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Abstract. We present a fully automatic camera calibration algorithm
for monocular stationary surveillance cameras. We exploit only infor-
mation from pedestrians tracks and generate a full camera calibra-
tion matrix based on vanishing-point geometry. This paper presents the
first combination of several existing components of calibration systems
from literature. The algorithm introduces novel pre- and post-processing
stages that improve estimation of the horizon line and the vertical van-
ishing point. The scale factor is determined using an average body height,
enabling extraction of metric information without manual measurement
in the scene. Instead of evaluating performance on a limited number of
camera configurations (video seq.) as in literature, we have performed
extensive simulations of the calibration algorithm for a large range of
camera configurations. Simulations reveal that metric information can be
extracted with an average error of 1.95 % and the derived focal length is
more accurate than the reported systems in literature. Calibration exper-
iments with real-world surveillance datasets in which no restrictions are
made on pedestrian movement and position, show that the performance
is comparable (max. error 3.7 %) to the simulations, thereby confirming
feasibility of the system.
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1 Introduction

The growth of video cameras for surveillance and security implies more automatic
analysis using object detection and tracking of moving objects in the scene. To
obtain a global understanding of the environment, individual detection results
from multiple cameras can be combined. For more accurate global understanding,
it is required to convert the pixel-based position information of detected objects
in the individual cameras, to a global coordinate system (GPS). To this end,
each individual camera needs to be calibrated as a first and crucial step.

The most common model to relate pixel positions to real-world coordinates
is the pinhole camera model [5]. In this model, the camera is assumed to make
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a perfect perspective transformation (a matrix), which is described by intrinsic
and extrinsic parameters of the camera. The intrinsic parameters are: pixel skew,
principal point location, focal length and aspect ratio of the pixels. The extrinsic
parameters describe the orientation and position of the camera with respect to a
world coordinate system by a rotation and a translation. The process of finding
the model parameters that best describe the mapping of scene onto the image
plane of the camera is called camera calibration.

The golden standard for camera calibration [5] uses a pre-defined calibration
object [19] that is physically placed in the scene. Camera calibration involves
finding the corresponding key points of the object in the image plane and describ-
ing the mapping of world coordinates to image coordinates. However, in surveil-
lance scenes the camera is typically positioned high above the ground plane,
leading to impractically large calibration objects covering a large part of the
scene. Other calibration techniques exploit camera motion (Maybank et al. [14],
Hartley [6]) or stereo cameras (Faugeras and Toscani et al. [4]), to extract multi-
ple views from the scene. However, because most surveillance cameras are static
cameras these techniques cannot be used. Stereo cameras explicitly create mul-
tiple views, but require two physical cameras that are typically not available.

A different calibration method uses vanishing points. A vanishing point is
a point where parallel lines from the 3D world intersect in the image. These
lines can be generated from static objects in the scenes (such as buildings, roads
or light poles), or by linking moving objects at different positions over time
(such as pedestrians). Static scenes do not always contain structures with par-
allel lines. In contrast, there are always moving objects in surveillance scenes,
which makes this approach attractive. In literature, different proposals use the
concept of vanishing points. However, these approaches either require very con-
strained object motion [7,8,15], require additional manual annotation of orthog-
onal directions in the scene [12,13], or only calibrate the camera up to a scale
factor [8–10,12,13,15]. To our knowledge, there exists no solution that results in
an accurate calibration for a large range of camera configurations in uncontrolled
surveillance scenes; automatic camera calibration does not work in unconstrained
cases.

This paper proposes a fully automatic calibration method for monocular sta-
tionary cameras in surveillance scenes based on the concept of vanishing points.
These points are extracted from pedestrian tracks, where no constraints are
imposed on the movement of pedestrians. We define the camera calibration as
a process, which is based as the extraction of the vanishing points with the fol-
lowing determination of the camera parameters. The main contributions to this
process are (1) a pre-processing step that improves estimation of the vertical
vanishing point, (2) a post-processing step that exploits the height distribu-
tion of pedestrians to improve horizon line estimation, (3) determination of the
camera height (scale factor) using an average body height and (4) an extensive
simulation of the total process, showing that the algorithm obtains an accu-
rate calibration for a large range of camera configurations as used in real-world
scenes.
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1.1 Related Work

Vanishing points are also extracted from object motion in the scene by Lv et al.
[12,13] and Kusakunniran et al. [9]. Although they proved that moving pedes-
trians can be used as a calibration object, the accuracy of the algorithms is not
sufficient for practical applications. Krahnstoever et al. [8] and Micusik et al. [15]
use the homography between the head and foot plane to estimate the vanishing
point and horizon line. Although providing the calibration upto a scale factor,
they require a constrained pedestrian movement and location. Liu et al. [10]
propose to use the predicted relative human height distribution to optimize the
camera parameters. Although providing a fully automated calibration method,
they exploit only a single vanishing point which is not robust for a large range
of camera orientations. Recent work from Huang et al. [7] proposes to extract
vanishing points from detected locations from pedestrian feet and only calculate
the intrinsic camera parameters.

All previously mentioned methods use pixel-based foreground detection to
estimate head and feet locations of pedestrians, which makes them impractical
for crowded scenes with occlusions. Additionally, these methods require at least
one known distance in the scene to be able to translate pixels to real distances.
Although in controlled scenes the camera calibration from moving pedestrians
is possible, many irregularities occur which complicate the accurate detection of
vanishing points. Different types of pedestrian appearances, postures and gait
patterns result in noisy point data containing many outliers. To solve the previ-
ous issues, we have concentrated particularly on the work of Kusakunniran [9]
and Liu [10]. Our strategy is to extend this work such that we can extract camera
parameters in uncontrolled surveillance scenes with pedestrians, while omitting
background subtraction and avoiding scene irregularity issues.

