range images, dubbed
RSM, which proves to be faster than available algorithms for NNS on this kind
of organized data, while preserving the same level of accuracy as the currently
employed NNS methods for points clouds and range images. In particular, RSM is

576 F. Tombari et al.

able to leverage on the organized structure of range images and on effective stop
conditions applied while exploring the neighborhood radially from the query
point to terminate the search process as soon as the currently probed locations
do not seem to contain additional nearest neighbors. RSM proved to provide
computational savings both in the Radius Search as well as in the kNN Search
case. Furthermore, the method proved to be particularly effective for speeding
up 3D keypoint detection and description without reducing the quality of the
results in terms of repeatability and distinctiveness.

References

1. Point cloud library. http://pointclouds.org/
2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions. In: Proceedings - Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS, pp. 459–468 (2006)

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM
45(212), 891–923 (1998)

4. Beis, J., Lowe, D.: Shape indexing using approximate nearest-neighbour search in
high-dimensional spaces. In: Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (1997)

5. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans.
Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

6. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
mun. ACM 16(4), 230–236 (1973)

7. Freidman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

8. Fukunaga, K., Narendra, P.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Trans. Comput. 750–753 (1975). http://ieeexplore.ieee.
org/xpls/abs all.jsp?arnumber=1672890

9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Procedings
of the Alvey Vision Conference 1988, pp. 147–151 (1988). http://www.bmva.org/
bmvc/1988/avc-88-023.html

10. Holzer, S., Rusu, R.B., Dixon, M., Gedikli, S., Navab, N.: Adaptive neighborhood
selection for real-time surface normal estimation from organized point cloud data
using integral images. In: IEEE International Conference on Intelligent Robots and
Systems, pp. 2684–2689 (2012)

11. Johnson, A., Hebert, M.: Surface matching for object recognition in complex 3D
scenes. Image Vis. Comput. 16, 635–651 (1998)

12. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with auto-
matic algorithm configuration. In: International Conference on Com-
puter Vision Theory and Applications (VISAPP 2009), pp. 1–10 (2009).
papers2://publication/uuid/3C5A483A-ADCA-4121-A768-8E31BB293A4D

13. Puglia, L., Vigliar, M., Raiconi, G.: SASCr3: a real time hardware coprocessor for
stereo correspondence. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol.
8815, pp. 383–391. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11755-3 43

14. Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D
registration. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Kobe, Japan (2009)

http://pointclouds.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672890
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1672890
http://www.bmva.org/bmvc/1988/avc-88-023.html
http://www.bmva.org/bmvc/1988/avc-88-023.html
http://www.papers2://publication/uuid/3C5A483A-ADCA-4121-A768-8E31BB293A4D
http://dx.doi.org/10.1007/978-3-319-11755-3_43

A Radial Search Method for Fast Nearest Neighbor Search on Range Images 577

15. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor match-
ing. In: 26th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR (2008)

16. Tombari, F., Salti, S., Stefano, L.: Unique signatures of histograms for local
surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6316, pp. 356–369. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15558-1 26

17. Tombari, F., Salti, S., Di Stefano, L.: Performance evaluation of 3D keypoint detec-
tors. Int. J. Comput. Vis. 102, 198–220 (2013)

18. Yu, Z.: Intrinsic shape signatures: a shape descriptor for 3D object recognition. In:
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops 2009, pp. 689–696 (2009)

http://dx.doi.org/10.1007/978-3-642-15558-1_26
http://dx.doi.org/10.1007/978-3-642-15558-1_26

	A Radial Search Method for Fast Nearest Neighbor Search on Range Images
	1 Introduction and Related Work
	2 RSM Algorithm
	3 Experimental Results
	3.1 Parameter Sensitivity Analysis
	3.2 Comparison with the State of the Art
	3.3 Relevance of NNS in Keypoint Detection
	3.4 Relevance of NNS in Descriptor Computation

	4 Concluding Remarks
	References

