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Abstract. In Tang et al. (2015), we proposed a graph-based formu-
lation that links and clusters person hypotheses over time by solving
a minimum cost subgraph multicut problem. In this paper, we mod-
ify and extend Tang et al. (2015) in three ways: (1) We introduce a
novel local pairwise feature based on local appearance matching that is
robust to partial occlusion and camera motion. (2) We perform extensive
experiments to compare different pairwise potentials and to analyze the
robustness of the tracking formulation. (3) We consider a plain multi-
cut problem and remove outlying clusters from its solution. This allows
us to employ an efficient primal feasible optimization algorithm that is
not applicable to the subgraph multicut problem of Tang et al. (2015).
Unlike the branch-and-cut algorithm used there, this efficient algorithm
used here is applicable to long videos and many detections. Together
with the novel pairwise feature, it eliminates the need for the interme-
diate tracklet representation of Tang et al. (2015). We demonstrate the
effectiveness of our overall approach on the MOT16 benchmark (Milan
et al. 2016), achieving state-of-art performance.

1 Introduction

Multi person tracking is a problem studied intensively in computer vision. While
continuous progress has been made, false positive detections, long-term occlu-
sions and camera motion remain challenging, especially for people tracking in
crowded scenes. Tracking-by-detection is commonly used for multi person track-
ing where a state-of-the-art person detector is employed to generate detection
hypotheses for a video sequence. In this case tracking essentially reduces to an
association task between detection hypotheses across video frames. This detec-
tion association task is often formulated as an optimization problem with respect
to a graph: every detection is represented by a node; edges connect detections
across time frames. The most commonly employed algorithms aim to find dis-
joint paths in such a graph [1–4]. The feasible solutions of such problems are sets
of disjoint paths which do not branch or merge. While being intuitive, such for-
mulations cannot handle the multiple plausible detections per person, which are
generated from typical person detectors. Therefore, pre- and/or post-processing
such as non maximum suppression (NMS) on the detections and/or the final
tracks is performed, which often requires careful fine-tuning of parameters.
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The minimum cost subgraph multicut problem proposed in [5] is an abstrac-
tion of the tracking problem that differs conceptually from disjoint path meth-
ods. It has two main advantages: (1) Instead of finding a path for each person
in the graph, it links and clusters multiple plausible person hypotheses (detec-
tions) jointly over time and space. The feasible solutions of this formulation are
components of the graph instead of paths. All detections that correspond to the
same person are clustered jointly within and across frames. No NMS is required,
neither on the level of detections nor on the level of tracks. (2) For the multicut
formulation, the costs assigned to edges can be positive, to encourage the inci-
dent nodes to be in the same track, or negative, to encourage the incident nodes
to be in distinct tracks. Thus, the number and size of tracks does not need to be
specified, constrained or penalized and is instead defined by the solution. This is
fundamentally different also from distance-based clustering approaches, e.g. [6]
where the cost of joining two detections is non-negative and thus, a non-uniform
prior on the number or size of tracks is required to avoid a trivial solution.
Defining or estimating this prior is a well-known difficulty. We illustrate these
advantages in the example depicted in Fig. 1: We build a graph based on the
detections on three consecutive frames, where detection hypotheses within and
between frames are all connected. The costs assigned to the edges encourage
the incident node to be in the same or distinct clusters. For simplicity, we only
visualize the graph built on the detections of two persons instead of all. By
solving the minimum cost subgraph multicut problem, a multicut of the edges is
found (depicted as dotted lines). It partitions the graph into distinct components
(depicted in yellow and magenta, resp.), each representing one person’s track.
Note that multiple plausible detections of the same person are clustered jointly,
within and across frames.

