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Abstract. There is no doubt that SLAM and deep learning methods
can benefit from each other. Most recent approaches to coupling those
two subjects, however, either use SLAM to improve the learning process,
or tend to ignore the geometric solutions that are currently used by
SLAM systems. In this work, we focus on improving city-scale SLAM
through the use of deep learning. More precisely, we propose to use CNN-
based scene labeling to geometrically constrain bundle adjustment. Our
experiments indicate a considerable increase in robustness and precision.
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1 Introduction

The problem of the drift of monocular visual simultaneous localization and map-
ping (VSLAM) in seven degrees of freedom is well-known. Fusion of VSLAM,
in particular key-frame bundle adjustment (BA) [1,2] with data from various
sensors (e.g. GPS, IMU [3-5]) and databases (e.g. 3d textured or textureless 3d
models, digital elevation models [6-8]) has proven to be a reliable solution to
this problem. In this paper, we focus on fusion through constrained BA [2—4,6].
Among the available sensors and databases that can be used in constrained BA,
textureless 3d building models are of particular interest, since the geometric
constraints they impose on the reconstruction can prevent scale drift and also
help in the estimation of camera yaw. Furthermore, they can be used to limit
the impact of GPS bias on the reconstruction [9]. They are also, as opposed
to textured models, widespread and easily (usually freely) available. However,
methods that make use of such partial knowledge of the environment [6,8] face
the problem of data association between 3d points and 3d building planes, that
is, they must design a reliable method to segment the 3d point cloud and deter-
mine which points belong to buildings. In previous works [6,7], data association
between 3d points and building models has been made by means of simple geo-
metric constraints instead of photometric ones. This is due to the high cost of
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scene labeling algorithms. Unfortunately, these simple geometric criteria often
introduce high amounts of noise, which can lead to failure even when used in con-
junction with M-estimators or RANSAC-like algorithms. This is especially true
when building facades are completely occluded by nearby objects on which an
important number of interest points are detected (e.g. trees, advertising boards,
etc.). Since these methods clearly reach their limits in such environments, we
must investigate the alternative solution, namely scene labeling. While current
state of the art scene labeling algorithms allow a highly accurate segmentation,
their cost often remains prohibitive for real-time use, even on the GPU. However,
some state of the art segmentation methods such as [10] operate in two steps:
first, a (reasonably fast) convolutional neural network (CNN) provides a crude
and often spatially incoherent segmentation, which is refined using graph-based
methods in a second time consuming step. This observation leads to the idea that
the raw outputs of a CNN can be used with key-frame bundle adjustment as an
a priori in data association, without much overhead, and possibly in real-time.

In this paper, we propose the use of scene labeling for data association in
bundle adjustment constrained to building models. We segment each key-frame
using a CNN inspired by the first stage of [10]. In order to reduce time complexity,
we do not refine the outputs of the CNN, which, as we mentioned previously, are
tainted by high levels of uncertainty. Instead, we replace the compute-intensive
regularizations by a fast likelihood computation, with respect to a density func-
tion that we have previously learned by modeling our particular CNN as a
Dirichlet process.

Roadmap. The following section (Sect. 2) is dedicated to notations and prelim-
inaries. We discuss related works in Sect. 3, and present our approach in Sect. 4.
Experiments are presented in Sect.5 and we conclude the paper in Sect. 6.

2 Notations and Preliminaries

2.1 Local Key-Frame Based Bundle Adjustment

Bundle adjustment (BA) refers to the minimization of the sum of reprojection
errors, i.e. the minimization of:

B(z)= > > |z — m(X:)l (1)

ieEM FEC;

where M denotes the set of all 3d point indexes, and C; the set of cameras
from which the point ¢ is observable. The function m; maps each 3d point X;
to its normalized 2d coordinates in the image plane of camera j, where the
observation of X; is noted z;;. Successive images in a sequence are often similar,
therefore keeping every single camera pose, apart from being very inefficient,
is redundant. Thus, it is usual to perform key-frame bundle adjustment [1], in
which only frames that present a significant amount of new information are kept.
We also distinguish between global BA, in which all the cameras and points are
optimized, and local BA in which only the n € N last camera poses and the
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points they observe are optimized. In this paper, the term bundle adjustment,
unless otherwise stated, will refer to local key-frame based BA.

