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Abstract. The mathematical and computational backgrounds of pat-
tern recognition are the geometries in Hilbert space for functional analy-
sis and applied linear algebra for numerical analysis, respectively. Organs,
cells and microstructures in cells dealt with in biomedical image analysis
are volumetric data. We are required to process and analyse these data
as volumetric data without embedding vector space from the viewpoints
of object oriented data analysis. Therefore, sampled values of volumet-
ric data are expressed as three-way array data. These three-way array
data are expressed as the third order tensor. This embedding of the data
leads us to the construction of subspace method for higher-order tensors
expressing multi-way array data.

1 Introduction

The aim of the paper is to clarify mathematical properties of pattern recognition
of tensor data from the viewpoints of object oriented data analysis for volumetric
data, which dealt with in biomedical image analysis, retrievals and recognition. In
traditional pattern recognition, sampled patterns for numerical computation are
embedded in an appropriate-dimensional Euclidean space as vectors. The other
way is to deal with sampled patterns as three-way array data. These three-way
array data are expressed as tensors [6–10] to preserve the linearity of the original
pattern space.

The subspace method based on Karhunen-Loève transform is a fundamen-
tal technique in pattern recognition. Modern pattern recognition techniques for
sampled value of patterns are described using linear algebra for sampled value
embedded in vector space. Organs, cells and microstructures in cells dealt with
in biomedical image analysis are volumetric data. We are required to process
and analyse these data as volumetric data without embedding sampled values in
vector space from the viewpoints of object oriented data analysis [5]. We express
sampled values of volumetric data as three-way array data. These three-way
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array data are processed as the third order tensor. This expression of data
requires to develop subspace method for tensor data.

We derive and clarify the mutual subspace and constrained mutual subspace
methods for tensors using tensor PCA based on the Tucker-3 tensor decompo-
sition. The mutual subspace method is stable against geometric perturbation
of queries for pattern recognition, since the method assumes that a query is
an element of a low-dimensional subspace. Furthermore, since the constrained
subspace method eliminates the common parts of subspaces among categories,
the method confirms robust recognition against global deformation of queries in
Hilbert space. Since the constrained mutual subspace method is a combination
of the mutual subspace method and constrained subspace method the method is
stable and robust both against geometric perturbations and global deformations
of queries for pattern recognition.

2 Pattern Recognition in Vector Space

A volumetric pattern is assumed to be a square integrable function in a lin-
ear space and to be defined on a finite support in three-dimensional Euclidean
space [1–3] such that

∫
Ω

|f |2dx < ∞ for Ω ⊂ R
3. Furthermore, we assume∫

Ω
|∇f |2dx < ∞ and

∫
Ω

tr{(∇∇�f)�(∇∇�f)}dx < ∞, where ∇∇�f is the
Hessian matrix of f . For an orthogonal projection P⊥ = I − P , f‖ = P f and
f⊥ = P⊥f are the canonical element and canonical form of f with respect to P
and P⊥, respectively. If P is the projection to the space spanned by the constant
element, the operation P⊥f is called the constant canonicalisation. Let Pi be the
orthogonal projection to the linear subspace corresponding to the category Ci.
For a pattern f , if |Pi∗(f/|f |)| ≤ δ for an appropriately small positive number
δ, we conclude that f ∈ Ci∗ .

Setting δ and ε to be a small vector and a small positive number, we have
the relation

|f(x + δ) − (f(x) + δ�∇f +
1
2
δ�(∇∇�f)δ)| < ε, (1)

for local geometric perturbations. All f , fx, fy, fz, fxx, fyy, fzz, fxy, fyz and
fzx are independent, if f is not sinusoidal in each direction. Therefore, Eq. (1)
implies that, for a pattern defined on three-dimensional Euclidean space, the
local dimensions of a pattern are four and ten, if local geometric perturbations
and local bending deformation of the pattern are assumed as local transfor-
mations to the pattern. This property of the local dimensionality allows us to
establish the mutual subspace method, which deals with a query as a pattern in
a subspace.

