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Abstract. In this paper, unlike previous many linear embedding meth-
ods, we propose a non-linear embedding method for multi-label classifi-
cation. The algorithm embeds both instances and labels into the same
space, reflecting label-instance relationship, label-label relationship and
instance-instance relationship as faithfully as possible, simultaneously.
Such an embedding into two-dimensional space is useful for simultane-
ous visualization of instances and labels. In addition linear and nonlinear
mapping methods of a testing instance are also proposed for multi-label
classification. The experiments on thirteen benchmark datasets showed
that the proposed algorithm can deal with better small-scale problems,
especially in the number of instances, compared with the state-of-the-art
algorithms.
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1 Introduction

Multi-Label Classification (MLC), which allows an instance to have more than
one label at the same time, has been recently received a surge of interests in
a variety of fields and applications [10,15]. The main task of MLC is to learn
the relationship between a F -dimensional feature vector x and an L-dimensional
binary vector y from N training instances {(x(1),y(1)), . . . , (x(N),y(N))}, and
to predict a binary vector ŷ ∈ {0, 1}L for a test instance x ∈ R

F . To simplify
the notation, we use a matrix X = [x(1),x(2), . . . ,x(N)]T ∈ R

N×F and a matrix
Y = [y(1),y(2), . . . ,y(N)]T ∈ {0, 1}N×L for expressing the training set.

A key of learning in MLC is how to utilize dependency between labels [10].
However, an excessive treatment of label dependency causes over-learning and
brings larger complexity, sometimes, even intractable. Thus, many algorithms
have been proposed to model the label dependency efficiently and effectively.
Embedding is one of such methods for MLC. This type of methods utilizes
label dependency through dimension reduction. The label dependency is explic-
itly realized by reducing the dimension of the label space from L to K (�L).
Embedding methods in general learn relationships instances in F -dimensional
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space and latent labels in K-dimensional space, then, linearly transform the
relationship to those in F -dimensional and real labels in L-dimensional space
[4–6,8,12,16].

In this paper, we propose a novel method of a nonlinear embedding. Usu-
ally, either a set of labels or a set of instances is embedded [4–6,8,16], but in
our method, both are embedded in the same time. We realize a mapping into
a low-dimensional Euclidean space keeping three kinds of relationships between
instance-instance, label-label and label-instance as faithfully as possible. In addi-
tion, for classification, a linear and a non-linear mappings of a testing instance
are realized.

2 The Proposed Embedding

2.1 Objective Function

In contrast to traditional embedding methods, we explicitly embed both labels
and instances into the same K-dimensional space (K < F ) while preserving
the relationships among labels and instances.1 To preserve such relationships,
we use a manifold learning method called Laplacian eigen map [1]. It keeps the
distance or the degree of similarity between any pair of points or objects even
in a low-dimensional space. For example, given similarity measure Wij between
two objects indexed by i and j, we find z(i) and z(j) in R

K so as to minimize∑
i,j Wij‖z(i) − z(j)‖22 under an appropriate constraint for scaling.
Now, we consider to embed both instances and labels at once. Let g(i) ∈ R

K

be the low-dimensional representation of ith instance x(i) on the embedding
space and h(l) ∈ R

K be the representation of lth label on the same space as
well. In this embedding, we consider three types of relationships: instance-label,
instance-instance and label-label relationships. In this work, we quantify the
above relationships by focusing on their localities. In more detail, we realize a
mapping to preserve the following three kinds of properties in the training set:

1. Instance-Label (IL) relationship: Explicit relationship given by (x(i),y(i))
(i = 1, . . . , N) should be kept in the embedding as closeness between g(i)

and h(li) where li is one label of value one in y(i)

2. Label-Label (LL) relationship: Frequently co-occurred label pairs should be
placed more closely in the embedded space R

K .
3. Instance-Instance (II) relationship: Instances close in R

F should be placed
closely even in R

K .

