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Abstract. Approximation of graph edit distance based on bipartite graph
matching emerged to an important model for distance based graph classification.
However, one of the drawbacks of this particular approximation is its cubic
runtime with respect to the number of nodes of the graphs. In fact, this runtime
restricts the applicability of bipartite graph matching to graphs of rather small
size. Recently, a new approximation for graph edit distance using greedy
algorithms (rather than optimal bipartite algorithms) has been proposed. This
novel algorithm reduces the computational complexity to quadratic order. In
another line of research it has been shown that the definition of local
neighbourhoods plays a crucial role in bipartite graph matching. These neigh-
bourhoods define the local substructures of the graphs which are eventually
assigned to each other. In the present paper we demonstrate that the type of local
neighbourhood and in particular the distance model defined on them is also
highly relevant for graph classification using greedy graph edit distance.

Keywords: Graph edit distance � Graph classification � Greedy assignment �
Bipartite graph matching

1 Introduction

Graphs offer a convenient way to formally model objects or patterns, which are
composed of complex subparts including the relations that might exist between these
subparts. In particular, the nodes of a graph can be employed to represent the individual
components of a pattern while the edges might represent the structural connections
between these components. Attributed graphs, that is, graphs in which nodes and/or
edges are labelled with one or more attributes, have been of crucial importance in
pattern recognition throughout more than four decades [1–5]. For instance, graphs are
successfully used in the field of recognizing biological patterns where one has to
formally describe complex protein structures [6] or molecular compounds [7].
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The definition of an adequate dissimilarity model between two patterns is one of the
most basic requirements in pattern recognition. The process of evaluating the dissim-
ilarity of two graphs is commonly referred to as graph matching. The overall aim of
graph matching is to find a correspondence between the nodes and edges of two graphs.
There are several graph matching models available. Spectral methods, for instance,
constitute an important class of error-tolerant graph matching procedures with a quite
long tradition [8–12]. Graph kernels constitute a second important family of graph
matching procedures and various types of graph kernels emerged during the last decade
[13–17]. For an extensive review on these and other graph matching methods devel-
oped during the last forty years, the reader is referred to [2–4].

In the present paper we focus on the concept of graph edit distance [18–20]. This
graph matching model is especially interesting because it is able to cope with directed
and undirected, as well as with labelled and unlabeled graphs. However, the major
drawback of graph edit distance is its computational complexity which is exponential
with respect to the size of the graphs. Graph edit distance belongs to the family of
quadratic assignment problems (QAPs), and thus, graph edit distance is known to be
an NP-complete problem. In order to reduce the computational complexity of this
particular distance model, an algorithmic framework for the approximation of graph
edit distance was introduced in [21]. The basic idea of this approach is to find an
optimal assignment of local neighbourhoods in the graphs, reducing the problem of
graph edit distance to a linear sum assignment problem (LSAP). Recently, a new
approximation framework, which extends [21–25] in terms of finding a suboptimal
assignment of local neighbourhoods, has been presented in [27]. This new approach
further reduces the computational complexity of graph edit distance from cubic to
quadratic order. An algorithm has been presented in which the human can interact or
guide the algorithm to find a proper correspondence between nodes or interest points
[28, 29]. And other graph matching techniques have been presented such as [30, 31].

Both approaches, i.e. the original approximation [21–25] as well as the faster
variant [27], use the same definition of local neighbourhoods, viz. single nodes and
their adjacent edges. Yet various other definitions for local structures exist [32]. The
present paper investigates the impact of these different local neighbourhoods in the
context of the recent quadratic approximation algorithm [27].

