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Abstract. Data generated from real world events are usually temporal
and contain multimodal information such as audio, visual, depth, sen-
sor etc. which are required to be intelligently combined for classification
tasks. In this paper, we propose a novel generalized deep neural net-
work architecture where temporal streams from multiple modalities are
combined. There are total M+1 (M is the number of modalities) compo-
nents in the proposed network. The first component is a novel temporally
hybrid Recurrent Neural Network (RNN) that exploits the complimen-
tary nature of the multimodal temporal information by allowing the net-
work to learn both modality specific temporal dynamics as well as the
dynamics in a multimodal feature space. M additional components are
added to the network which extract discriminative but non-temporal cues
from each modality. Finally, the predictions from all of these components
are linearly combined using a set of automatically learned weights. We
perform exhaustive experiments on three different datasets spanning four
modalities. The proposed network is relatively 3.5 %, 5.7 % and 2 % bet-
ter than the best performing temporal multimodal baseline for UCF-101,
CCV and Multimodal Gesture datasets respectively.

1 Introduction

Humans typically perceive the world through multimodal sensory informa-
tion [30] such as visual, audio, depth, etc. For example, when a person is run-
ning, we recognize the event by looking at how the body posture of the person is
changing with time as well by listening to the periodic sound of his/her footsteps.
Human brains can seamlessly process multimodal signals and accurately classify
an event or an action. However, it is a challenging task for machines to exploit
the complimentary nature and optimally combine multimodal information.

Recently, deep neural networks have been extensively used in computer
vision, natural language processing and speech processing. LSTM [9], a Recur-
rent Neural Network (RNN) [35] architecture, has been extremely successful in
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temporal modelling and classification tasks such as handwriting recognition [8],
action recognition [2], image and video captioning [4,31,44] and speech recogni-
tion [6,7]. RNNs can also be used to model multimodal information. These meth-
ods fall under two broad categories: (a) Early-Fusion: modality specific features
are combined to create a feature representation and fed into a LSTM network
for classification. (b) Late-Fusion: each modality is modelled using individual
LSTM networks and their predictions are combined for classification [40]. Since
early-fusion techniques do not learn any modality specific temporal dynamics,
they fail to capture the discriminative temporal cues present in each modality.
On the other hand, late-fusion methods cannot extract the discriminative tem-
poral cues which might be available in a multimodal feature representation. In
this paper, we propose a novel generalized temporally hybrid Recurrent Neural
Network architecture called GeThR-Net which models the temporal dynamics
of individual modalities (late fusion) as well as the overall temporal dynamics in
a multimodal feature space (early fusion).

GeThR-Net has one temporal and M (M is the total number of modali-
ties) non-temporal components. The novel temporal component of GeThR-Net
models the long-term temporal information in a multimodal signal whereas the
non-temporal components take care of situations where explicit temporal mod-
elling is difficult. The temporal component consists of three layers. The first
layer models each modality using individual modality-specific LSTM networks.
The second layer combines the hidden representations from these LSTMs to
form a multimodal feature representations corresponding to each time step. In
the final layer, one multimodal LSTM is trained on the multimodal features
obtained from the second layer. The output from the final layer is fed into a
softmax layer for category-wise confidence prediction. We observe that in many
real world scenarios, the temporal modelling of individual or multimodal infor-
mation is extremely hard due to the presence of noise or high intra-class tempo-
ral variation. We address this issue by introducing additional M components to
GeThR-Net which model modality specific non-temporal cues by ignoring the
temporal relationship across features extracted from different time-instants. The
predictions corresponding to all M + 1 components in the proposed network are
combined using a weighted vector learned from the validation dataset. We note
that GeThR-Net can be used with any kind of modality information without
any restriction on the number of modalities.

The main contributions of this paper are:

– We propose a generalized deep neural network architecture called GeThR-Net
that could intelligently combine multimodal temporal information from any
kind and from any number of streams.

– Our objective is to propose a general framework that could work with modal-
ities of any kind. We demonstrate the effectiveness and wide applicability
of GeThR-Net by evaluation of classification performance on three different
action and gesture classification tasks, UCF-101 [28], Multimodal Gesture [5]
and Columbia Consumer videos [13]. Four different modalities such as audio,
appearance, short-term motion and skeleton are considered in our experiments.
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We find out that GeThR-Net is relatively 3.5 %, 5.7 % and 2 % better than
the best temporal multimodal baseline for UCF-101, CCV and Multimodal
Gesture datasets respectively.