Let us denote them by W(IL) ∈ R
N×L, W(LL) ∈ R

L×L and W(II) ∈ R
N×N ,

respectively. Then our objective function of {g(i),h(l)} become, with α, β (>0),

1 Note that labels do not have their representations explicitly before embedding.
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O = 2OIL + αOII + βOLL

= 2
∑

i,l

W(IL)
il ‖g(i) − h(l)‖22 + α

∑

ij

W(II)
i,j ‖g(i) − g(j)‖22 (1)

+β
∑

l,m

W(LL)
l,m ‖h(l) − h(m)‖22

=
∑

s,t

Wst‖e(s) − e(t)‖22 (s, t = 1, 2, . . . , (N + L)),

where e(s) = g(s) or h(s), and Wst = W(IL)
st , W(II)

st or W(LL)
st depending

on the values of s and t. As their matrix representation, let us use G =
[g(1), . . . , g(N)]T ∈ R

N×K and H = [h(1), . . . ,h(L)]T ∈ R
L×K . Then using

W =
(αW(II)

W(IL)T

︸ ︷︷ ︸

W(IL)

βW(LL)

︸ ︷︷ ︸

)
and E =

( G
H

︸︷︷︸

)}N
}L

,

N L K

our objective function is rewritten as

O =
∑

s,t

Wst‖e(s) − e(t)‖22 = 2Tr(ETLE), s.t. ETDE = I (2)

where L = D−W and D is a diagonal matrix with elements Dii =
∑

j Wij [1].
The constraint ETDE = I is imposed to remove an arbitrary scaling factor in
the embedding. This formulation is that of the Laplacian eigen map. Next, let
us explain how to determine the similarity matrix W.

Instance-Label Relationship: For the instance-label relationship W(IL), we
use W(IL) = Y. In this case, W(IL) has elements of zero or one. The corre-
sponding objective function of Instance-Label relationship becomes:

OIL = min
g(i),h(l)

∑

i=1,...,N
l=1,...,L

W(IL)
il ‖g(i) − h(l)‖22,

where W(IL)
il = Yil ∈ {0, 1}.

Instance-Instance Relationship: We use the symmetric k-nearest neighbor
relation in R

F for constructing W(II) as seen in [3]. Thus, our second objective
function becomes

OII = min
g(i),g(j)

∑

i,j=1,...,N

W(II)
ij ‖g(i) − g(j)‖22,

where

W(II)
ij =

{
1 (i ∈ Nk(x(j)) ∨ j ∈ Nk(x(i))),
0 (otherwise),
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Fig. 1. The result of the proposed embedding in Scene dataset. Only 20% of instances
are displayed. The numbers indicate the labels 1, . . . , 6, and small crosses show the
instances. (Color figure online)

where Nk(x(i)) denotes the index set of k nearest neighbors of the ith instance.
It is worth noting that we can construct W(II) on the basis of the similarity
between y(i) and y(j) as seen in [3] instead of that between x(i) and x(j) above.

Label-Label Relationship: We construct W(LL) in such a way that W(LL)
lm

takes a large positive value when labels l and m co-occur frequently in Y, oth-
erwise a small positive value. We also use the symmetric k-nearest neighbor
relation in the frequency. The corresponding third objective function becomes

OLL = min
h(l),h(m)

∑

l,m=1,...L

W(LL)
lm ‖h(l) − h(m)‖22,

where

W(LL)
lm =

{
1 (if l is one of top-k co-occurrence labels of m and vice versa),
0 (otherwise).

Note that W(LL) is symmetric as well as W(II). The symmetricity of those
guarantees the existence of a solution in (2).

The solution of (2) is obtained by solving the following generalized eigen
problem:

LE = λDE. (3)
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Algorithm 1. MLLEM (Training)
1: Input: Label matrix Y,Feature matrix X, The number of dimension K, wighting

parameters α and β;
2: Output: K-dimensional representation of labels H and instances G;
3: Construct W(II) for instances (Section 2);
4: Construct W(LL) for labels (Section 2);
5: W(IL) = Y;

6: W =

[
αW(II) W(IL)

W(IL)T βW(LL)

]
;

7: Solve the generalized eigen problem LE = λDE where L = D − W and Dii =∑
j Wij and obtain the bottom K eigen vectors excluding an eigen vector with

zero eigen value;

8:

[
G
H

]
= E;

Hence, the optimal solution E of the objective function is the bottom K eigen-
vectors excluding an eigenvector with zero eigenvalue [1].