The effectiveness of the multicut formulation for the multi person tracking
task is driven by different factors: computing reliable affinity measures for pairs
of detections; handling noisy input detections and utilizing efficient optimiza-
tion methods. In this work, we extend [5] on those fronts. First, for a pair of
detections, we propose a reliable affinity measure that is based an effective image
matching method DeepMatching [7]. As this method matches appearance of local
image regions, it is robust to camera motion and partial occlusion. In contrast,
the pairwise feature proposed in [5] relies heavily on the spatio-temporal rela-
tions of tracklets (a short-term tracklet is used to estimate the speed of a person)
which works well only for a static camera and when people walk with constant
speed. By introducing the DeepMatching pairwise feature, we make the multi-
cut formulation applicable to more general moving-camera videos with arbitrary
motion of persons. Secondly, we eliminate the unary variables which are intro-
duced in [5] to integrate the detection confidence into the multicut formulation.
By doing so, we simplify the optimization problem and make it amenable to
the fast Kernighan-Lin-type algorithm of [8]. The efficiency of this algorithm
eliminates the need for an intermediate tracklet representation, which greatly
simplifies the tracking pipeline. Thirdly, we integrate the detection confidence
into the pairwise terms such that detections with low confidence simply have a
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low probability to be clustered with any other detection, most likely ending up as
singletons that we remove in a post-processing step. With the above mentioned
extensions, we are able to achieve competitive performance on the challenging
MOT16 benchmark.

Fig. 1. An example for tracking by multicut. A graph (bottom) is built based on the
detections in three frames (top). The connected components that are obtained by solv-
ing the multicut problem indicate the number of tracks (there are two tracks, depicted
in yellow and magenta respectively) as well as the membership of every detection.
(Color figure online)

2 Related Work

Recent work on multi-person tracking primarily focuses on tracking-by-
detection. Tracking operates either by directly linking people detections over
time [9,10], or by first grouping detections into tracklets and then combining
those into tracks [11]. A number of approaches rely on data association methods
such as the Hungarian algorithm [12,13], network flow optimization [4,11,14,15],
and multiple hypotheses tracking [9], and combine them with novel ways to learn
the appearance of tracked targets. [9] proposed to estimate a target-specific
appearance model online and used a generic CNN representation to represent
person appearance. In [12] it is proposed to formulate tracking as a Markov deci-
sion process with a policy estimated on the labeled training data. [16] proposes
novel appearance representations that rely on the temporal evolution in appear-
ance of the tracked target. In this paper we propose a pairwise feature that
similarly to [10] is based on local image patch matching. Our model is inspired
by [7] and it operates on pairs of hypotheses which allows to directly utilize its
output as costs of edges on the hypothesis graph. Our pairwise potential is par-
ticularly suitable to our tracking formulation that finds tracks by optimizing a
global objective function. This is in contrast to target-specific appearance meth-
ods that are trained online and require iterative assembly of tracks over time,
which precludes globally solving for all trajectories in an image sequence.
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Perhaps closest to our work are methods that aim to recover people tracks
by optimizing a global objective function [5,14,17]. [17] proposes a continuous
formulation that analytically models effects such as mutual occlusions, dynamics
and trajectory continuity, but utilizes a simple color appearance model. [14] finds
tracks by solving instances of a generalized minimum clique problem, but due
to model complexity resorts to a greedy iterative optimization scheme that finds
one track at a time whereas we jointly recover solutions for all tracks. We build
on the multi-cut formulation proposed in [5] and generalize it to large scale
sequences based on the extensions discussed below.

3 Multi-person Tracking as a Multicut Problem

In Sect. 3.1, we recall the minimum cost multicut problem that we employ as a
mathematical abstraction for multi person tracking. We emphasize differences
compared to the minimum cost subgraph multicut problem proposed in [5]. In
Sect. 3.2, we define the novel DeepMatching feature and its incorporation into
the objective function. In Sect. 3.3, we present implementation details.