Setting (f, g) to be the inner product in Hilbert space H, the relation |f |2 =
(f, f) is satisfied. Let θ be the canonical angle between a pair of linear subspaces
L1 and L2. Setting P1 and P2 to be the orthogonal projections to L1 and L2,
respectively, cos2 θ is the maximiser of (P1f,P2g)2 with respect to the conditions
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|f | = 1, |g| = 1 P1f = f and P2g = g. The relation cos2 θ = λ2
max is satisfied,

where λmax is the maximal singular value of P2P1.
Since, in mutual subspace method, a query f is expressed by using a set

of local bases, we set that Qf is the orthogonal projection to linear subspace
expressing the query f . Then, if the canonical angle between Qf and Pi satisfies
the relation ∠(Qf ,Pi) < ∠(Qf ,P ∗

i ) for all Ci, we conclude that f ∈ Ci∗ .
Setting Pi to be the orthogonal projection to linear subspace Li correspond-

ing to the category Ci, the orthogonal projection which maximises the criterion
J =

∑n
i=1 |QPi|22 with respect to the condition Q∗Q = I where Q∗ is the con-

jugate of Q and |A| is the trace norm of the operator A in Hilbert space H.
Though operation Qf removes common part for all categories from f , (I −Q)f
preserves essentially significant parts for pattern recognition of f .

For f and g in H, we define the metric d for μ(f) and μ(g), such that
d(μ(f), μ(g)), using an appropriate transform μ from H to its subset. Further-
more, using an appropriate mapping Φ, we define a measure

s(f, g) = Φ(d(μ(f), μ(g))). (2)

If we set μ(f) = f
|f | and set d and Φ the geodesic distance on the unit sphere in

H and Φ(x) = cos x, respectively, s(f, g) becomes the similarity measure based
on the angle between f and g. For f ′ = f + δf and g′ = g + δg, setting

min(|f |, |g|) = Λ, max(δf , δg) = Δ, (3)

we have the relation
∣
∣
∣
∣

(
f ′

|f ′| ,
g′

|g′|
)

−
(

f

|f | ,
g

|g|
)∣

∣
∣
∣ = c

Δ

Λ
, (4)

for a positive constant c. Therefore, s(f, g) is stable and robust against pertur-
bations and noises for f and g.

For patterns in H, we have the following property.

Property 1. For |f | = 1 and |g| = 1, assuming |f − g| ≤ 1
3 · π

2 the geodesic
distance θ = dS(f, g) between f and g satisfies the relation |θ − |f − g|| < ε for
a positive small number ε.

In traditional pattern recognition, these sampled patterns are embedded in an
appropriate-dimensional Euclidean space as vectors. For x ∈ R

n and X ∈ R
n×n,

|x|2 and |X|F are the vector norm and Frobenius norm of x and X, respectively.
Setting the data matrix X to be X = (f1,f2, · · · ,fm) for data vectors

{fi}m
i=1 in R

N , whose mean is zero, the Karhunen-Loève transform is established
by computing f̂i = Ufi for U which minimises J1 = |UX|2F with the condition
U�U = IN . The orthogonal matrix U is the minimiser of

J11 = |UX|2F + 〈(U�U − I)Λ〉 (5)
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where
Λ = Diag(λ1, λ2, · · · , λN ) (6)

for
λ1 ≥ λ2 ≥ λ2 ≥ · · · ≥ λN ≥ 0. (7)

The minimiser of Eq. (5) is the solution of the eigenmatrix problem

MU = UΛ, M = XX� (8)

The row vectors of U are the principal components.
The compression of fi to a low-dimensional linear subspace is achieved by

computing the transform PnUf , where Pn, for n < N , is the orthogonal pro-
jection such that

Pn =
(

In O
O� O

)

. (9)

3 Pattern Recognition in Multi-linear Forms

For the triplet of positive integers I1, I2 and I3, the third-order tensor RI1×I2×I3

is expressed as X = ((xijk)) Indices i, j and k are called the 1-mode, 2-mode
and 3-mode of X , respectively. The tensor space R

I1×I2×I3 is interpreted as the
Kronecker product of three vector spaces RI1 , RI2 and R

I3 such that RI1 ⊗R
I2 ⊗

R
I3 . We set I = max(I1, I2, I3).

For a square integrable function f(x), which is zero outside of a finite support
Ω in three-dimensional Euclidean space, the sample Sf(Δz) for z ∈ Z3 and
|z|∞ ≤ I defines an I × I × I three-way array F. To preserve the multi-linearity
of the function f(x), we deal with the array F as a third-order tensor F . The
operation vecF derives a vector f ∈ R

I123 for I123 = I2 ·I2 ·I3. We can reconstruct
f from F using an interpolation procedure.