An example of this embedding is shown in Fig. 1. This is the result of mapping
for Scene dataset [11] where N = 2407, F = 294, L = 6 and K = 2. In Fig. 1,
we can see that the instance-label, instance-instance and label-label relations
are fairly preserved. First, for instance-label relationship, four instances that
share a label subset {3, 4} (large brown dots) are mapped between labels 3
and 4. Second, for label-label relationship, highly co-occurred labels 1, 5 and
6 are closely mapped (highlighted by a circle). Finally, for instance-instance
relationship, an instance and its k nearest neighbors (k = 2) in the original
F -dimensional space (a blue square and 2 blue diamonds) are closely placed.

2.2 Embedding Test Instances

For assigning labels for a testing instance, we need to embed it into the same low-
dimensional space constructed from the training instances with multiple labels.
Unfortunately above embedding is not functionally realized, we do not have an
explicit way of mapping. Therefore, we propose two different ways of a linear
mapping and a nonlinear mapping.

In the linear mapping, we simulate the nonlinear mapping from X to G (the
former part of E) by a linear mapping V so as to G � Ĝ = XV. We use Ridge
regression to find such a V:

min
V

‖XV − G‖22 + λ‖V‖22.

where λ is a parameter. A test instance x is mapped to g such as g = xTV.
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Algorithm 2. MLLEM (Testing)
1: Input: Test instance x, Feature matrix X, K-dimensional representation of labels

H and instances G;
2: Output: Predicted multi-label (score) ŷ ∈ R

L;
{Linear Embedding}

3: Minimize ‖XV − G‖2
2 + λ‖V‖2

2 in V;
4: Embed test instance by g = xTV;

{Nonlinear Embedding}
5: Find k-nn Nk(t) of test instance x in training set X;

6: g = argmin
g′

1
k

∑
i∈Nk(t)

‖g′ − g(i)‖2
2;

{After Linear Embedding or Nonlinear Embedding}
7: Calculate the score for each label ŷi = ‖g − h(i)‖2

2;

In the nonlinear mapping, we use again the k-nearest neighbor relation to
the testing instance x. We map x into g by the average point of its k-nearest
neighbors in the training instances.

g = argmin
g′

1
K

∑

i∈Nk(x)

‖g′ − g(i)‖22 =
1
K

∑

i∈Nk(x)

g(i).

Since the objective function (2) is solved by Laplacian Eigen Map [1], we
name the proposed method Multi-Label classification using Laplacian Eigen
Map (shortly, MLLEM). The combined pseudo-code of MLLEM-L (for linear
mapping of a testing instance) and MLLEM-NL (for nonlinear mapping of a
test instance) is described in Algorithms 1 and 2.

2.3 Computational Complexity

The training procedure of the proposed algorithm (Algorithm1) can be divided
into two parts. The first part constructs k-nn graphs for both labels and instances
(Step 3 and Step 4), in O(NL2) for labels and in O(FN2) for instances, respec-
tively. The second part solves the generalized eigen problem (Step 6). This part
takes O((N + L)3). However, it is known that this complexity can be largely
reduced when the matrix W is sparse and only a small number K of eigen vec-
tors are necessary [9]. Therefore, the complexity of the proposed algorithm can
be estimated as O(NL2 +FN2). This complexity is the same to those of almost
all embedding methods including the compared methods on the experiments.

In the testing phase, the linear embedding needs O(F 2N) for the ridge regres-
sion. In contrast, nonlinear embedding needs only O(FN) for each test instance
that is faster than linear embedding.

3 Related Work

Label embedding methods for MLC are employed to utilize label-dependency
via the low-rank structure of an embedding space. Recently, several methods
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based on traditional factorizations [4,6,8] and based on regressions with vari-
ous loss functions [12,13] have been proposed. Canonical Correlation Analysis
based method [16] is also one of them. This method conceptually embeds both
instance and labels at the same time like the proposed MLLEM does. However,
it conducts only one-side embedding in the actual classification process. This
is because the linear regression after embedding includes the other-side embed-
ding. Although all methods utilizes low-rank structure and succeeded to improve
classification accuracy, they are limited to linear transformation.2 In contrast to
these methods, our MLLEM utilizes label dependency in a nonlinear way so
that it is more flexible for mapping. On the other hand, we have to be careful for
overfitting when we use nonlinear mappings. In MLLEM, the nonlinear map-
pings rely only on the similarity measures W(IL), W(II) and W(LL). Therefore,
overfitting is limited to some extent.