3.1 Minimum Cost Multicut Problem

In this work, multi person tracking is cast as a minimum cost multicut problem [18]
w.r.t. a graph G = (V,E) whose node V are a finite set of detections, i.e., bounding
boxes that possibly identify people in a video sequence. Edges within and across
frames connect detections that possibly identify the same person. For every edge
vw ∈ E, a cost or reward cvw ∈ R is to be payed if and only if the detections v and w
are assigned to distinct tracks. Multi person tracking is then cast as a binary linear
program

min
x∈{0,1}E

∑

e∈E

cexe (1)

subject to ∀C ∈ cycles(G) ∀e ∈ C : xe ≤
∑

e′∈C\{e}
xe′ . (2)

Note that the costs ce can be both positive or negative. For detections v, w ∈ V
connected by an edge e = {v, w}, the assignment xe = 0 indicates that v and w
belong to the same track. Thus, the constraints (2) can be understood as follows:
If, for any neighboring nodes v and w, there exists a path in G from v to w along
which all edges are labeled 0 (indicating that v and w belong to the same track),
then the edge vw cannot be labeled 1 (which would indicate the opposite). In
fact, (2) are generalized transitivity constraints which guarantee that a feasible
solution x well-defines a decomposition of the graph G into tracks.

We construct the graph G such that edges connect detections not only
between neighboring frames but also across longer distances in time. Such edges
vw ∈ E allow to assign the detections v and w to the same track even if there
would otherwise not exist a vw-path of detections, one in each frame. This is
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essential for tracking people correctly in the presence of occlusion and missing
detections.

Differences compared to [5]. The minimum cost multicut problem (1) and
(2), we consider here differs from the minimum cost subgraph multicut prob-
lem of [5]. In order to handle false positive detections, [5] introduces additional
binary variables at the nodes, switching detections on or off. A cost of switching
a detection on is defined w.r.t. a confidence score of that detection. Here, we do
not consider binary variables at nodes and incorporate a detection confidence
into the costs of edges. In order to remove false positive detections, we remove
small clusters from the solution in a post-processing step. A major advantage
of this modification is that our minimum cost multicut problem (1) and (2),
unlike the minimum cost subgraph multicut problem of [5], is amenable to effi-
cient approximate optimization by means of the KLj algorithm [8], without any
modification.
This algorithm, unlike the branch-and-cut algorithm of [5], can be applied in
practice directly to the graph of detections defined above, thus eliminating the
need for the smaller intermediate representation of [5] by tracklets.

Optimization. Here, we solve instances of the minimum cost multicut problem
approximatively with the KLj algorithm [8]. This algorithm iteratively updates
bipartitions of a subgraph. The worst-case time complexity of any such update
is O(|V ||E|). The number of updates is not known to be polynomially bounded
but is small in practice (less than 30 in our experiments). Moreover, the bound
O(|V ||E|) is almost never attained in practice, as shown by the more detailed
analysis in [8].

3.2 Deep Matching Based Pairwise Costs

In order to specify the costs of the optimization problem introduced above for
tracking, we need to define, for any pair of detection bounding boxes, a cost or
reward to be payed if these bounding boxes are assigned to the same person. For
that, we wish to quantify how likely it is that a pair of bounding boxes identify
the same person. In [5], this is done w.r.t. an estimation of velocity that requires
an intermediate tracklet representation and is not robust to camera motion. Here,
we define these costs exclusively w.r.t. image content. More specifically, we build
on the significant improvements in image matching made by DeepMatching [7].

DeepMatching applies a multi-layer deep convolutional architecture to yield
possibly non-rigid matchings between a pair of images. Figure 2 shows results of
DeepMatching for two pairs of images from the MOT16 sequences1. The first
pair of images is taken by a moving camera; the second pair of images is taken
by a static camera. Between both pairs of images, matched points (blue arrows)
relate a person visible in one image to the same person in the second image.

Next, we describe our features defined w.r.t. a matching of points between a
pair of detection bounding boxes. Each detection bounding box v ∈ V has the

1 We use the visualization code provided by the authors of [7].
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Fig. 2. Visualization of the DeepMatching results on the MOT16 sequences. (Color
figure online)

following properties: its spatio-temporal location (tv, xv, yv), scale hv, detection
confidence ξv and, finally, a set of keypoints Mv inside v. Given two detection
bounding boxes v and w connected by the edge {v, w} = e ∈ E, we define
MU = |Mv ∪ Mw| and MI = |Mv ∩ Mw| and the five features

f
(e)
1 := MI/MU (3)

f
(e)
2 := min{ξv, ξw} (4)

f
(e)
3 := f

(e)
1 f

(e)
2 (5)

f
(e)
4 := (f (e)