For X , the n-mode vectors, n = 1, 2, 3, are defined as the In-dimensional
vectors obtained from X by varying this index in while fixing all the other
indices.

The unfolding of X along the n-mode vectors of X is defined as matrices such
that

X(1) ∈ R
I1×I23 , X(2) ∈ R

I2×I13 , X(3) ∈ R
I3×I12 (10)

for I12 = I1 · I2, I23 = I·I3 and I13 = I1 · I3, where the column vectors of X(j)

are the j-mode vectors of X for i = 1, 2, 3. We express the j-mode unfolding of
Xi as Xi,(j).

For matrices

U = ((uii′)) ∈ R
I1×I1 , V = ((vjj′)) ∈ R

I2×I2 , W = ((wkk′)) ∈ R
I3×I3 , (11)
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the n-mode products for n = 1, 2, 3 of a tensor X are the tensors with entries

(X ×1 U)ijk =
I1∑

i′=1

xi′jkui′i,

(X ×2 V )ijk =
I2∑

j′=1

xij′kvj′j , (12)

(X ×3 W )ijk =
I3∑

k′=1

xijk′wk′k,

where (X )ijk = xijk is the ijk-th element of the tensor X . The inner product of
two tensors X and Y in R

I1×I2×I3 is

〈X ,Y〉 =
I1∑

i=1

I2∑

j=1

I3∑

k=1

xijkyijk. (13)

Using this inner product, we have the Frobenius norm of a tensor X as |X |F =√〈X ,X〉. The Frobenius norm |X |F of the tensor X satisfies the relation |X |F =
|f |2, where |f |2 is the Euclidean norm of the vector f .

To project a tensor X in R
I1×I2×I3 to the tensor Y in a lower-dimensional

tensor space R
P1×P2×P3 , where Pn ≤ In, three projection matrices {U (n)}3n=1,

for U (n) ∈ R
In×Pn are required for n = 1, 2, 3. Using these three projection

matrices, we have the tensor orthogonal projection such that

Y = X ×1 U (1)� ×2 U (2)� ×3 U (3)�. (14)

This projection is established in three steps, where in each step, each n-mode
vector is projected to a Pn-dimensional space by U (n) for n = 1, 2, 3.

For a collection of matrices {Fi}N
i=1 ∈ R

m×n satisfying Ei(Fi) = 0, the
orthogonal-projection-based data reduction F̂i = U�FiV is performed by
maximising

J2(U ,V ) = Ei

(
|UF̂iV

�|2F
)

(15)

with respect to the conditions U�U = Im and V �V = In. The solutions are
the minimiser of the Euler-Lagrange equation

J22(U ,V ) = E
(
|UF̂iV

�|2F
)

+ 〈(Im − U�U),Σ〉 + 〈(In − V �V ),Λ〉 (16)

For diagonal matrices Λ and Σ.
Setting

1
N

N∑

i=1

F �
i Fi = M ,

1
N

N∑

i=1

FiF
�
i = N , (17)

U and V are the solutions of the eigendecomposition problems

MV = V Λ, NU = UΣ, (18)
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where Σ ∈ R
m×m and Λ ∈ R

n×n are diagonal matrices satisfying the relation-
ships λi = σi for

Σ = diag(σ1, σ2, . . . , σK , 0, . . . , 0), (19)
Λ = diag(λ1, λ2, . . . , λK , 0, . . . , 0). (20)

The equation
(P1U)�X(P2V ) = Y (21)

is rewritten as

(P2V ⊗ P1U)vecX = (P2 ⊗ P1)(V ⊗ U)X = P vecX = vecY . (22)

Using three projection matrices U (i) for i = 1, 2, 3, we have the tensor orthog-
onal projection for a third-order tensor as

Y = X ×1 U (1)� ×2 U (2)� ×3 U (3)�. (23)

For a collection {Xk}m
k=1 of the third-order tensors, the orthogonal-projection-

based dimension reduction procedure is achieved by maximising the criterion

J3 = Ek(|Xk ×1 U (1) ×2 U (2) ×3 U (3)|2F ) (24)

with respect to the conditions U (i)�
U (i) = I for i = 1, 2, 3. The Euler-Lagrange

equation of this conditional optimisation problem is

J33(U (1),U (2),U (3)) = Ek(|Xk ×1 U (1) ×2 U (2) ×3 U (3)|2F )

+
3∑

i=1

〈(I − U (i)�
U (i)),Λ(i)〉. (25)

This minimisation problem is solved by the iteration procedure [11].