The full pipeline of the proposed approach is shown in Fig. 1. We discuss the
relevant prior work in Sect. 2 followed by the details of GeThR-Net in Sect. 3.
The details of experimental results are provided in Sect. 4.

Fig. 1. The overall pipeline of the proposed approach GeThR-Net. The input to the
system is a multimodal stream (e.g.: appearance, short-term motion, skeleton and/or
audio for action/gesture classification tasks) and output is the class label. The pro-
posed network has total M + 1 components (M is the total number of modalities).
The first component is a temporally hybrid network that models the modality specific
temporal dynamics as well as the temporal dynamics in a multimodal feature space.
Corresponding to each of the M modalities, there is also a non-temporal classification
component in the network. All of these components in the network are trained in an
end-to-end fashion.

2 Related Work

In this section, we describe the relevant prior work on generic multimodal fusion
and multimodal fusion using deep learning.

Multimodal Information Fusion: A good survey of different fusion strategies
for multimodal information is in [1]. We discuss a few relevant papers here. The
authors in [41] provide a general theoretical analysis for multimodal information
fusion and implements novel information theoretic tools for multimedia applica-
tions. [37] proposes a two-step approach for an optimal multimodal fusion, where
in the first step statistically independent modalities are found from raw features
and in the second step, super-kernel fusion is used to find the optimal combina-
tion of individual modalities. In [10], the authors propose a method for detecting
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complex events in videos by using a new representation, called bi-modal words,
to explore the representative joint audio and visual patterns. [12] proposes a
method to extract a novel representation, the Short-term Audio-Visual Atom
(S-AVA), for improved semantic concept detection in videos. The authors in [45]
propose a rank minimization method to fuse the predicted confidence scores of
multiple models based on different kinds of features. Their goal is to find a shared
rank-2 pairwise relationship matrix (for the test samples) based on which each
original score matrix from individual model can be decomposed into the com-
mon rank-2 matrix and sparse deviation errors. [26] proposes an early and a late
fusion scheme for audio, visual and textual information fusion for semantic video
analysis and demonstrates that the late fusion method works slightly better. In
[22], the authors propose a multimodal fusion technique and describe a way to
implement a generic framework for multimodal emotion recognition.

Deep Learning for Multimodal Fusion: In [20], the authors propose a deep
autoencoder network that is pretrained using sparse Restricted Boltzmann
Machines (RBM). The proposed method is used to learn multimodal feature rep-
resentation for the task of audio-visual speech recognition. The authors in [29],
propose a Deep Boltzmann Machine (DBM) for learning a generative model of
data that consists of multiple and diverse input modalities. [27], proposes a mul-
timodal representation learning framework that minimizes the variation infor-
mation between data modalities through shared latent representations. In [38],
the authors propose a unified deep neural network, which jointly learns feature
relationships and class relationships, and simultaneously carries out video clas-
sification within the same framework utilizing the learned relationships. [17,18]
proposes an approach for generating novel image captions given an image. This
approach directly models the probability distribution of a word given previ-
ous words and an image using a network that consists of a deep RNN for sen-
tences and a deep CNN for images. [36] proposes a novel bi-modal dynamic
network for gesture recognition. High level audio and skeletal joints representa-
tions, extracted using dynamic Deep Belief Networks (DBN), are combined using
a layer of perceptron. However, none of these approaches use RNNs for both mul-
timodal and temporal data fusion and hence cannot learn features which truly
represent the complimentary nature of multimodal features along the tempo-
ral dimension. The authors in [3], propose a multi-layer RNN for multi-modal
emotion recognition. However, the number of layers in the proposed architec-
ture is equal to the number of modalities, which restricts the maximum number
of modalities which can be used simultaneously. The authors in [40] propose
a hybrid deep learning framework for video classification that can model sta-
tic spatial information, short-term motion, as well as long-term temporal clues
in the videos. The spatial and the short-term motion features extracted from
CNNs are combined using a regularized feature fusion network. LSTM is used
to model only the modality specific long-term temporal information. However,
in the proposed GeThR-Net, the temporally hybrid architecture can automati-
cally combine temporal information from multiple modalities without requiring
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any explicit feature fusion framework. We also point out that unlike [40], in
GeThR-Net, the multimodal fusion is performed at the LSTM network level.