2 Definitions and Algorithms

2.1 Graph and Neighbourhood

An attributed graph is defined as a triplet G ¼ ðRm;Re; cvÞ, where Rv ¼ fvaja ¼
1; . . .; ng is the set of nodes and Re ¼ eabja; b 2 1; . . .; nf g is the set of undirected and
unattributed edges. In the present paper we investigate graphs with labelled nodes only.
Yet, all of our concepts can be extended to graphs with labelled edges. Function
cv : Rv ! Dv assigns attribute values from arbitrary domains to nodes. The order of a
graph G is equal to the number of nodes n. The number of edges of node va is referred
to as EðvaÞ. Finally, the neighbourhood of a node va is termed Nva .
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In this paper we focus on three different types of neighbourhoods Nva depending on
the amount of structural information which is taken into account. The first definition of
Nva is the empty set. That is, no structural information of node va is taken into account.
Formally, Nva ¼ RNva

v ;RNva
e ; cv

� �
with RNva

v ¼ RNva
e ¼ fg. We refer to this type of

neighbourhood as Node.
The second definition of Nva is given by Nva ¼ RNva

v ;RNva
e ; cv

� �
with RNva

v ¼ fg
and RNva

e ¼ feab 2 Reg. In this case we regard the incident edges of va as
neighbourhood only (without adjacent nodes). This second definition of Nva is referred
to as Degree from now on. The third definition of Nva used in this paper is given by the
set of nodes that are directly connected to va including all edges that connect
these nodes with va. Formally, Nva ¼ RNva

v ;RNva
e ; cv

� �
with RNva

v ¼ vbjeab 2 Ref g and
RNva
e ¼ feab 2 Rejvb 2 RNva

v g. We refer to this definition of a neighbourhood as Star. In
Fig. 1 an illustration of the three different neighbourhoods (Node, Star and Degree) is
shown.

2.2 Graph Edit Distance

A widely used method to evaluate the dissimilarity between two attributed graphs is
graph edit distance [18, 19]. The basic idea of this dissimilarity model is to define a
distance between two graphs Gp and Gq by means of the minimum amount of distortion
required to transform Gp into Gq. To this end, a number of distortions or edit opera-
tions, consisting of insertion, deletion, and substitution of both nodes and edges are
employed. Edit cost functions are typically introduced to quantitatively evaluate the
level of distortion of each individual edit operation. The basic idea of this is to assign a
cost to the edit operations proportional to the amount of distortion they introduce in the
underlying graphs.

A sequence ðe1; . . .; ekÞ of k edit operations ei that transform Gp completely into Gq

is called an edit path k ðGp;GqÞ between Gp and Gq . Note that in an edit path
k ðGp;GqÞ each node of Gp is either deleted or uniquely substituted with a node in Gq,
and likewise, each node in Gq is either inserted or matched with a unique node in Gp.
The same applies for the edges.

Let !ðGp;GqÞ denote the set of all edit paths between two graphs Gp and Gq. The
edit distance of two graphs is defined as the sum of cost of the minimal cost edit path
among all competing paths in !ðGp;GqÞ.

(a) Node neighbourhood (b) Degree neighbourhood (c) Star neighbourhood

Fig. 1. Node, Degree and Star neighbourhoods (shown in light-grey) of a single node (shown in
dark-grey).
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Optimal algorithms for computing the edit distance are typically based on com-
binatorial search procedures (such as A* based search techniques). These procedures
explore the space of all possible mappings of the nodes and edges of Gp to the nodes
and edges of Gq (i.e. the search space corresponds to the set of all edit paths
!ðGp;GqÞ). Yet, considering m nodes in Gp and n nodes in Gq, the set of possible edit
paths !ðGp;GqÞ contains OðmnÞ edit paths. Therefore, exact graph edit distance
computation is exponential in the number of nodes of the involved graphs.

The problem of minimizing the graph edit distance can be reformulated as an
instance of a Quadratic Assignment Problem (QAP). QAPs belong to the most difficult
combinatorial optimization problems for which only exponential run time algorithms are
known to date (QAPs are known to be NP-complete). The Bipartite Graph Matching
algorithm (BP-GED) [21] is an approximation for the graph edit distance that reduces
the QAP of graph edit distance computation to an instance of a Linear Sum Assignment
Problem (LSAP). This algorithm first generates a cost matrix C which is based on costs
of editing local substructures of both graphs. Formally, the cost matrix is defined by:

Where Ci;j denotes the cost of substituting nodes vpi and vqj as well as their local
neighbourhoods Nvpi

and Nvqj
. Ci;e denotes the cost of deleting node vpi and its local

neighbourhood Nvpi
, and Ce;j denotes the cost of inserting node vqj and its local

neighbourhood Nvqj
.