Bhatia et al. proposed linear embedding method for instances [3]. In their
embedding, only instance locality on the label space is considered and ML-KNN
[14] is conducted on the low-dimensional space. In the sense of using locality,
the proposed MLLEM is close to theirs, but the proposed MLLEM is different
from their approach in the sense that label-instance relationship, label-label
relationship and instance-instance relationship are all taken into consideration
at the same time.

4 Experiments

4.1 Setting

We conducted experiments on thirteen benchmark datasets [11] (Table 1). Each
dataset was separated into 67 % of training instances and 33 % of test instances at
random. On large datasets (i.e. delicious, bookmarks and mediamill), we sampled
randomly 5000 instances (4000 samples for training and 1000 samples for testing)
according to [6].

Since all embedding methods return scores of labels, not a label subset, we
used Area Under ROC-Curve (AUC) and top-k precision to evaluate the results
[13].3 AUC is a popular criteria to evaluate the ranking of all labels. We used
ROC-curve between true-positive rate and false-positive rate for AUC and Top-1
precision [3].4

We compared the following three state-of-the-art embedding methods to ours:

1. Low-rank Empirical risk minimization for MLC (LEML) [13]
2. Feature-aware Implicit Encoding(FaIE) [6]

2 Several methods can utilize kernel regressions instead a liner regression, however,
after regression, they linearly transform the latent labels into the original labels.
This means that the way of utilizing label dependency is still limited to be linear.

3 All embedding methods use a threshold to obtain a label subset.
4 We only show the result of top-1 precision since the ordering was not changed in top-3
or top-5.
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Table 1. Dataset used in the experiment. Fnnz and Lnnz are the average of number
non-zero features and labels among instances in the corresponding set, respectively.

Dataset F L Training set Test set

N Fnnz Lnnz N Fnnz Lnnz

CAL500 68 174 335 67.84 26.09 167 68 25.94

enron 1001 53 387 79.17 3.37 192 93.30 3.33

emotions 72 6 396 71.79 1.88 197 71.71 1.83

birds 258 19 431 158.00 1.10 214 158.40 1.10

genbase 1186 27 442 2.52 1.20 220 2.55 1.34

medical 1449 45 653 13.04 1.24 325 14.10 1.25

scene 294 6 1606 290.54 1.07 801 290.78 1.07

yeast 103 14 1613 103.00 4.21 804 102.99 4.27

corel5k 499 374 3335 8.28 3.53 1665 8.23 3.49

bibtex 1836 159 4933 69.13 2.41 2462 67.71 2.38

delicious 500 983 4000 18.08 19.02 1000 18.71 19.00

bookmarks 2150 208 4000 125.27 2.02 1000 126.17 2.03

mediamill 120 101 4000 120.00 4.38 1000 120.00 4.36

3. Sparse Local Embedding for Extreme Multi-label Classification (SLEEC) [3]
4. Proposal with linear embedding (MLLEM-L) and nonlinear embedding

(MLLEM-NL)

The proposed MLLEM has five parameters, the number of nearest neighbors
k(I) for instances, k(L) for labels, weighting parameters α for W(II) and β for
W(LL) and the dimension K of the embedding space. On all datasets, we used
K = 20. All the other parameters were tuned by five-cross validation on training
dataset. The code is available at the authors’ web site.5 For CPLST and FaIE,
we set their numbers of dimension for labels space to the 80% of their numbers
of labels following the setting in [3]. The other parameters were tuned as well.
We used the implementations provided by the authors [13]6, [6]7. For SLEEC,
we set the number of dimension as K = 100 following the their setting [3]. We
tuned best the number of k-nn and the number of neighborhoods for ML-KNN
after embedding. The other parameters such as smoothing parameter in their
regression is set to the default setting they used. We used the implementations
provided by the authors too.

5 https://dl.dropboxusercontent.com/u/97469461/MLLEM.zip.
6 http://www.cs.utexas.edu/∼rofuyu/exp-codes/leml-icml14-exp.zip.
7 The code is available at the authors’ site (https://sites.google.com/site/linzijia72/).

https://dl.dropboxusercontent.com/u/97469461/MLLEM.zip
http://www.cs.utexas.edu/~rofuyu/exp-codes/leml-icml14-exp.zip
https://sites.google.com/site/linzijia72/
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4.2 Results

Table 2 shows the averaged AUC and Top-1 precision on all thirteen benchmark
datasets (the larger, the better). SLEEC was the best in AUC. The proposed
MLLEM follows. In Top-1 MLLEM was the best, especially in relatively small-
scale datasets. This difference is possibly explained from the difference between
objective functions of MLLEM. MLLEM ignores the distance between two
objects which do not have a local similarity relation to each other. Therefore,
occasionally, such two objects are placed closely in the embedding space in spite
that they are not similar. This affects the result measured by AUC which takes
overall ranking into evaluation. On the other hand, on top-k labels, such an
indicated bad effect problem seldom occurs.