To the best of authors’ knowledge, there are no prior approaches where mul-
timodal information fusion is performed at the RNN/LSTM level. GeThR-Net
is the first method to use a temporally hybrid RNN which is capable of learning
features from modalities of any kind without any upper-bound on the number
of modalities.

3 Proposed Approach

In this section, we provide the details of the proposed deep neural network archi-
tecture GeThR-Net. First, we discuss how LSTM networks usually work. Next,
we provide the descriptions of the temporal and non-temporal components of
our network followed by how we combine predictions from all these components.

3.1 Long Short Term Memory Networks

Recently, a type of RNN, called Long Short Term Memory (LSTM) Networks,
have been successfully employed to capture long-term temporal patterns and
dependencies in videos for tasks such as video description generation, activity
recognition etc. RNNs [35] are a special class of artificial neural networks, where
cyclic connections are also allowed. These connections allow the networks to
maintain a memory of the previous inputs, making them suitable for modelling
sequential data. In LSTMs, this memory is maintained with the help of three non-
linear multiplicative gates which control the in-flow, out-flow, and accumulation
of information over time. We provide a detailed description of RNNs and LSTM
networks below.

Given an input sequence x = {xt} of length T , the fixed length hidden state
or memory of an RNN h is given by

ht = g(xt, ht−1) t = 1, . . . , T (1)

We use h0 = 0 in this work. Multiple such hidden layers can be stacked on
top of each other, with xt in Eq. 1 replaced with the activation at time t of the
previous hidden layer, to obtain a ‘deep’ recurrent neural network. The output
of the RNN at time t is computed using the state of the last hidden layer at t as

yt = θ(Wyhhn
t + by) (2)

where θ is a non-linear operation such as sigmoid or hyperbolic tangent for
binary classification or softmax for multiclass classification, by is the bias term
for the output layer and n is the number of hidden layers in the architecture.
The output of the RNN at desired time steps can then be used to compute the
error and the network weights are updated based on the gradients computed
using Back-propagation Through Time (BPTT). In simple RNNs, the function
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g is computed as a linear transformation of the input and previous hidden state,
followed by an element wise non-linearity.

g(xt, ht−1) = θ(Whxxt + Whhht−1 + bh) (3)

Such simple RNNs, however, suffer from the vanishing and exploding gradient
problem [9]. To address this issue, a novel form of recurrent neural networks
called the Long Short Term Memory (LSTM) networks were introduced in [9].
The key difference between simple RNNs and LSTMs is in the computation of
g, which is done in the latter using a memory block. An LSTM memory block
consists of a memory cell c and three multiplicative gates which regulate the
state of the cell - forget gate f , input gate i and output gate o. The memory cell
encodes the knowledge of the inputs that have been observed up to that time
step. The forget gate controls whether the old information should be retained or
forgotten. The input gate regulates whether new information should be added
to the cell state while the output gate controls which parts of the new cell state
to output. Like simple RNNs, LSTM networks can be made deep by stacking
memory blocks. The output layer of the LSTM network can then be computed
using Eq. 2. We refer the reader to [9] for more technical details on LSTMs.

3.2 Temporal Component of GeThR-Net

In this subsection, we describe the details of the temporal component, which
is a temporally hybrid LSTM network that models modality specific temporal
dynamics as well as the multimodal temporal dynamics. This network has three
layers. The first layer models the modality specific temporal information using
individual LSTM layers. Multimodal information do not interact with each other
in this layer. In the second layer, the hidden representations from all the modal-
ities are combined using a linear function, followed by sigmoid non-linearity, to
create a single multimodal feature representation corresponding to each time
step. Finally, in the third layer, a LSTM network is fed with the learned multi-
modal features from the second layer. The output from the third layer is fed into
a softmax layer for estimating the classification confidence scores corresponding
to each label. This component is fully trained in an end-to-end manner and does
not require any explicit feature fusion modelling.

