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Abstract. Recently, kernel methods have been widely employed to
solve machine learning problems such as classification and clustering.
Although there are many existing graph kernel methods for comparing
patterns represented by undirected graphs, the corresponding methods
for directed structures are less developed. In this paper, to fill this gap
in the literature we exploit the graph kernels and graph complexity mea-
sures, and present an information theoretic kernel method for assess-
ing the similarity between a pair of directed graphs. In particular, we
show how the Jensen-Shannon divergence, which is a mutual informa-
tion measure that gauges the difference between probability distribu-
tions, together with the recently developed directed graph von Neumann
entropy, can be used to compute the graph kernel. In the experiments,
we show that our kernel method provides an efficient tool for classify-
ing directed graphs with different structures and analyzing real-world
complex data.

Keywords: Information theoretic kernel · Jensen-Shannon divergence ·
von Neumann entropy

1 Introduction

Graph kernels have recently evolved into a rapidly developing branch of pat-
tern recognition. Broadly speaking, there are two main advantages of kernel
methods, namely (a) they can bypass the need for constructing an explicit high-
dimensional feature space when dealing with high-dimensional data and (b) they
allow standard machine learning techniques to be applied to complex data, which
bridges the gap between structural and statistical pattern recognition [1]. How-
ever, although there are a great number of kernel methods aimed at quantifying
the similarity between structures underpinned by undirected graphs, there is
very little work on solving the corresponding problems for directed graphs. This
is unfortunate since many real-world complex systems such as the citation net-
works, communications networks, neural networks and financial networks give
rise to structures that are directed [2].

Motivated by the need to fill this gap in literature, in this paper we propose
an information theoretic kernel method for measuring the structural similarity
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between a pair of directed graphs. Specifically, our goal is to develop a sym-
metric and positive definite function that maps two directed patterns to a real
value, by exploiting the information theoretic kernels that are related to the
Jensen-Shannon divergence and a recently developed directed graph structural
complexity measure, namely the von Neumann entropy.

1.1 Related Literature

Recently, information theoretic kernels on probability distributions have
attracted a great deal of attention and have been extensively employed to the
domain of classification of structured data [3]. Martins et al. [4] have general-
ized the recent research advances, and have proposed a new family of nonexten-
sive information theoretic kernels on probability distributions. Such kernels have
proved to have a strong link with the Jensen-Shannon divergence, which mea-
sures the mutual information between two probability distributions, and which
is quantified by gauging the difference between entropies associated with those
probability distributions [1].

Graph kernels, on the other hand, particularly aim to assess the similarity
between pairs of graphs by computing an inner product on graphs [5]. For exam-
ple, the classical random walk kernel [6] compares two labeled graphs by counting
the number of paths produced by random walks on those graphs. However, ran-
dom walk kernel has a serious disadvantage, namely “tottering” [7], caused by
the possibility that a random walk can visit the same cycle of vertices repeat-
edly on a graph. An effective technique to avoid tottering is the backtrackless
walk kernel developed by Aziz et al. [8], who have explored a set of new graph
characterizations based on backtrackless walks and prime cycles.

Turning attention to the directed graph complexity measures, Ye et al. [2]
have developed a novel entropy for quantifying the structural complexity of
directed networks. Moreover, Berwanger et al. [9] have proposed a new parameter
for the complexity of infinite directed graphs by measuring the extent to which
cycles in graphs are intertwined. Recently, Escolano et al. [10] have extended
the heat diffusion-thermodynamic depth approach from undirected networks to
directed networks and have obtained a means of quantifying the complexity of
structural patterns encoded by directed graphs.

1.2 Outline

The remainder of the paper is structured as follows. Section 2 details the develop-
ment of an information theoretic kernel for quantifying the structural similarity
between a pair of directed graphs. In particular, we show the graph kernel can
be computed in terms of the Jensen-Shannon divergence between the von Neu-
mann entropy of the disjoint union of two graphs, and the entropies of individ-
ual graphs. In Sect. 3, we show the effectiveness of our method by exploring its
experimental performance on both artificial and realistic directed network data.
Finally, Sect. 4 summarizes our contribution present in this paper and points out
future research directions.
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2 Jensen-Shannon Divergence Kernel for Directed
Graphs

In this section, we start from the Jensen-Shannon divergence and explore how
this similarity measure can be used to construct a graph kernel method for
two directed graphs. In particular, the kernel can be computed in terms of the
entropies of two individual graphs and the entropy of their composite graph. We
then introduce the recently developed von Neumann entropy which quantifies
the structural complexity of directed graphs. This in turn allows us to develop
the mathematical expression for the Jensen-Shannon divergence kernel.