Algorithm 1. Iterative method for the tensor PCA
Data: 0 < ε � 1
Data: α := 0
Data: For i = 1, 2, 3, U i

(0) := Q(i), where Q(i)�Q(i) = I

Result: Orthogonal matrices U (i) for i = 1, 2, 3
while |U (i)

α+1 − U
(i)
α | � ε do

maximise Ei|U (1)�
(α+1)X �

i1Xi1U
(1)
(α+1)|2F + 〈(U (1)

α+1U
(1)
(α+1) − I)Λ(1)

(α)〉 ;

for Xi1 = Xi ×2 U
(2)�
(α) ×3 U

(3)�
(α) ;

maximise Ei|U (2)�
(α+1)X �

i2Xi2U
(2)
(α+1)|2F + 〈(U (2)

(α+1)U
(2)
(α+1) − I)Λ(2)

(α)〉 ;

for Xi2 = Xi ×1 U
(1)�
(α+1) ×3 U

(3)�
(α) ;

maximise Ei|U (3)�
(α+1)X �

i3Xi3U
(3)
(α+1)|2F + 〈(U (3)

(α+1)U
(3)
(α+1) − I)Λ(3)

(α)〉 ;

for Xi3 = Xi ×1 U
(1)�
(α+1) ×2 U

(2)�
(α+1) ;

α := α + 1
end
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As an relaxation of the iteration algorithm, we define the system of optimi-
sation problems

Jj = E(|U (j)�Xi,(j)U
(j)|2F ) + 〈(U (j)�U (j) − Ij),Λ(j)〉 (26)

for i = 1, 2, 3, where Xi,(j) is the ith column vector of the unfolding matrix X(j).
These optimisation problems derive a system of eigenmatrix problems

M (j)U (j) = U (j)Λ(j), M (j) =
1
N

N∑

i=1

Xi,(j)X �
i,(j) (27)

for j = 1, 2, 3.
Setting P (j) to be an orthogonal projection in the linear space L({u

(j)
i }Ij

i=1)
spanned by the column vectors od U (j), data reduction is computed by

Y = X ×1 P (1)U (1) ×2 P (2)U (2) ×3 P (3)U (3). (28)

This expression is equivalent to the vector form as

vecY = (P (3) ⊗ P (2) ⊗ P (1))(U (3) ⊗ U (2) ⊗ U (1))vecX , (29)

The eigenvalues of eigenmatrices of Tucker-3 orthogonal decomposition sat-
isfy the following theorem.

Theorem 1. The eigenvalues of U = U (1) ⊗ U (2) ⊗ U (3) define a semi-order.

(Proof). For the eigenvalues λ
(1)
i , λ

(2)
j , λ

(3)
k of the 1-, 2- and 3-modes of ten-

sors, the inequalities λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i λ

(2)
j λ

(3)
k+1, λ

(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i λ

(2)
j+1λ

(3)
k ,

λ
(1)
i λ

(2)
j λ

(3)
k ≥ λ

(1)
i+1λ

(2)
j λ

(3)
k define the semi-orders among eigenvalues as

λ
(1)
i λ

(2)
j λ

(3)
k 


〈
λ
(1)
i λ

(2)
j λ

(3)
k+1, λ

(1)
i λ

(2)
j+1λ

(3)
k , λ

(1)
i+1λ

(2)
j λ

(3)
k

〉

��
Regarding the selection of the dimension of tensor subspace, Theorem1

implies the following theorem.

Theorem 2. The dimension of the subspace of the tensor space for data com-
pression is 1

6n(n+1)(n+2) if we select n principal components in each mode of
three-way array data.