Now, we describe the technical details of these layers. We assume that there
are total M different modalities and total T time-steps. The feature representa-
tion for modality m corresponding to time instant t is given by: xm

t . Now, we
describe the mathematical details:

– First Layer: The input to this layer is xm
t for modality m at time instant

t. If LSTMm denotes the LSTM layer for modality m and if hm
t denotes the

corresponding hidden representation at time t, then:

hm
t = LSTMm(xm

t )
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– Second Layer: In this layer, the hidden representations are combined using
a linear function followed by a sigmoid non-linearity. The objective of using
this layer is to combine features from multiple temporal modalities. Let us
assume that zt denotes the concatenated hidden representation from all the
modalities at time-step t. Wz (same for all time-step t) denotes the weight
matrix which combines the multimodal features and creates a representation
pt at time instant t. bz denotes a linear bias and σ is the sigmoid function.

zt = (h1
t , · · · , hm

t ), pt = σ(Wzzt + bz)

– Third Layer: In this layer, one modality-independent LSTM layer is used
to model the overall temporal dynamics of the multimodal feature represen-
tation pt. Suppose, LSTMc denotes the combined LSTM and hc

t denotes the
hidden representation from this LSTM layer at time t. Wo is the weight matrix
that linearly transforms the hidden representation. The output is propagated
through a softmax function θ to obtain the final classification confidence values
yc
t at time t. bo is a linear bias vector.

hc
t = LSTMc(pt), yc

t = θ(Woh
c
t + bo)

3.3 Non-temporal Component of GeThR-Net

Although it is important to model the temporal information in multimodal sig-
nals for accurate classification or any other tasks, often in real world scenarios
multimodal information contains significant amount of noise and large intra-
class variation along the temporal dimension. For example, videos of the activity
‘cooking’ often contain action segments such as ‘changing thermostat’ or ‘drink-
ing water’ which are no way related to the actual label of the video. In those
cases, modelling only the long-term temporal information in the video could
lead to inaccurate results. Hence, it is important that we allow the proposed
deep network to learn the non-temporal features too. We analyze videos from
multiple datasets and observe that a simple classifier which is trained on ‘frame-
level’ features (definition of frame could vary according to the features) could
give a reasonable accuracy, especially when videos contain unrelated temporal
segments. Please refer to Sect. 4.5 for more experimental results on this. Since
our objective is to propose a generic deep network that could work with any kind
of multimodal information, we add additional components to the GeThR-Net,
which explicitly model the modality specific non-temporal information.

During training, for each modality m, we train a classifier where the set
{xm

t }, ∀t is used as the training examples corresponding to the class of the mul-
timodal signal. While testing for a given sequence, the predictions across all the
time-steps are averaged to obtain the classifier confidence scores corresponding
to all of the classes. In this paper, we have explored four different modalities:
appearance, short-term motion, audio (spectrogram and MFCC) and skeleton.
For appearance, short-term motion and audio-spectrogram, we use fine-tuned
CNNs and for audio-MFCC and skeleton, we use SVMs as the non-temporal
classifiers.
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3.4 Combination

There are total M + 1 components in GeThR-Net, where the first one is the
temporally hybrid LSTM network and the rest M are the non-temporal modality
specific classifiers corresponding to each modality. Once we independently train
these M + 1 classifiers, their prediction scores are combined and a single class-
label for each multimodal temporal sequence is predicted. We use a validation
dataset to determine the relevant weights corresponding to each of the M + 1
components.

4 Experiments

Our goal is to demonstrate that the proposed GeThR-Net can be effectively
applied to any kind of multimodal fusion. To achieve that, we perform thorough
experimental evaluation and provide the details of the experimental results in
this section.

4.1 Dataset Details

The dataset details are provided in this subsection.

UCF-101 [28]: UCF-101 is an action recognition dataset containing realistic
action videos from YouTube. The dataset has 13,320 videos annotated into 101
different action classes. The average length of the video in this dataset is 6–7 sec.
The dataset possess various challenges and diversity in terms of large variations
in camera motion, object appearance and pose, cluttered background, illumina-
tion, viewpoint, etc. We evaluate the performance on this dataset following the
standard protocol [28,40] by reporting the mean classification accuracy across
three training and testing splits. We use the appearance and short-term motion
modality for this dataset [24,40].