2.1 Jensen-Shannon Divergence

Generally speaking, the Jensen-Shannon divergence is a mutual information mea-
sure for assessing the similarity between two probability distributions. Mathe-
matically, given a set M1

+(X) of probability distributions in which X indicates
a set provided with some σ-algebra of measurable subsets. Then, the Jensen-
Shannon divergence DJS : M1

+(X) × M1
+(X) → [0,+∞) between probability

distributions P and Q is computed as:

DJS(P,Q) =
1
2
DKL(P‖M) +

1
2
DKL(M‖Q), (1)

where DKL denotes the classical Kullback-Leibler divergence and M = P+Q
2 .

Specifically, let πp and πq (πp + πq = 1 and πp, πq ≥ 0) be the weights of the
probability distributions P and Q respectively, then the generalization of the
Jensen-Shannon divergence can be defined as:

DJS(P,Q) = HS(πpP + πqQ) − πpHS(P ) − πqHS(Q), (2)

where HS is used to denote the Shannon entropy of the probability distribution.
To proceed, we introduce the Jensen-Shannon kernel method for undirected

graphs developed by Bai and Hancock [1]. Given a pair of undirected graphs
G1 = (V1, E1) and G2 = (V2, E2) where V represents the edge set and E denotes
the vertex set of the graph, the Jensen-Shannon divergence between these two
graphs is expressed by:

DJS(G1,G2) = H(G1 ⊕ G2) − H(G1) + H(G2)
2

, (3)

where G1⊕G2 denotes the disjoint union graph of graphs G1 and G2 and H(· · · ) is
the graph entropy. With this definition to hand and making use of the von Neu-
mann entropy for undirected graphs [11], the Jensen-Shannon diffusion kernel
kJS : G × G → [0,+∞) is then

kJS(G1,G2) = exp{−λDJS(G1,G2)}
= exp

{
λ

HV N (G1) + HV N (G2)
2

− λHV N (G1 ⊕ G2)
}

, (4)
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where HV N is the undirected graph von Neumann entropy, and λ is a decay factor
0 < λ ≤ 1. Clearly, the diffusion kernel is exclusively dependent on the individual
entropies of the two graphs being compared as the union graph entropy can also
be expressed in terms of those entropies.

2.2 von Neumann Entropy for Directed Graphs

Given a directed graph G = (V, E) consisting of a vertex set V together with an
edge set E ⊆ V × V, its adjacency matrix A is defined as

Auv =
{

1 if (u, v) ∈ E
0 otherwise.

The in-degree and out-degree at vertex u are respectively given as

dinu =
∑
v∈V

Avu, doutu =
∑
v∈V

Auv.

The transition matrix P of a graph is a matrix describing the transitions of
a Markov chain on the graph. On a directed graph, P is given as

Puv =
{ 1

dout
u

if (u, v) ∈ E
0 otherwise.

As stated in [12], the normalized Laplacian matrix of a directed graph can be
defined as

L̃ = I − Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2

2
, (5)

where I is the identify matrix and Φ = diag(φ(1), φ(2), · · · ) in which φ represents
the unique left eigenvector of P . Clearly, the normalized Laplacian matrix is
Hermitian, i.e., L̃ = L̃T where L̃T denotes the conjugated transpose of L̃.

Ye et al. [2] have shown that using the normalized Laplacian matrix to inter-
pret the density matrix, the von Neumann entropy of directed graphs is the
Shannon entropy associated with the normalized Laplacian eigenvalues, i.e.,

HD
VN = −

|V|∑
i=1

λ̃i

|V| ln
λ̃i

|V| , (6)

where λ̃i, i = 1, · · · , |V| are the eigenvalues of the normalized Laplacian matrix
L̃. Unfortunately, for large graphs this is not a viable proposition since the time
required to solve the eigensystem is cubic in the number of vertices. To overcome
this problem we extend the analysis of Han et al. [11] from undirected to directed
graphs. To do this we again make use of the quadratic approximation to the
Shannon entropy in order to obtain a simplified expression for the von Neumann
entropy of a directed graph, which can be computed in a time that is quadratic
in the number of vertices. Our starting point is the quadratic approximation to
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the von Neumann entropy in terms of the traces of normalized Laplacian and
the squared normalized Laplacian