Table 2. Results

Dataset Averaged-AUC Top-1 precision

LEML FaIE SLEEC MLLEM LEML FaIE SLEEC MLLEM

L NL L NL

CAL500 .7592 .7738 .8187 .8206 .8211 .7365 .7605 .8503 .8623 .8563

enron .7929 .7710 .8748 .8857 .8902 .6458 .5260 .5677 .6146 .7292

emotions .8073 .8106 .8362 .8372 .7565 7107 .7107 .7107 .7563 .6599

birds .7604 .7240 .7394 .8265 .7240 .2850 .3271 .2617 .3645 .2196

genbase .9944 .9950 .9950 .9985 .9979 1.000 1.000 1.000 1.000 1.000

medical .9620 .9502 .9736 .9697 .9342 .8246 .8245 .8246 .8646 .7446

scene .8852 .8683 .9134 .9114 .9074 .6667 .6442 .7378 .7466 .7528

yeast .6318 .8188 .8299 .8288 .8247 .6457 .7550 .7836 .7886 .7724

corel5k .7805 .7862 .8906 .8700 .8717 .3495 .3610 .3928 .3538 .2505

bibtex .8895 .8868 .9480 .9066 .7563 .6409 .6186 .6255 .5902 .3298

delicious .8097 .8768 .8921 .8463 .8416 .5940 .6274 .6830 .6291 .6253

bookmarks .8000 .7551 .8662 .8023 .7700 .3370 .3040 .4110 .3020 .2950

mediamill .9451 .9425 .9475 .9286 .9283 .8380 .8440 .8210 .8010 .7801

Table 3. Training time (K = 20).

Dataset LEML FaIE SLEEC MLLEM

CAL500 2.62 0.36 0.48 0.61

bibtex 3.62 5.51 9.44 12.72

enron 3.53 0.39 0.49 0.43

genbase 1.00 0.32 0.36 0.66

medical 2.78 0.38 1.21 0.96

corel5k 6.24 1.46 5.55 11.62

delicious 3.53 2.91 10.54 19.15

bookmarks 7.19 5.56 7.86 8.40

mediamill 8.14 3.92 8.69 7.66
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MLLEM was superior to SLEEC when the number N of instances is rel-
atively small even in AUC. This is probably because SLEEC considers only
locality of instances (instance-instance relationship). When the number of avail-
able instances is limited, instance-instance relationship is not enough to capture
the relationship between features and labels. From this viewpoint, MLLEM is
the best choice for small- to medium-sample size problem (Table 3).

5 Discussion

Since the proposed MLLEM uses Laplacian eigen map for the nonlinear embed-
ding, there are several ways to increase the scalability of MLLEM such as an
incremental method [2], Nyström approximation or column sampling [9] and effi-
cient k-NN constructors [7]. Note that the framework used in MLLEM is very
general. It comes from the freedom of choice of matrix W (e.g., using a heat
kernel). It is also able to handle categorical features. This generalization is not
shared with SLEEC [3].

6 Conclusion

In this paper, we have proposed an embedding based approach for multi-label
classification. The proposed algorithm takes into consideration three relation-
ships: label-instance relationship, label-label relationship and instance-instance
relationship, and realized a nonlinear mapping. All these three relationships
are preserved in the embedded low-dimensional space as the closeness between
instances and individual labels. We have shown that the algorithm is useful to
visualize instances and labels at the same time, which helps us to understand
a given multi-label problem, especially, how strongly those labels are related to
each other. Linear and nonlinear mapping have been also proposed for classifi-
cation. On experiments, the proposed algorithm outperformed the other state-
of-the-art methods in small-scale datasets in sample number.

Acknowledgment. We would like to thank Dr. Kush Bhatia for providing the code
of SLEEC and large-scale datasets. This work was partially supported by JSPS KAK-
ENHI Grant Number 14J01495 and 15H02719.
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