A linear assignment algorithm can be applied on C in order to find a (optimal)
mapping of nodes and their local neighbourhoods. A large number of solvers for linear
sum assignment problems exist [26]. The time complexity of the best performing exact
algorithms for LSAPs is cubic in the size of the problem.

Any complete assignment of local substructures derived on C can be reformulated as
an admissible edit path from !ðGp;GqÞ. That is, the global edge structure from Gp and
Gq can be edited with respect to the node operations captured in the mapping of local
substructures (this is due to the fact that edit operations on edges always depend on the
edit operations actually applied on their adjacent nodes). Eventually, the total cost of all
edit operations (applied on both nodes and edges) can be interpreted as a graph edit
distance approximation between graphs Gp and Gq (termed BP-GED from now on).

The edit path found with this particular procedure considers the structural infor-
mation of the graphs in an isolated way only (singular neighbourhoods). Yet, the
derived distance considers the edge neighbourhood of Gp and Gq in a global and
consistent way and thus the derived distance is in the best case equal to, or in general
larger than the exact graph edit distance.
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Recently, a new approach which uses an approximation rather than an exact
algorithm to solve the assignment of local substructures has been proposed [27]. This
new approach employs a greedy assignment algorithm to suboptimally solve the LSAP
stated on cost matrix C. The algorithm iterates through C from top to bottom through
all rows, and in every row it assigns the current element to the minimum unused
element in a greedy manner. More formally, for each row i in the cost matrix C ¼ ðCijÞ
the minimum cost entry ui ¼ argmin8jcij is determined and the corresponding node
edit operation ðvpi ! vquiÞ is added to the mapping of local substructures. By removing
column ui in C one can ensure that every column of the cost matrix is considered
exactly once.

The remaining parts of the approximation algorithm are identical with the original
framework. That is, based on the found assignment of local substructures an admissible
edit path and its corresponding sum of costs is derived. However, as the complexity of
this suboptimal assignment algorithm is only quadratic (rather than cubic), the time
complexity of the complete graph edit distance approximation, termed Greedy-GED
from now on, is further reduced.

3 Distance Models for Neighbourhoods

In this section we review and compare various methods proposed in [32] to obtain the
individual cost entries Ci;j;Ci;e, and Ce;j in the cost matrix. These cost entries depend on
two weighted disjoint cost values. The first cost is defined with respect to the nodes,
while the second cost takes into account the local neighbourhoods of the nodes. For-
mally, we define Ci;j;Ci;e, and Ce;j according to the following three cases:

(1) If two nodes vpi 2 Rp
v and vqj 2 Rq

v are mapped to each other, we have

Ci;j ¼ b � Cðvpi ! vqj Þþ 1� bð Þ � CðNvpi
! Nvqj

Þ ð1Þ
where b 2 ]0,1[ is a weighting parameter that controls what is more important, the
cost of the pure node substitution ðvpi ! vqj Þ or the cost of substituting the
neighbourhoods Nvpi

and Nvqj
of both nodes.

(2) If one node vpi 2 Rp
v in Gp is deleted, we have

Ci;e ¼ b � kv þ 1� bð Þ � CðNvpi
! eÞ ð2Þ

where b 2 ]0,1[ (as defined above), kv refers to a positive constant cost for
deleting one node and CðNvpi

! eÞ refers to the cost of deleting the complete

neighbourhood of vpi
(3) If one node vqi 2 Rq

v in Gq is inserted, we finally have (similar to case 2)

Ce;j ¼ b � kv þ 1� bð Þ � Cðe ! Nvqj
Þ ð3Þ

The cost for node substitutions Cðvpi ! vqj Þ is commonly defined with respect to the
underlying labelling of the involved nodes. Yet, the definition of an adequate cost
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model for neighbourhoods is not that straightforward, and this, described in greater
detail in the next subsection.