2.2 The Dirichlet Distribution

The Dirichlet distribution is a continuous distribution of discrete distributions,
that can be seen as a generalization of the Beta distribution to higher dimensions.

We will note i

1
D(x1, . T, Q1 Q) = Wa) H gl )

the Dirichlet probability density function of parameters o = {a, ..., ax }. Here,
(3 is the multinomial Beta function.

s=1

3 Related Work

Our work is firstly related to those that combine deep learning methods with
geometrical SLAM algorithms, and secondly to SLAM approaches that make use
of 3d textured or texture-less building models. Works such as [11] are based on a
pure machine learning approach, but can benefit from more precise datasets gen-
erated by VSLAM. Such methods can thus be considered as dual to approaches
such as ours. In their work, Costante et al. [12] present a deep network archi-
tecture that learns to predict the relative motion between consecutive frames,
based on the dense optical flow of input images. Their method and ours can be
seen as complementary to each other, since theirs intervenes at a lower level and
can be used as part of a more general framework (for example by replacing the
PnP-solving methods in traditional key-frame based systems), while our work
targets the optimization (BA) that refines the results of such pose computations.
The loop closure detection of [13] is related to the present paper in the sense
that it makes use of deep nets to improve visual SLAM, but also operates on a
lower level that bundle adjustment.

In previous works, data association for city-scale SLAM, as far as we know,
has been either carried out via simple geometric criteria [6-8], or left to outlier-
elimination processes such as RANSAC (e.g. in [14]). In [6-8], a point p is asso-
ciated to a building if the ray cast from the center of the camera that goes
through p intersects a building plane. Although the time complexity of such an
evaluation remains negligible, its results naturally tend to contain a considerable
amount of noise. In [14], Google street view images with known poses are first
back-projected on 3d building models in an off-line pre-processing step. In other
terms, each pixel in the street view image is associated to a 3d position. The
database obtained via this procedure is then used in an on-line localization algo-
rithm, by matching SIFT features between each new image and the ones in the
database. The resulting 2d < 3d matches define a PnP problem that is solved
using standard techniques. Poor matches and wrong 3d positions are eliminated
by a RANSAC, But no explicit attempt at filtering points that do not belong to
buildings are made during the back-projection step.
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4 Proposed Method

We seek to correct the results of local key-frame based BA [1] by constraining the
reconstruction using 3d building models. To this end, we minimize a cost func-
tion inspired by [3,4]. Intuitively, we seek to respect the geometric constraints
provided by 3d building models, so long as the sum of squared reprojection errors
B(X) remains below a certain threshold ¢. More precisely, we solve:

. 1
arg;mn m+qezc2wqd(q, Nq) (3)

In the expression above, X is the vector that concatenates the parameters of all
camera poses and the 3d positions of all 3d points. @ is the subset of 3D points
from the map that have been classified as belonging to a building, d(.) denotes
the squared Euclidian distance, and N, denotes the building plane closest to
g € Q. Each W, is a weight, and its computation will be discussed at the end
of section Sect.4.2. This optimization problem has to be initialized with the
minimizer of B. Thus, we first perform non-constrained BA and use its result as
the initial value for X. We use the standard Levenberg-Marquardt algorithm to
minimize the cost function of Eq. 3. We propose to use a fast CNN to determine
the set Q.

4.1 Scene Labeling

The scene labeling algorithm we use is based on the first stage of the method
presented in [10], but operates in a single scale, as opposed to the multiscale
approach of the aforementioned paper. A Convolutional Neural Network (CNN)
is trained on labeled data. The CNN assigns each pixel x in the input image
I to a probability vector P, of length 8. The ¢ — th component of P, is the
probability that x belongs to class i. The outputs of such of a CNN usually
require post-processing in order to be regularized. Unfortunately, such methods
are too time-consuming to be used in any BA system that runs in reasonable
time. Thus, we are left with the raw outputs of the CNN, which more often than
not lack spatial consistency.