(Proof). For a positive integer n, the number sn of eigenvalues λ
(1)
i λ

(2)
j λ

(3)
k is

sn =
n−1∑

i+j+k=0,i,j,k≥0

(i + j + k) =
n∑

l=1

l∑

m=1

m

=
1
2

(
1
6
n(n + 1)(2n + 1) +

1
2
n(n + 1)

)

=
1
6
n(n + 1)(n + 2) (30)

(Q.E.D)
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If n = 1, 2, 3, 4, we have N = 1, 4, 10, 20, respectively, for tensors mathcalX =
((xijk)) in R

I×I×I .
Since the discrete cosine transform (DCT) [4] is asymptotically equivalent to

the matrix of K-L transform [13] for data observed from a first-order Markov
model [12,13], the dimension reduction by PCA is performed using DCT as

fn
ijk =

n−1∑

i′j′k′=0

gi′j′k′ϕi′iϕj′jϕk′k, gijk =
N−1∑

i′j′k′=0

fi′j′k′ϕii′ϕjj′ϕkk′ (31)

for n ≤ N , where

Φ(N) = ((ε cos
(2j + 1)i

2πN
)) = ((ϕij)), ε =

{
1 if j = 0
1√
2

otherwise (32)

is the DCT-II matrix of the order N . If we apply the fast cosine transform
to the computation of the 3D-DCT-II matrix, the computational complexity is
O(3n log n).

Since
vec(u ◦ v ◦ w) = u ⊗ v ⊗ w (33)

outer products of vectors redescribes the DCT-based transform as

F =
N−1∑

i,j,k=0

aijkϕi ◦ ϕj ◦ ϕk, aijk = 〈F , (ϕi ◦ ϕj ◦ ϕk)〉 (34)

where
Φ(N) = (ϕ0,ϕ1, · · · ,ϕN−1) . (35)

4 Mutual Tensor Subspace Method

The mutual subspace method is stable against geometric perturbation of queries
for pattern recognition. Furthermore, the constrained subspace method confirms
robust recognition against global perturbations of queries. Therefore, as the com-
bination of two methods, the constrained mutual subspace method is stable and
robust both against geometric and global perturbations of queries.

The angle θ = ∠(A,B) between two tensor A and B is computed as cos θ =
〈A,B〉

|A|F |B|F . The angle between two spaces defined by {U (i),V (i)}3i=1 is the extremal
of the criterion

cos2 θ = |〈A ×1 U (1) ×2 U (2) ×3 U (3),B ×1 V (1) ×2 V (2) ×3 V (3)〉|2 (36)

with respect to the conditions |A|F = 1 and |B|F = 1. Therefore, the minimiser
of Eq. (36) is the solution of the Euler-Lagrange equation

T1 = cos2 θ + λ(1 − |A|2F ) + μ(1 − |B|2F ) (37)
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Since, we have the system of equations

A ×1 U (1) ×2 U (2) ×3 U (3) = μB (38)
B ×1 V (1) ×2 V (2) ×3 V (3) = λA, (39)

for the tensor singular value problem

A ×1 P1 ×2 P2 ×3 P3 = λμA (40)
B ×1 Q1 ×2 Q2 ×3 Q3 = λμB, (41)

where Pi = U (1)V (i) and Qi = V (i)U (i), the maximiser of Eq. (36) is

Tmax = λmaxμmax (42)

with the condition λ = μ. This mathematical property implies the following
theorem.

Theorem 3. The canonical angle between a pair of linear subspaces spanned by
triples of tensors {U (i)}3i=1 and {V (i)}3i=1 is cos−1 σ where σ is the maximum
eigenvalue of tensor P1 ×2 P2 ×3 P3.

To shrink the size of linear problem, we evaluate the difference between two
subspaces using the perpendicular length of the normalised tensors.

For a collection of tensors {Xi}M
i=1 with the condition and E(Xi) = 0, we

define a collection of categories of volumetric data. We assume that we have NC

categories For the kth category, we compute a system of orthogonal projections
{Uk,j}3,Nc

j=1,k=1. to define tensor subspaces, that is, a tensor subspace corresponds
to a category of volumetric data.

Setting {Gi′}M ′
i′=1 to be queries, we compute projected tensor

Ai′ = Gi′ ×1 U
(1)�
k ×2 U

(2)�
k ×3 U

(3)�
k . (43)

Furthermore, assuming that queries belong a category from NC categories, we
have orthogonal projection matrices {Vj}3j=1, from a tensor subspace of queries.
This system of orthogonal projections yields the projected tensor

Bi′ = Gi′ ×1 V (1)� ×2 V (2)� ×3 V (3)�. (44)

Using a tensor subspace Ck corresponding to a category and a tensor subspace
Cq computed from queries, we define the dissimilarity of subspaces d(Ck, Cq) by