3.1 The Cost of Processing Neighbourhoods

If the structural information of the nodes is not considered, that is we employ the Node
neighbourhood, we have

CðNvpi
! Nvqj

Þ ¼ CðNvpi
! eÞ ¼ Cðe ! Nvqj

Þ ¼ 0 ð4Þ

For BP-GED [21] as well as for Greedy-GED [27] the same definition of the
neighbourhood of a node v has been used, viz. Nv is defined to be the set of incident
edges of node v. That is, the Degree neighbourhood, as formally described in Sect. 2, is
employed. Remember that in our paper unlabeled edges are considered only, and thus,
edge substitution is free of cost. Hence, using this definition of a neighbourhood, the
cost of substituting two neighbourhoods with each other is given by the difference of
the numbers of edges of the involved nodes. Formally,

CðNvpi
! Nvqj

Þ ¼ ke � E vpið Þ � E vqj
� ����

��� ð5Þ

where ke refers to a positive constant cost for deleting/inserting edges and E(.) refers to
the number of edges of a certain node.

Likewise, the deletion and insertion costs of neighbourhoods depend on the number

of incident edges E vpið Þ=E vqj
� �

of the deleted or inserted node vpi and vqj , respectively.

Formally,

CðNvpi
! eÞ ¼ ke � E vpið Þ ð6Þ

Cðe ! Nvqj
Þ ¼ ke � E vqj

� �
ð7Þ

We name this particular definition of the cost for processing neighbourhoods as
Degree-cost. We will use this cost model for neighbourhoods as basic reference
system.

Next, four other definitions of the cost for processing neighbourhoods are pre-
sented. In contrast with the Degree-cost model described above, these definitions are
based on the Star neighbourhood.

The following definition of the insertion as well as the deletion cost assume that the
complete neighbourhood has to be inserted or deleted when the corresponding node is
inserted or deleted, respectively. That is, insertion and deletion costs consider the cost
of processing all edges that connect the central node and the cost of processing all
adjacent nodes. Formally, the complete deletion and insertion costs of neighbourhoods
depend on the number of adjacent nodes.
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CðNvpi
! eÞ ¼ kv þ keð Þ � E vpið Þ ð8Þ

Cðe ! Nvqj
Þ ¼ kv þ keð Þ � E vqj

� �
ð9Þ

Where kv þ keð Þ refers to the cost of deleting or inserting one edge and one node.
The substitution cost CðNvpi

! Nvqj
Þ for star neighbourhoods is based on computing

a distance between Nvpi
and Nvqj

. For this particular computation every adjacent node

and its corresponding edge is interpreted as an indivisible entity. That is, a Star
neighbourhood can be seen as a set of independent entities (nodes with adjacent edge),
and thus, the computation of CðNvpi

! Nvqj
Þ refers to an assignment problem between

two independent sets. This assignment problem can be solved in the same way as it is
done with complete graphs by means of a cost matrix that considers substitutions,
insertions and deletions. Formally,

CðNvpi
! Nvqj

Þ ¼ AssignmentCost Nvpi
;Nvqj

� �
ð10Þ

In order to compute this assignment cost we use four different optimization
algorithms.

The first algorithm is given by an optimal algorithm for general LAPs known as
Hungarian algorithm [33] that runs in cubic time. The second algorithm solves the
assignment of Nvpi

and Nvqj
by means of the Hausdorff distance for subsets [34]. This

assignment algorithm estimates the distance between two sets of entities by removing
the restriction of finding a bijective mapping between the individual elements. In
contrast with the Hungarian algorithm, Hausdorff assignments can be computed in
quadratic time.

The third algorithm computes the dissimilarity between Nvpi
and Nvqj

by finding a

suboptimal assignment of the individual entities by means of the Greedy assignment
algorithm [27] described in Sect. 2 (also in quadratic time).

Finally, we propose to use a Planar distance model. In this case, the relative
position of each neighbourhood node is considered. That is, the only allowed assign-
ments of entities from Nvpi

to entities of Nvqj
are the ones that are generated from cyclic

combinations of the neighbours. Formally, the sets Nvpi
and Nvqj

are interpreted as strings

and the assignment cost is computed through the Levenshtein distance on these strings
[34–38].