CCV [13]: The Columbia Consumer Videos (CCV) has 9,317 YouTube videos
distributed over 20 different semantic categories. The dataset has events like
‘baseball’, ‘parade’, ‘birthday’, ‘wedding ceremony’, scenes like ‘beach’, ‘play-
ground’, etc. and objects like ‘cat’, ‘dog’ etc. The average length of the video in
this dataset is 80 sec long. For our experiments, we have used 7751 videos (3851
for training and 3900 for testing) as the remaining videos are not available on
YouTube presently. In this dataset, the performance is measured by average pre-
cision (AP) for each class and the overall measure is given by mAP (mean average
precision over 20 categories). In this dataset, we use three different modalities,
i.e., appearance, short-term motion and audio.

Multimodal Gesture Dataset [5] (MMG): ChaLearn-2013 multimodal ges-
ture recognition dataset is a large video database of 13,858 gestures from a
lexicon of 20 Italian gesture categories. The focus of the dataset is on user inde-
pendent multiple gesture learning. The dataset has RGB and depth images of
the videos, user masks, skeletal model, and the audio information (utterance of
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the corresponding gesture by the actor), which are synchronous with the gestures
performed. The dataset has 393 training, 287 testing, and 276 testing sequences.
Each sequence is of duration between 1–2 min and contains 8–20 gestures. Fur-
thermore, the test sequences also have ‘distracter’ (out of vocabulary) gestures
apart from the 20 main gesture categories. For this dataset, we use the audio
and skeleton modality for fusion because some of the top-performing methods [5]
on this dataset also used these two modalities. The loose temporal boundaries
of the gestures in the sequence is available during training and validation phase,
however, at the time of testing, the goal is to also predict the correct order of
gestures within the sequence along with the gesture labels. The final evaluation
is defined in terms of edit distance (insertion, deletion, or substitution) between
the ground truth sequence of labels and the predicted sequence of labels. The
overall score is the sum of edit distance for all testing videos, divided by the
total number of gestures in all the testing videos [5].

4.2 Modality Specific Feature Extraction

In this section, we describe the feature extraction method for different modalities
- appearance, short-term motion, audio, and skeleton, which are used in this
paper across three different datasets.

– Appearance Features: We adopted the VGG-16 [25] architecture to extract
the appearance features. In this architecture, we change the number of neu-
rons in fc7 layer from 4096 to 1024 to get a compressed lower dimensional
representation of an input. We finetune the final three fully connected layers
(fc6, fc7, and fc8) of the network pretrained on ImageNet using the frames of
the training videos. The activations of the fc7 layer are taken as the visual
representation of the frame provided as an input. While finetuning, we use
minibatch stochastic descent with a fixed momentum of 0.9. The input size of
the frame to our model is 224 × 224 × 3. Simple data augmentations are also
done such as cropping and mirroring [11]. We adopt a dropout ratio of 0.5.
The initial learning rate is set to 0.001 for fc6, and 0.01 for fc7 and fc8 layers
as the weights of last two layers are learned from scratch. The learning rate is
reduced by factor of 10 after every 10,000 iterations.

– Short-Term Motion Features: To extract the features, we adopted the
method proposed in the recent two-stream CNN paper [24]. This method
stacks the optical flows computed between pairs of adjacent frames over a
time window and provides it as an input to CNN. We used the same VGG-16
architecture (as above) with 1024 neurons in fc7 layer, and pre-training on
ImageNet for the extraction of short-term motion features. However, unlike
the previous case (where input to the model was an RGB image comprising of
three channels), the input to this network is a 10-frame stacking of optical flow
fields (x and y direction), and thus the convolution filters in the first layer are
different from those of the appearance network. We adopt a high dropout rate
of 0.8 and set the initial learning rate to 0.001 for all the layers. The learning
rate is reduced by a factor of 10 after every 10,000 iterations.
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– Audio Features: We use two different kinds of feature extraction method for
audio modality.