1 )2 (6)

f
(e)
5 := (f (e)

2 )2 (7)

Given, for any edge e = {v, w} ∈ E between two detection bounding boxes v
and w, the feature vector f (e) for this pair, we learn a probability pe ∈ (0, 1) of
these detection bounding boxes to identify the same person. More specifically,
we assume that pe depends on the features f (e) by a logistic form

pe :=
1

1 + exp(−〈θ, f (e)〉) (8)

with parameters θ. We estimate these parameters from training data by means of
logistic regression. Finally, we define the cost ce in the objective function (1) as

ce := log
pe

1 − pe
= 〈θ, f (e)〉. (9)

Two remarks are in order: Firstly, the feature f
(e)
2 incorporates the detection

confidences of v and w that defined unary costs in [5] into the feature f (e) of the
pair {v, w} here. Consequently, detections with low confidence will be assigned
with low probability to any other detection. Secondly, the features f

(e)
3 , f

(e)
4 , f

(e)
5

are to learn a non-linear map from features f
(e)
1 , f

(e)
2 to edge probabilities by

means of linear logistic regression.
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3.3 Implementation Details

Clusters to tracks. The multicut formulation clusters detections jointly over
space and time for each target. It is straight-forward to generate tracks from such
clusters: In each frame, we obtain a representative location (x, y) and scale h by
averaging all detections that belong to the same person (cluster). A smooth
track of the person is thus obtained by connecting these averages across all
frames. Thanks to the pairwise potential incorporating a detection confidence,
low confidence detections typically end up as singletons or in small clusters which
are deleted from the final solution. Specifically, we eliminate all clusters of size
less than 5 in all experiments.

Maximum temporal connection. Introducing edges that connect detections
across longer distance in time is essential to track people in the presence of
occlusion. However, with the increase of the distance in time, the pairwise feature
becomes less reliable. Thus, when we construct the graph, it is necessary to set
a maximum distance in time. In all the experiments, we introduce edges for the
detections that are at most 10 frames apart. This parameter is based on the
experimental analysis on the training sequences and is explained in more detail
in Sect. 4.1.

4 Experiments and Results

We analyze our approach experimentally and compare to prior work on the
MOT16 Benchmark [19]. The benchmark includes training and test sets com-
posed of 7 sequences each. We learn the model parameters for the test sequences
based on the corresponding training sequences. We first conduct an experimen-
tal analysis that validates the effectiveness of the DeepMatching based affinity
measure in Sect. 4.1. In Sect. 4.2 we demonstrate that the multicut formulation
is robust to detection noise. In Sect. 4.3 we compare our method with the best
published results on the MOT16 Benchmark.

4.1 Comparison of Pairwise Potentials

Setup. In this section we compare the DeepMatching (DM) based pairwise
potential with a conventional spatio-temporal relation (ST) based pairwise
potential.
More concretely, given two detections v and w, each has the following properties:
spatio-temporal location (t, x, y), scale h, detection confidence ξ. Based on these
properties the following auxiliary variables are introduced to capture geomet-
ric relations between the bounding boxes: Δx = |xv−xw|

h̄
,Δy = |yv−yw|

h̄
,Δh =

|hv−hw|
h̄

, y = |yv−yw|
h̄

, IOU = |Bv∩Bw|
|Bv∪Bw| , t = tv − tw, where h̄ = (hv+hw)

2 , IOU is
the intersection over union of the two detection bounding box areas and ξmin is
the minimum detection score between ξv and ξw. The pairwise feature f (e) for the
spatio-temporal relations (ST) is then defined as (Δt,Δx,Δy,Δh, IOU, ξmin).
Intuitively, the ST features are able to provide useful information within a short
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temporal window, because they only model the geometric relations between
bounding boxes. DM is built upon matching of local image features that is
reliable for camera motion and partial occlusion in longer temporal window.

We collect test examples from the MOT16-09 and MOT16-10 sequences
which are recorded with a static camera and a moving camera respectively. The
positive (negative) pairs of test examples are the detections that are matched to
the same (different) persons’ ground truth track over time. The negative pairs
also include the false positive detections on the background.