HD
VN =

Tr[L̃]
|V| − Tr[L̃2]

|V|2 . (7)

To simplify this expression a step further, we show the computation of the
traces for the case of a directed graph. This is not a straightforward task, and
requires that we distinguish between the in-degree and out-degree of vertices.
We first consider Chung’s expression for the normalized Laplacian of directed
graphs and write

Tr[L̃] = Tr[I − Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2

2
]

= Tr[I] − 1
2
Tr[Φ1/2PΦ−1/2] − 1

2
Tr[Φ−1/2PTΦ1/2].

Since the matrix trace is invariant under cyclic permutations, we have

Tr[L̃] = Tr[I] − 1
2
Tr[PΦ−1/2Φ1/2] − 1

2
Tr[PTΦ1/2Φ−1/2]

= Tr[I] − 1
2
Tr[P ] − 1

2
Tr[PT ].

The diagonal elements of the transition matrix P are all zeros, hence we obtain

Tr[L̃] = Tr[I] = |V|,
which is exactly the same as in the case of undirected graphs.

Next we turn our attention to Tr[L̃2]:

Tr[L̃2] = Tr[I2 − (Φ1/2PΦ−1/2 + Φ−1/2PTΦ1/2) +
1
4
(Φ1/2PΦ−1/2Φ1/2PΦ−1/2

+Φ1/2PΦ−1/2Φ−1/2PTΦ1/2 + Φ−1/2PTΦ1/2Φ1/2PΦ−1/2

+Φ−1/2PTΦ1/2Φ−1/2PTΦ1/2)]

= Tr[I2] − Tr[P ] − Tr[PT ] +
1
4
(Tr[P 2] + Tr[PΦ−1PTΦ]

+Tr[PTΦPΦ−1] + Tr[PT 2
])

= |V| +
1
2
(Tr[P 2] + Tr[PΦ−1PTΦ]),

which is different to the result obtained in the case of undirected graphs.
To continue the development we first partition the edge set E of the graph G

into two disjoint subsets E1 and E2, where E1 = {(u, v)|(u, v) ∈ E and (v, u) /∈ E},
E2 = {(u, v)|(u, v) ∈ E and (v, u) ∈ E} that satisfy the conditions E1

⋃ E2 = E ,
E1

⋂ E2 = ∅. Then according to the definition of the transition matrix, we find

Tr[P 2] =
∑
u∈V

∑
v∈V

PuvPvu =
∑

(u,v)∈E2

1
doutu doutv

.
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Using the fact that Φ = diag(φ(1), (2), · · · ) we have

Tr[PΦ−1PTΦ] =
∑
u∈V

∑
v∈V

P 2
uv

φ(u)
φ(v)

=
∑

(u,v)∈E

φ(u)
φ(v)dout2u

.

Then, we can approximate the von Neumann entropy of a directed graph in
terms of the in-degree and out-degree of the vertices as follows

HD
VN = 1− 1

|V| − 1
2|V|2

{ ∑
(u,v)∈E

(
1

doutu doutv

+
dinu

dinv dout2u

)
−

∑
(u,v)∈E1

1
doutu doutv

}
(8)

or, equivalently,

HD
VN = 1 − 1

|V| − 1
2|V|2

{ ∑
(u,v)∈E

dinu
dinv dout2u

+
∑

(u,v)∈E2

1
doutu doutv

}
. (9)

Clearly, both entropy approximations contain two terms. The first is the
graph size while the second one depends on the in-degree and out-degree statis-
tics of each pair of vertices connected by an edge. Moreover, the computational
complexity of these expressions is quadratic in the graph size.

2.3 Jensen-Shannon Divergence Kernel for Directed Graphs

It is interesting to note that the von Neumann entropy is related to the sum of
the entropy contribution from each directed edge, and this allows us to compute
a local entropy measure for edge (u, v) ∈ E ,

Iuv =
dinu

2|E||V|dinv dout2u

.