• Spectrogram Features: In this method, we extract the spectrogram
features from audio signal using a convolutional neural network [21]. We
divide the video into multiple overlapping 1 sec clips and then, apply the
Short Time Fourier Transformation to convert each one second 1-d audio
signal into a 2-D image (namely log-compressed mel-spectrograms with
128 components) with the horizontal axis and vertical axis being time-
scale and frequency-scale respectively. The features are extracted from
these spectrogram images by providing them as input to a CNN. In this
case, we use AlexNet [14] architecture and the network was pre-trained
on ImageNet. We finetune the final three layers of network with respect
to the spectrogram images of training videos to learn the ‘spectrogram-
discriminative’ CNN features. We also change the number of nodes in fc7
layer to 1024 and use the activations of fc7 layer as the representation
of a spectrogram image. The learning rate and dropout parameters are
same as mentioned in the appearance feature extraction case.

• MFCC Features: We use MFCC features for the MMG dataset. The
spectrogram based CNN features were not used for this dataset as the
temporal extent of each gesture was very less (1–2 sec), making it diffi-
cult to extract multiple spectrograms along the temporal dimension. In
this method, speech signal of a gesture was analyzed using a 20ms Ham-
ming window with a fixed frame rate of 10ms. Our feature consists of 12
Mel Frequency Cepstral Coefficients (MFCCs) along with the log energy
(MFCC0) and their first and second order delta values to capture the
spectral variation. We concatenated 5 adjacent frames together in order
to adhere to the 20 fps of videos in the MMG dataset. Hence, we have a
feature of dimension of 39×5 = 195 for each frame of the video. The data
was also normalized such that each of the features (coefficients, energy
and derivatives) extracted have zero mean and one variance.

– Skeleton Features: We use the skeleton features for the MMG dataset. We
employ the feature extraction method proposed in [36,43] to characterize the
action information which includes the posture feature, motion feature and
offset feature. Out of 20 skeleton joint locations, we use only 9 upper body
joints as they are the most discriminative for recognizing gestures.

4.3 Methods Compared

To establish the efficacy of the proposed approach, we compare GeThR-Net with
several baselines. The baselines were carefully designed to cover several temporal
and non-temporal feature fusion methods. We provide the architectural details
of these baselines in Fig. 2 for easy understanding of their differences.

(a) NonTemporal-M: In this baseline, we train modality specific non-temporal
models and predict label of a temporal sequence based on the average over
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Fig. 2. Different baselines which are compared with GeThR-Net. (a) NonTemporal-M.
(b) Temporal-M. (c) NonTemporal-AM (d) Temporal-AM (late fusion) (e) Temporal-
EtoE-AM (late fusion) (f) Temporal-AM (early fusion) (g) Temporal-AM+NonTempo-
ral-AM.

all predictions across time. For appearance, short-term motion and audio
spectrogram, we use CNN features (Sect. 4.2) followed by a softmax layer for
classification. For audio MFCC and Skeleton, we use the features extracted
using the methods described in Sect. 4.2 followed by SVM classification.
Multimodal fusion is not performed for label prediction in these baselines.

(b) Temporal-M: For this baseline, we feed the modality specific features (as
described in the last subsection), to LSTM networks for the temporal mod-
elling and label prediction. Here also, features from multiple modalities are
not fused for classification.

(c) NonTemporal-AM (all modality combined): In this baseline, the out-
puts from the modality specific non-temporal baselines (CNN/SVM) are
linearly combined for classification. The combination weights are automati-
cally learned from validation datasets.

(d) Temporal-AM (late fusion, all modality combined): Here also, the
outputs from the modality specific temporal baselines (LSTMs) are linearly
combined for classification. This is a late fusion approach.

(e) TemporalEtoE-AM (late fusion, all modality combined): In this
baseline, we add a linear layer on top of the modality specific temporal
baselines and use an end-to-end training approach for learning the weights
of the combination layer. This is also a late fusion approach.

(f) Temporal-AM (early fusion, all modality combined): Features from
multiple modalities are linearly combined and then forward propagated
through a LSTM for classification. This is an early fusion approach.

(g) Temporal-AM+NonTemporal-AM (all modality combined): In this
baseline, the outputs from all the modality specific temporal and nontempo-
ral baselines are combined for the final label prediction. Here also, we use a
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validation dataset for predicting the optimal weights corresponding to each
of these components.

(h) TemporallyHybrid-AM (proposed, all modality combined): This
method uses only the temporally hybrid component of the proposed app-
roach. The non-temporal components’ outputs are not used. This network
is completely trained in an end-to-end fashion (See the temporal component
in Fig. 1).