Metric. The metric is the verification accuracy, the accuracy or rate of correctly
classified pairs. For a pair of images belong to the same (different) person, if
the estimated joint probability is larger (smaller) than 0.5, the estimation is
considered as correct. Otherwise, it is a false prediction.

Results. We conduct a comparison between the accuracy of the DM feature
and the accuracy of the ST feature as a function of distance in time. It can
be seen from Table 1 that the ST feature achieves comparable accuracy only
up to 2 frames distance. Its performance deteriorates rapidly for connections
at longer time. In contrast, the DM feature is effective and maintains superior
accuracy over time. For example on the MOT16-10 sequence which contains
rapid camera motion, the DM feature improves over the ST feature by a large
margin after 10 frames and it provides stable affinity measure even at 20 frames
distance (accuracy = 0.925). On the MOT16-09 sequence, the DM feature again
shows superior accuracy than the ST feature starting from 	t = 2. However, the
accuracy of the DM feature on the MOT16-09 is worse than the one on MOT16-
10, suggesting the quite different statistic among the sequences from the MOT16
benchmark. As discussed in Sect. 3.3, it is necessary to set a maximum distance
in time to exclude unreliable pairwise costs. Aiming at a unique setting for all
sequences, we introduce edges for the detections that are maximumly 10 frames
apart in the rest experiments of this paper.

Table 1. Comparison of tracking results based on the DM and the ST feature. The
metic is the accuracy or rate of correctly classified pairs on the MOT16-09 and the
MOT16-10 sequences.

MOT16-09: static camera

Feature �t = 1 �t = 2 �t = 5 �t = 10 �t = 15 �t = 20

ST 0.972 0.961 0.926 0.856 0.807 0.781

DM 0.970 (−0.2%) 0.963 (+0.2%) 0.946 (+2%) 0.906 (+5%) 0.867 (+6%) 0.820 (+3.9%)

MOT16-10: moving camera

Feature �t = 1 �t = 2 �t = 5 �t = 10 �t = 15 �t = 20

ST 0.985 0.977 0.942 0.903 0.872 0.828

DM 0.985 0.984 (+0.7%) 0.975 (+3.3%) 0.957 (+5.4%) 0.939 (+6.7%) 0.925 (+9.7%)
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Table 2. Tracking performance on different sets of input detections. Scoremin indi-
cates the minimum detection score threshold. |V | and |E| are the number of nodes
(detections) and edges respectively.

MOT16-09

Scoremin −∞ −0.3 −0.2 −0.1 0 0.1 1

|V | 5377 4636 4320 3985 3658 3405 1713

|E| 565979 422725 367998 314320 265174 229845 61440

Run time (s) 30.48 19.28 13.46 11.88 8.39 6.76 1.71

MOTA 37.9 43.1 43.1 44.9 45.8 44.1 34.1

MOT16-10

Scoremin −∞ −0.3 −0.2 −0.1 0 0.1 1

|V | 8769 6959 6299 5710 5221 4823 2349

|E| 1190074 755678 621024 511790 427847 365949 88673

Run time (s) 88.34 39.28 30.08 21.99 16.13 13.66 1.94

MOTA 26.8 32.4 34.4 34.5 34.5 33.9 23.3

Table 3. Tracking performance on MOT16.

Method MOTA MOTP FAF MT ML FP FN ID Sw Frag Hz Detector

NOMT [10] 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6 Public

MHT [9] 42.8 76.4 1.2 14.6% 49.0% 7278 96607 462 625 0.8 Public

CEM [17] 33.2 75.8 1.2 7.8% 54.4% 6837 114322 642 731 0.3 Public

TBD [21] 33.7 76.5 1.0 7.2% 54.2% 5804 112587 2418 2252 1.3 Public

Ours 46.3 75.7 1.09 15.5% 39.7% 6449 90713 663 1115 0.8 Public

4.2 Robustness to Input Detections

Handling noisy detection is a well-known difficulty for tracking algorithms. To
assess the impact of the input detections on the tracking result, we conduct
tracking experiments based on different sets of input detections that are obtained
by varying a minimum detection score threshold (Scoremin). For example, in
Table 2, Scoremin = −∞ indicates that all the detections are used as tracking
input; whereas Scoremin = 1 means that only the detections whose score are
equal or larger than 1 are considered. Given the fact that the input detections
are obtained from a DPM detector [20], Scoremin = −∞ and Scoremin = 1 are
the two extreme cases, where the recall is maximized for the former one and high
precision is obtained for the latter one.