If this edge is bidirectional, i.e., (u, v) ∈ E2, then we add an additional quantity
to Iuv,

I ′
uv =

1
2|E2||V|doutu doutv

.

Clearly, the local entropy measure represents the entropy associated with each
directed edge and more importantly, it avoids the bias caused by graph size,
which means that it is the edge entropy contribution determined by the in and
out-degree statistics, and neither the vertex number nor edge number of the
graph that distinguishes a directed edge.

In our analysis, since we are measuring the similarity between the structures
of two graphs, the vertex and edge information plays a significant role in the com-
parison. As a result, we use the following measure for quantifying the complexity
of a directed graph, which is affected by the vertex and edge information,

HE(G) =
∑

(u,v)∈E

dinu
dinv dout2u

+
∑

(u,v)∈E2

1
doutu doutv

. (10)
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We let G1 ⊕ G2 = {V1

⋃ V2, E1

⋃ E2}, i.e., the disjoint union graph (or com-
posite graph) of G1 and G2. Then, we compute the Jensen-Shannon divergence
between G1 and G2 as

DJS(G1,G2) = HE(G1 ⊕ G2) − HE(G1) + HE(G2)
2

.

As a consequence, we finally have the Jensen-Shannon diffusion kernel

kJS(G1,G2) = exp
{

HE(G1) + HE(G2)
2

− HE(G1 ⊕ G2)
}

. (11)

The decay factor λ is set to be 1 for simplifying matters. Clearly, since Jensen-
Shannon divergence is a dissimilarity measure and is symmetric, the diffusion
kernel associated with the divergence is positive definite. Moreover, for a pair of
graphs with N vertices, the computational complexity of the kernel is O(N2).

3 Experiments

In this section, we evaluate the experimental performance of the proposed
directed graph Jensen-Shannon divergence kernel. Specifically, we first explore
the graph classification performance of our method on a set of random graphs
generated from different models. Then we apply our method to the real-world
data, namely the NYSE stock market networks, in order to explore whether the
kernel method can be used to analyze the complex data effectively.

3.1 Datasets

We commence by giving a brief overview of the datasets used for experiments
in this paper. We use two different datasets, the first one is synthetically gener-
ated artificial graphs, while the other one is extracted from real-world financial
system.

Random Directed Graph Dataset. Contains a large number of directed graphs
which are randomly generated according to two different directed random graph
models, namely (a) the classical Erdős-Rényi model and (b) the Barabási-Albert
model [13]. The different directed graphs in the database are created using a
variety of model parameters, e.g., the graph size and the connection probability
in the Erdős-Rényi model and the number of added connections at each time
step in the Barabási-Albert model.

NYSE Stock Market Network Dataset. Is extracted from a database consist-
ing of the daily prices of 3799 stocks traded on the New York Stock Exchange
(NYSE). In our analysis we employ the correlation-based network to represent
the structure of the stock market since many meaningful economic insights can
be extracted from the stock correlation matrices [14]. To construct the dynamic
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network, 347 stocks that have historical data from January 1986 to February
2011 are selected. Then, we use a time window of 20 days (i.e., 4 weeks) and
move this window along time to obtain a sequence (from day 20 to day 6004)
in which each temporal window contains a time-series of the daily return stock
values over a 20-day period. We represent trades between different stocks as a
network. For each time window, we compute the cross-correlation coefficients
between the time-series for each pair of stocks, and create connections between
them if the maximum absolute value of the correlation coefficient is among the
highest 5 % of the total cross correlation coefficients. This yields a time-varying
stock market network with a fixed number of 347 vertices and varying edge
structure for each of 5976 trading days.

3.2 Graph Classification

To investigate the classification performance of our proposed kernel method, we
first apply it to the Random Directed Graph Dataset. Given a dataset consisting
of N graphs, we construct a N × N kernel matrix

K =

⎛
⎜⎜⎜⎝

k11 k12 · · · k1N
k21 k22 · · · k2N
...

...
. . .

...
kN1 kN2 · · · kNN

⎞
⎟⎟⎟⎠

in which kij , i, j = 1, 2, · · · , N , denotes the graph kernel value between graphs
Gi and Gj . In our case, we have kij = kJS(Gi,Gj). With the kernel matrix to
hand, we then perform the kernel principal component analysis (kernel PCA)
[15] in order to extract the most important information contained in the matrix
and embed the data to a low-dimensional principal component space.