To classify a pixel z mapped by the CNN to a distribution P,, the most
straight-forward approach would be to take the argmax of P,. However, we
think that a better approach is to take into account the general shape of the
distribution. If a pixel x truly belongs to the class building, its distribution must
have a specific form, and particular modes. Thus, by learning the expected form
of this distribution, we can eliminate false positives, that is, distributions which
reach their peak on the wrong label. To that end, we consider each distribution
as a random variable, and given a set of labeled data, learn the Dirichlet distri-
bution (defined in Sect. 1) from which the set

Dyyila = {P; | ¢ belongs to a building in the image} (4)
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is a sample. Given a set of labeled data, the problem is to find the set of para-
meters « = {aq,...,ax} for which the Dirichlet distribution fits best. This can
be written as a maximum likelihood problem:

arg min H D(X|a) (5)

«
X €Dpuila

where ® is the Dirichlet density function of parameters a. To avoid underflow
and also to simplify the notations, we solve the equivalent problem

arg min{— In I[I 2} (6)

X €Dyuila

It can be shown using a few basic algebraic operations, that this can be written as
arg min{m In(5(«)) + Z(l —a;)In(t;)} (7)
o S

where t; = [[,cp H§:1 q(s) and k is the number of classes. We have a; > 0
for all ¢ from the definition of the Dirichlet distribution. Therefore, we need to
add k terms that will act as barriers, preventing the value of the a; variables to
become negative. The final cost function takes the form:

C(a) = mIn(B +Z (1 —oau)ln(t +)\Ze e (8)

with A € R influencing the impact of the exponential terms. The Jacobian of
this cost function is given by

oc —a
ey m(Yo(ou) — o Zal —In(t;) — Ae™™ (9)

where 1y denotes the digamma function. We used the well known L-BFGS min-
imization algorithm [15] to learn the parameters a.

4.2 Integration in Constrained Bundle Adjustment

Each 3d point Z in the map has often more than one observation. Noting
{lp, I1,..,I,} the key-frames in which Z is observed, and {z, ..., z,, } its 2d obser-
vations, we seek to determine the class to which Z most likely belongs. As men-
tioned previously, our scene labeling algorithm runs once for each key-frame.
This results in a set of probability distributions for each of the observations of
Z, that we will note M = {Py, P, ..., P,}. In practice, this distributions can
differ. We combine these distributions in the simplest possible manner, by com-

puting a mean distribution
1 n
= ﬁ Z P, [ (10)
¢ =1

Next, we compute D (Py) and classify Z as belonging to @ if and only if ©(Pz) >
tn, where tp is a threshold. Finally, we set W, = D(Pz) in Eq. 3.
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5 Experimental Evaluation

We used a CNN implementation written in Torch 7 [16], based on the first
stage of [10], but operating on only one scale, as opposed to the multiscale
approach of the aforementioned paper. We used the following eight labels: {1:
sky, 2: tree, 3: road, 4: grass, 5: water, 6: building, 7: mountain, 8: object}.
The implementation was reasonably fast: the average segmentation time for a
test image of size 640 x 480 was on average 0.6s, when executed on a single
core (on a single Intel(R) Core(TM) i7-4710HQ CPU @ 2.50 GHz) running at
1.6 GHz, under linux (Ubuntu 14.04). We used a subset of annotated images
from the kitti dataset [17] to demonstrate the advantage of using the Dirichlet
distribution ® to classify pixels compared to simply taking the arg max. On
average, our method eliminated more than 71 % of false positives (i.e. points
falsly classified as belonging to buildings by the CNN), while rejecting a small
percentage (less than 5%) of correctly classified building points. Examples are
shown in Fig. 1. We conducted experiments on synthetic and real sequences in
order to validate our bundle adjustment approach.