(i) GeThR-Net: This is the proposed approach (See Fig. 1).

4.4 Implementation Details

We used the initial learning rate of 0.0002 for all LSTM networks. It is reduced
by a factor of 0.9 for every epoch starting from the 6-th epoch. We set the
dropout rate at 0.3. For the baseline methods of temporal modelling, Temporal-
M, Temporal-AM and TemporalEtoE-AM, we tried different combinations for
the number of hidden layers and the number of units in each layer and chose
the one which led to the optimal performance on the validation set. Since, the
feature dimension is high (1024) in UCF-101 and CCV dataset, the number of
units in each layer is varied from 256 to 768 in the intervals of 32. While in case
of MMG, it is varied from 64 to 512 in the same interval. The number of layers
in the baselines were varied between 1 and 3 for all of the datasets.

For the proposed temporally hybrid network (TemporallyHybrid-AM) com-
ponent also, the number of units in the First-layer LSTM corresponding to each
modality, the number units in the linear Second-layer and the number of units
in Third-layer multimodal LSTM are chosen based upon the performance on
the validation dataset. For UCF-101 dataset, the First-layer has 576 units for
both the appearance and short-term modality. The Second-layer has 768 units
and the Third-layer has 448 units. For CCV dataset, all the three modalities,
appearance, short-term motion and audio have 512 units in the First-layer. In
CCV, the Second-layer has 896 units and the Third-layer has 640 units. For
MMG dataset, the First-layer has 256 units for skeleton modality and 192 units
for audio modality. The Second-layer has 384 units and the Third-layer has 256
units. Note that these parameters differ across the datasets due to the variation
in the input feature size and the inherent complexity of the datasets.

4.5 Discussion on Results

In this section, we compare GeThR-Net with various baseline methods (Sect. 4.3)
and several recent state-of-the-art methods on three different datasets. The
results corresponding to all the baselines and the proposed approach are summa-
rized in Table 1. In the first two slabs of the table, results from individual modal-
ities are shown using the temporal and non-temporal components. In the next
three slabs, results for different fusion strategies across modalities are shown for
both the temporal and non-temporal components. In the final slab of the table,
results obtained from the proposed temporally hybrid component and GeThR-
Net are shown.
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Table 1. Comparison of GeThR-Net with baseline methods on UCF-101, CCV and
Multimodal Gesture recognition (MMG) dataset. UCF-101: M1 is appearance, M2 is
short-term motion and classification accuracy is reported. CCV: M1 is appearance,
M2 is short-term motion, M3 is audio and mean average precision (mAP) is reported.
MMG: M1 is audio, M2 is skeleton and normalized edit distance is reported.

Dataset Modalities Used

Appearance
UCF (M1)
-101 Short term Motion

(M2)

CCV

Appearance
(M1)

Short-term Motion
(M2)
Audio
(M3)

MMG

Audio
(M1)

Skeleton
(M2)

Methods UCF-101 CCV MMG
(Accuracy) (mAP) (edit)

NonTemporal-M1 76.3 76.7 0.988

NonTemporal-M2 86.8 57.3 0.782

NonTemporal-M3 - 30.3 -

Temporal-M1 76.6 71.7 0.284

Temporal-M2 85.5 55.1 0.361

Temporal-M3 - 28.5 -

NonTemporal-AM 89.9 78.5 0.776

Temporal-AM
88.0 75.0 0.156

(late fusion)

TemporalEtoE-AM
88.4 72.5 0.155

(late fusion)

Temporal-AM
86.5 73.1 0.190

(early fusion)