Metric. We evaluate the tracking performance of the multicut model that oper-
ates on different sets of input detections. We use the standard CLEAR MOT met-
rics. For simplicity, in Table 2 we report the Multiple Object Tracking Accuracy
(MOTA) that is a cumulative measure that combines the number of False Posi-
tives (FP), the number of False Negatives (FN) and the number of ID Switches
(IDs).
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Results. On the MOT16-09 sequence, when the minimum detection score
threshold (Scoremin) is changed from 0.1 to −0.3, the number of detection is
largely increased (from 3405 to 4636), however the MOTA is only decreased by
1 percent (from 44.1% to 43.1%). Even for the extreme cases, where the detec-
tions are either rather noisy (Scoremin = −∞) or sparse (Scoremin = 1 ), the
MOTAs are still in the reasonable range. The same results are found on the
MOT16-10 sequence as well. Note that, for all the experiments, we use the same
parameters, we delete the clusters whose size is smaller than 5 and no further
tracks splitting/merging is performed.

These experiments suggest that the multicut formulation is very robust to the
noisy detection input. This nice property is driven by the fact that the multicut
formulation allows us to jointly cluster multiple plausible detections that belong
to the same target over time and space.

We also report run time in Table 2. The KLj multicut solver provides arguably
fast solution for our tracking problem. E.g. for the problem with more than one
million edges, the solution is obtained in 88.34 s. Detailed run time analysis of
the KLj algorithm are shown in [8].

(a) MOT16-06 (b) MOT16-12 (c) MOT16-03

(d) MOT16-08 (e) MOT16-07 (f) MOT16-01

(g) MOT16-09 (frame 290) (h) MOT16-09 (frame 360) (i) MOT16-09 (frame 390)

Fig. 3. Qualitative results for all the sequences from the MOT16 Benchmark. The
first and second rows are the results from the MOT16-01, MOT16-03, MOT16-06,
MOT16-07, MOT16-08 and MOT16-12 sequence. The third row is the result from the
MOT16-14 sequence when the camera mounted on a bus is turning fast at a street
intersection.
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4.3 Results on MOT16

We test our tracking model on all the MOT16 sequences and submitted our
results to the ECCV 2016 MOT Challenge 2 for evaluation. The performance is
shown in Table 3. The detailed performance and comparison on each sequence
will be revealed at the ECCV 2016 MOT Challenge Workshop. We compare our
method with the best reported results including NOMT [10], MHT-DAM [9],
TBD [21] and CEM [17]. Overall, we achieve the second best performance in
terms of MOTA with 0.1 point below the best performed one [10]. We visualize
our results in Fig. 3. On the MOT16-12 and MOT16-07 sequences, the camera
motion is irregular; whereas on the MOT16-03 and MOT16-08 sequences, scenes
are crowded. Despite these challenges, we are still able to link people through
occlusions and produce long-lived tracks. The third row of Fig. 3 shows images
captured by a fast moving camera mounted on a bus turning at a street inter-
section. Under such extreme circumstance, our model is able to track people in
a stable and persistent way, demonstrating the reliability of the multicut formu-
lation for multi-person tracking task.

5 Conclusion

In this work, we revisit the multi-cut approach for multi-target tracking that
is proposed in [5]. We propose a novel pairwise potential that is built based on
local image patch appearance matching. We demonstrate extensive experimental
analysis and show state-of-art tracking performance on the MOT16 Benchmark.
In the future we plan to further develop our approach by incorporating long-
range temporal connections in order to deal with longer-term occlusions, and
will extend the model with more powerful pairwise terms capable of matching
person hypothesis over longer temporal gaps.
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Visual Computing and Communication.
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