(a) (b)

Fig. 1. Examples illustrating the advantage of using the Dirichlet distribution to filter
out poor classification results. Row 1: images fed as input to the CNN. Row 2: the raw
result of the CNN, determined by taking the arg max of the distribution for each pixel.
Each color corresponds to a class, and red pixels are those that have been classified as
belonging to buildings. Row 3: the results of our filtering (i.e. using ® instead of the
arg max). This binary image shows pixels that present a higher than 80 % probability of
being building pixels according to the Dirichlet distribution. It can be seen that most
false positives (mostly, building detection on the road plane) have been eliminated,
at the cost of discarding a small portion of correctly classified building points. (Color
figure online)

5.1 Synthetic Sequence

We generated an urban scene with important levels of occlusion that was real-
istic enough to be segmented with good accuracy by scene labeling algorithms.
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Fig. 2. (a) An example image of the synthetic sequence. (b) The result of the CNN
(with the arg max taken) on the example image. Red pixels are those that correspond
to the buildings. (¢) The ground truth trajectory. The camera movement is given by
A-B-C-D-E-F-A (d) the trajectory and the point cloud as refined by our method. The
golden points are those that are classified as belonging to buildings. Other points are
represented in green. (Color figure online)

The sequence was ~1200m long and it included multiple loops. An example
image from the sequence and its segmentation by the CNN is given in Fig. 2(a)
and (b). The ground truth trajectory is given in Fig. 2(c). The trajectory and the
point cloud as refined by our constrained BA approach is illustrated in Fig. 2(d).
On this sequence, the mean translational error of our method was 1.3 cm, while
the rotational error was 0.05 radians.

On this sequence, constrained BA without pixel-wise scene labeling fails. BA
constrained to 3d building models with geometric segmentation of the point
cloud (with ray-tracing and proximity criteria as in [6,8]) leads to a rapid dete-
rioration of the geometric structure and ultimately to pose computation failure.

5.2 Real Data

In this section, we present BA results with and without scene labeling on a
short but particularly challenging outdoors sequence!, mainly because building

! We could not use the Kitti dataset, because it does not provide 3d building models.
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(2 (b) (©

Fig. 3. Comparison of reconstruction results. The blue curve represents ground truth.
Golden points are those that have been classified as belonging to buildings. All the
other points are shown in green. (a) The reconstruction we obtained without scene
labeling (using a simple ray-tracing similar to the approach of [7] instead). (b) The
result with scene labeling and classification using the arg max of the distributions. (c)
The result we obtained with scene labeling and classification using the distribution ©.
(Color figure online)

Fig. 4. Building model reprojections after bundle adjustment on the real sequence.
This examples show that our solution is robust to occlusions, which are omnipresent
on that sequence. Once again, note that the building models suffer from inaccurate
heights.

facades are often almost completely occluded by trees, billboards, etc. The cam-
era is approximately orthogonal to the trajectory. Additionally, the height of the
3d building models we used in this experiment were inaccurate. Unfortunately,
we only had access to the in-plane positional ground truth (shown as a blue
curve in Fig. 3) but did not have access to altitude or orientation ground truth.
Instead, we used the proper alignment of building contours with the projection
of 3d building models as a criteria for evaluating the precision of each solution.
Figure 3 shows a comparison between the result we obtained without and with
scene labeling. Additionally, this figure shows the trajectory that we obtained
when classifying the pixels using the arg max of their distribution instead of the
Dirichlet distribution ®. It can be seen that in that case, as when scene labeling
is not used, the high number of false correspondences between points and build-
ings causes an inacceptable error. Figure 4 shows building models reprojections
after bundle adjustment with our method.

6 Conclusion and Future Directions

In this paper, we demonstrated that important accuracy gains can result from
incorporating scene labeling into constrained bundle adjustment. We filtered out
poor segmentation results by modeling our particular CNN as a Dirichlet process.
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This method proved to be more efficient than simply taking the arg max. The
computational complexity of the segmentation module prevented us from reach-
ing real-time performance in a sequential implementation. However, it is possible
to run the segmentation algorithm on a dedicated thread, and update the on-line
reconstruction as soon as a result becomes available (similar approaches for com-
bining real-time slam with high-latency solutions exist [18]). Thus, we will direct
our future efforts toward developing such an architecture, while independently
optimizing our CNN implementation.
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