E
(
|Ai′ ×1 PU

(1)
k ×2 PU

(2)
k ×3 PU

(3)
k − Bi′ ×1 PV (1) ×2 PV (2) ×3 PV (3)|2F

)
,

(45)
for Ai′ := Ai/|Ai|F and Bi′ := Bi/|Bi|F , where a unitary matrix P selects bases
for each mode of tensors. For the dissimilarity of (45), the condition

arg
(

min
l

d(Cl, Cq)
)

= Ck, (46)

leads to the property that {Gi′}M ′
i′=1 ∈ Ck(δ) for k, l = 1, 2, . . . , NC.
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For the construction of the common space spanned by {P
(j)
1 ⊗P

(j)
2 ⊗P

(j)
2 }NC

j=1,
the orthogonal projection Q = Q(1) ⊗ Q(2) ⊗ Q(3) which minimises criterion

JCMS1 =
NC∑

i=1

|QPi|2F (47)

with the conditions
Pi = P

(1)
i ⊗ P

(2)
i ⊗ P

(3)
i (48)

and
Q

(j)�
i Q

(j)
i = Ini

, j = 1, 2, 3. (49)

Therefore, we minimise the Euler-Lagrange equation

JCMS2 =
NC∑

i=1

|QPi|2F +
3∑

j=1

〈Λ(j)(Imj
− Q(j)�

Q(j))〉 (50)

Same with the minimisation for the tensor PCA, we solve the system of optimi-
sation problems.

In each mode, the orthogonal projection Q(j), which maximises the criterion

JCMSM =
Nj∑

i=1

|Q(j)U
(j)
i |2F , (51)

for the collection of orthogonal projections {U
(j)
i }Nj

i=1, approximates the common
space of spaces spanned by {U

(j)
i }Nj

i=1.
The projection Q(j) is the solution of the variational problem

JCMSM-EL =
N∑

i=1

|QU
(j)
i |2F ,+〈(Imj

− Q(j)�Q(j)),Σ〉. (52)

Therefore, the Q(j) is the eigenmatrix of

Nj∑

i=1

U
(j)
i Q(j) = Q(j)Σ(j). (53)

Let {X j
i }j(n)

i=1 be elements of category Cj and For Πi ∈ 2N , where N =
{0, 1, 2, · · · , N − 1}, we define the minimisation criterion

J(Πk,Πm,Πn) = Ei|X j
i − X j

i ×1 PΠk
Φ(N) ×2 PΠm

Φ(N) ×3 PΠn
Φ(N)|2F (54)

for the selection of the ranges of orthogonal projections PΠk
, PΠm

and PΠn
.

The minimisation of Eq. (54) defines the base of the category of Ci as

L(Ci) = {ϕp}p∈Πk
⊗ {ϕq}q∈Πm

⊗ {ϕr}r∈Πn
(55)

using row vectors of DCT-II matrix.
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Setting
F̄ j

pqr = Ei(F
j
ipqr), (56)

where F j
pqr is the DCT coefficient of f j

ipqr, the ranges are selected

Πk × Πm × Πn = {(p, q, r) | F̄ j
pqr ≥ T} (57)

for an appropriate threshold T . Since the low frequency parts are common for
almost all data, the canonicalisation of patterns is achieved by separating data to
low and high frequency parts. The separation of the constrain subspace ∩n

i=1Ci

for {Ci}n
i=1 is achieved by estimating common low frequency parts to categories.

5 Conclusions

We have reviewed several fundamental and well-established methodologies
in pattern recognition in vector space to unify data procession for higher-
dimensional space using tensor expressions and multi-way principal component
analysis.

In traditional method in medical image analysis outline shapes of objects
such as organs and statistical properties of interior textures are independently
extracted using separate methods. However, the tensor PCA for volumetric data
allows us to simultaneously extract both outline shapes of volumetric objects and
statistical properties of interior textures of volumetric data from data projected
onto a low-dimensional linear subspace spanned by tensors. We also showed
frequency-based pattern recognition methodologies for tensor subspace method.

This research was supported by the “Multidisciplinary Computational
Anatomy and Its Application to Highly Intelligent Diagnosis and Therapy”
project funded by a Grant-in-Aid for Scientific Research on Innovative Areas
from MEXT, Japan, and by Grants-in-Aid for Scientific Research funded by the
Japan Society for the Promotion of Science.
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