Figure 1 gives two kernel PCA plots of kernel matrix computed from (a)
Jensen-Shannon divergence kernel and (b) shortest-path kernel [7]. In particular,
the kernels are computed from 600 graphs that belong to six groups (100 graphs
in each group): (a) Erdős-Rényi (ER) graphs with n = 30 vertices and connection
probability p = 0.3; (b) Barabási-Albert (BA) graphs with n = 30 vertices and
average degree k̄ = 9; (c) ER graphs with n = 100 and p = 0.3; (d) BA graphs
with n = 100 and k̄ = 30; (e) ER graphs with n = 30 and p = 0.6; and (f)
BA graphs with n = 30 and k̄ = 18. From the left-hand panel, the six groups
are clearly separated very well, implying that the Jensen-Shannon divergence
kernel is effective in comparing not only the structural properties of directed
graphs that belong to different classes, but also the structure difference between
graphs generated from the same model. However, the panel on the right-hand side
suggests that the shortest-path kernel cannot efficiently distinguish the difference
between graphs of the six groups since the graphs cannot be clearly separated.

To better evaluate the properties of the proposed kernel method. We pro-
ceed to compare the classification result of the Jensen-Shannon divergence ker-
nels developed for directed and undirected graphs. To this end, we employ the
undirected Jensen-Shannon divergence kernel and repeat the above analysis on
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Fig. 1. Kernel PCA plots of two graph kernel methods on a number of directed graphs
generated from Erdős-Rényi model and Barabási-Albert model.

the undirected version of graphs in Random Directed Graph Dataset and report
the result in Fig. 2. The undirected kernel method does not separate different
groups of graphs well as there are a large number of data points overlapping in
the kernel principal component space. Moreover, the BA graphs represented by
yellow stars and the ER graphs symbolled by cyan squares (n = 30 and k̄ = 18)
are completely mixed. This comparison clearly indicates that for directed and
undirected random graphs that are generated using the same model and para-
meters, the directed graph kernel method is more effective in classifying them
than its undirected analogue.
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Fig. 2. Kernel PCA plots of two graph kernel methods on a number of undirected
graphs generated from Erdős-Rényi model and Barabási-Albert model.
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3.3 Financial Data Analysis

We turn our attention to the financial data, and explore whether the proposed
kernel method can be used as an efficient tool for visualizing and studying the
time evolution of the financial networks. To commence, we select two financial
crisis time series from the data, namely (a) Black Monday (from day 80 to day
120) and (b) September 11 attacks (from day 3600 to day 3650) and construct
their corresponding kernel matrices respectively. Then, in Fig. 3 we show the path
of the financial network in the PCA space during the selected financial crises
respectively. The number beside each data point represents the day number in
the time-series. From the left-hand panel we observe that before Black Monday,
the network structure remains relatively stable. However, during Black Monday
(day 117), the network experiences a considerable change in structure since the
graph Jensen-Shannon divergence kernel changes significantly. After the crisis,
the network structure returns to its normal state. A similar observation can
also be made concerning the September 11 attacks which is shown in the right-
hand panel. The stock network again undergoes a significant crash in which the
network structure undergoes a significant change. The crash is also followed by
a quick recovery.
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Fig. 3. Path of the time-evolving financial network in the PCA space during different
financial crises.

4 Conclusion

In this paper, we present a novel kernel method for comparing the structures of
a pair of directed graphs. In essence, this kernel is based on the Jensen-Shannon
divergence between two probability distributions associated with graphs, which
are represented by the recently developed von Neumann entropy for directed
graphs. Specifically, the entropy approximation formula allows the entropy to be
expressed in terms of a sum over all edge-based entropies of a directed graph,
which in turn allows the kernel to be computed from the edge entropy sum of two
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individual graphs and their disjoint union graph. In the experiments, we have
evaluated the effectiveness of our kernel method in terms of classifying structures
that belong to various classes and analyzing time-varying realistic networks. In
the future, it would be interesting to see what features the Jensen-Shannon diver-
gence kernel reveal in additional domains, such as human functional magnetic
resonance imaging data. Another interesting line of investigation would be to
explore if the kernel method can be extended to the domains of edge-weighted
graphs, labeled graphs and hypergraphs.
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