Temporal-AM +
90.2 79.2 0.155

NonTemporal-AM

TemporallyHybrid-AM 89.0 74.0 0.152

GeThR-Net 91.1 79.3 0.152

– UCF-101 [28]: For UCF-101, we report the test video classification accu-
racy. GeThR-Net achieves an absolute improvement of 3.1 %, 2.7 % and
4.6 % over Temporal-AM (late fusion), TemporalEtoE-AM (late fusion) and
Temporal-AM (early fusion) baselines respectively. This empirically shows
that the proposed approach is significantly better in capturing the comple-
mentary temporal aspects of different modalities compared to the late and
early fusion based methods. GeThR-Net also gives an absolute improvement
of 0.9 % over a strong baseline method of combining temporal and non-
temporal aspects of different modalities (Temporal-AM+Non-Temporal-AM).
This further establishes the efficacy of the proposed architecture. We also com-
pare the results produced by GeThR-Net with several recent papers which
reported results on UCF-101 (see Table 2). Out of the seven approaches we
compare, we are better than five of them and comparable to two [34,40] of
them. As pointed out earlier, the goal of this paper is to develop a general
deep learning framework which can be used for multimodal fusion in different
kinds of tasks. The results on UCF-101 clearly shows that GeThR-Net can
be effectively used for the short action recognition task (average duration 6–7
seconds).
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– CCV [5]: We also perform experiments on the CCV dataset to show that
GeThR-Net can also be used for longer action recognition (average duration
80 seconds). In this dataset, we report the mean average precision (in a scale of
0–100) for all the algorithms which we compare. In CCV also, GeThR-Net is
better than Temporal-AM (late fusion), TemporalEtoE-AM (late fusion) and
Temporal-AM (early fusion) baselines by an absolute mAP of 4.3, 6.8 and
6.2 respectively. However, GeThR-Net performs comparable (mAP of 79.3
compared to 79.2) to a strong baseline method of combining temporal and
non-temporal aspects of different modalities (Temporal-AM+Non-Temporal-
AM). We also wanted to compare GeThR-Net with several recent approaches
which also reported results on the CCV dataset. However, a fair comparison
was not possible because several videos from CCV were unavailable from
youtube. We used only 7,751 videos for training and testing as opposed to
9,317 videos in the original dataset. In spite of that, to get an approximate
idea about how GeThR-Net performs compared to these methods, we provide
some comparisons. The mAP reported on CCV by some of the recent methods
are: 70.6 [39], 64.0 [45], 63.4 [16], 60.3 [42], 68.2 [15], 64.0 [10] and 83.5 [40].
We perform better (mAP of 79.3) than six of these methods.

– MMG [5]: In this dataset, we report the normalized edit distance (lower
is better) [5] corresponding to each method. The normalized edit distance
obtained by GeThR-Net is lower than the other multimodal baselines such as
Temporal-AM (late fusion), TemporalEtoE-AM (early fusion), Temporal-AM
(late fusion) and Temporal-AM+NonTemporal-AM by 0.004, 0.003, 0.038
and 0.003 respectively. We are also significantly better than modality spe-
cific temporal baselines, e.g.: GeThR-Net gives a normalized edit distance of
only 0.152 compared to 0.284 and 0.361 produced by Temporal-M1 (audio)
and Temporal-M2 (skeleton) respectively. The results on this dataset demon-
strates that GeThR-Net performs well in fusing multimodal information from
audio-MFCC and skeleton. The edit distance obtained from GeThR-Net is
one of the top-three edits distances reported in the Chalearn-2013 multimodal
gesture recognition competition [5].

Table 2. Comparison of GeThR-Net with state-of-the-art methods on UCF-101.

IDT +

FV [32]

IDT +

HSV [23]

Two-

stream [24]

LSTM [19] TDD +

FV [33]

Two-

stream2 [34]

Fusion [40] GeThR-

Net

85.9 87.9 88.0 88.6 90.3 91.4 91.3 91.1

From the results on these datasets, it is clear that GeThr-Net is effective in
fusing different kinds of multimodal information and also applicable to different
end-tasks such as short action recognition, long action recognition and gesture
recognition. That empirically shows the generalizability of the proposed deep
network.
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5 Conclusion

In this paper, we propose a novel deep neural network called GeThR-Net for mul-
timodal temporal information fusion. GeThR-Net has a temporally hybrid recur-
rent neural network component that models modality specific temporal dynam-
ics as well as the temporal dynamics in a multimodal feature space. The other
components in the GeThR-Net are used to capture the non-temporal informa-
tion. We perform experiments on three different action and gesture recognition
datasets and show that GeThR-Net performs well for any general multimodal
fusion task. The experimental results are performed on four different modalities
with maximum three modality fusion at a time. However, GeThR-Net can be
used for any kind of modality fusion without any upper bound on the number
of modalities that can be combined.
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