4 Experimental Evaluation

In the present paper three specific definitions for node neighbourhoods are presented,
namely Node, Degree and Star. For the computation of both Node and Degree no
additional algorithm is required. Yet, for Star neighbourhood a particular assignment
solver is needed. We propose four different algorithms for this task. Hence, in total we
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have six different cost models to compute the individual entries ci;j 2 C. Major aim of
the present paper is to show the relevance of these costs models in terms of classifi-
cation accuracy and runtime using Greedy-GED. We coded the algorithms using
MATLAB 2013 and we conducted the experiments on an i5 processor of 1.60 GHz
with 4 GB of RAM and Windows 10.

Table 1 shows the recognition ratio of a 1NN classifier and the mean matching
runtime achieved with all models on five graph databases, viz. LETTER LOW,
LETTER HIGH, GREC, COIL RAG and AIDS from the IAM graph repository [39]. In
our experiments parameter b is fixed to 0.5 and we gauge kv and ke through a
non-exhaustive trial and error process. The best accuracy and the fastest runtime is
highlighted in bold face on each database, while the second best is underlined.

We first focus on the mean run time for one matching in ms (Øt). We observe that
on all data sets the Node neighbourhood is the fastest model (as it could be expected)
followed by the reference model Degree (which is only slightly slower than the Node
neighbourhood). The models that are based on the Star neighbourhood suffer from
substantial higher runtimes than Node and Degree (especially on the larger graphs of
the GREC and AIDS data sets). Comparing the four assignment solvers with each
other, we observe that the optimal (cubic time) Hungarian algorithm provides the
highest run times among all competing algorithms, while the differences between the
other three algorithms are negligible.

Next, we focus on the recognition rates of the different models. We observe that in
three out of five cases the Star neighbourhood achieves the best recognition rates
(LETTER LOW and HIGH as well as GREC). The Node neighbourhood and the
reference model Degree achieve the best recognition rate on COIL RAG and AIDS,
respectively. An interesting observation can be made on the AIDS data set where the
reference model Degree significantly outperforms all other methods addressed in the
present paper. Overall we conclude that it remains difficult to predict an adequate
definition of local neighbourhoods for a given data set and application. Yet, there
seems to be a weak tendency that increased neighbourhoods might improve the overall
matching accuracy.

Table 1. Recognition ratio (1NN) and Runtime (Øt) of the three neighbourhoods (and for
assignment solvers) on five datasets using greedy graph edit distance.

Local
neighbourhood

Assignment
solver

Database
LETTER
LOW

LETTER
HIGH

GREC COIL
RAG

AIDS

1NN
(%)

Øt
(ms)

1NN
(%)

Øt
(ms)

1NN
(%)

Øt
(ms)

1NN
(%)

Øt
(ms)

1NN
(%)

Øt
(ms)

Degree – 95.07 0.6 79.07 0.6 97.54 1.3 96.00 0.4 95.53 2.1
Node – 90.67 0.4 60.27 0.4 93.37 0.8 96.40 0.3 86.80 1.2
Star Hungarian 98.53 12.5 86.53 13.5 96.40 84.7 95.10 5.8 88.00 162.6

Hausdorff 98.67 1.3 88.40 1.4 96.97 6.9 95.10 0.8 89.00 11.7
Greedy 98.67 1.1 86.67 1.3 96.97 5.6 94.50 0.8 88.60 10.2
Levenshtein 98.53 1.1 89.33 1.7 97.73 8.7 94.70 1.0 87.53 17.6
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5 Conclusions

The fast approximation of graph edit distance is still an open and active area of research
in the field of structural pattern recognition. A common model for the approximation of
graph distances is based on bipartite graph matching. The basic idea of this approach is
to reduce the difficult QAP of graph edit distance computation to an LSAP. This
particular algorithmic framework consists of three major steps. In a first step the graphs
to be matched are subdivided into individual nodes including local neighbourhoods.
Next, in step 2, an algorithm solving the LSAP is employed in order to find an
assignment of the nodes (plus local neighbourhoods) of both graphs. Finally, in step 3,
an approximate graph edit distance is derived from the assignment of step 2. In the
present paper we review six different ways to compute the costs of local neighbour-
hoods and compare them with each other on five data sets. Although no clear winner
can be found in the experimental evaluation, the empirical results suggests to use a
larger neighbourhood than it is traditionally employed in the context of bipartite graph
matching.
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