2 Approach

To calibrate the camera, we propose to use vertical and parallel lines in the
scene to detect the vertical vanishing point and the horizon line. These lines are
extracted from head and feet positions of tracked pedestrians. Then, a general
technique is used to extract camera parameters from the obtained vanishing
points. It should be noted that the approach is not limited to tracking pedestri-
ans, but applies to any object class for which two orthogonal vanishing points
can be extracted. The overview of the system is shown in Fig. 1. First, we com-
pute vertical lines by connecting head and feet positions of pedestrians. The
intersecting point of these lines is the location of the vertical vanishing point.
Second, points on the horizon line are extracted by computing parallel lines
between head and feet positions at different points in time. The horizon line is
then robustly fitted by a line fitting algorithm. Afterwards, the locations of the
vertical vanishing point and horizon line are used to compute a full camera cal-
ibration. In the post-processing step, the pedestrian height distribution is used
to refine the camera parameters. Finally and for distance calibration involving
translation of pixel positions to metric locations, a scale factor is computed by
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Fig. 1. Block diagram of the proposed
calibration system.

Fig. 2. Example head and feet
detections.

using the average body height of pedestrians. To retrieve more accurate cam-
era parameters and establish a stable average setting, the complete algorithm is
executed multiple times on subsets of the detected pedestrian positions which
addresses the noise in the parameters of single cycles.

2.1 Head and Feet Detection

The head and feet positions are detected using two object detectors, which are
trained offline using a large training set and are fixed for the experiments. We
apply the Histogram of Oriented Gradients (HOG) detector [2] to individually
detect head and feet (Fig. 2). The detector for feet is trained with images in
which the person feet are visibly positioned as a pair. A vertical line can be
found from a pedestrian during walking, at the moment (cross-legged phase) in
which the line between head and feet best represents a vertical pole. Head and
feet detections are matched by vertically shifting the found head detection of
each person downwards and then measuring the overlap with the possible feet
position. When the overlap is sufficiently large, the head and feet are matched
and used in the calibration algorithm. Due to small localization errors in both
head and feet positions and the fact that pedestrians are not in a perfectly
upright position, the set of matched detections contains noisy data. This will be
filtered in the next step.

2.2 Pre-processing

The matched detections are filtered as a pre-processing step, such that only the
best matched detections are used to compute the vanishing points and outliers
are omitted. To this end, the matched detections are sorted by the horizontal
positions of the feet locations. For each detection, the vertical derivative of the
line between head and feet is computed. Because the width of the image is
substantially smaller than the distance to the vertical vanishing point, we can
linearly approximate the tangential line related to the vertical derivative by a
first-order line. After extreme outliers are removed, this line is fitted through the
derivatives using a least-squares method. Derivatives that have a distance larger
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than an empirical threshold are removed from the dataset. Finally, the remaining
inliers are used to compute the vertical vanishing point and the horizon line.

2.3 Vertical Vanishing Point and Horizon Line

The vertical vanishing point location is computed using the method from
Kusakunniran et al. [9]. Pedestrians are considered vertical poles in the scene and
the collinearity of the head, feet and vertical vanishing point of each pedestrian
are used to calculate the exact location of the vertical vanishing point.

Parallel lines constructed from key points of pedestrians that are also parallel
to the ground plane intersect at a point on the horizon line. We can combine each
pair of head and feet detections of the same pedestrian to define such parallel
lines and compute the intersection points. Multiple intersection points lead then
to the definition of the horizon line. The iterative line-finding algorithm which
is used to extract the horizon line is described below.

The horizon line is estimated by a least-squares algorithm. Next, inliers are
selected based on a their distance to the found horizon line, which should be
smaller than a pre-determined threshold T . These inliers are used to fit a new
line by the same least-squares approach so that the process becomes iterative.
The iterative process stops when the support of the line in terms of inliers
does not further improve. This approach always leads to a satisfactory solution
in our experiments. The support of a line has been experimentally defined by a
weighted sum W of contributions of the individual points i having an L2-distance
Di to the current estimate of the horizon line. Each contribution is scaled with
the threshold to a fraction Di/T and exponentially weighted. This leads to the
least-squares weight W specified by

W =
M∑

i=1

exp
−D2

i

T 2
. (1)

The pre-defined threshold T depends on the accuracy of the detections and on
the orientation of the camera. If the orientation of the camera is facing down
at a certain angle, the intersection points are more sensitive to noise, i.e. the
spread of the intersection points will be larger. A normal distribution is fitted
on the intersection points. The threshold T is then determined as the standard
deviation of that normal distribution.

2.4 Calibration Algorithm

The derived horizon line and the vertical vanishing point are now used to directly
determine the camera parameters. As we assume zero skew, square pixels and
the principal point being at the center of the image, the focal length is the only
intrinsic camera parameter left to be determined.

The focal length represents the distance from the camera center to the prin-
cipal point. Using the geometric properties described by Orghidan et al. [17], the
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distance can be computed using only the distance from the vertical vanishing
point to the principal point and the distance from the horizon line to the princi-
pal point. The orientation of the camera is described by a rotation matrix, which
is composed of a rotation around the tilt and the roll angle, thus around the x-
axis and z-axis, respectively. The tilt angle θt is defined as the angle between
the focal line and the z-axis of the world coordinate system. Because any line
between the camera center Oc and the horizon line is horizontal, the tilt angle
is computed by

θt = 90◦ + arctan
( ||OiVi||

f

)
, (2)

where Vi is the point on the horizon line which is closest to the principal point,
f is the focal length and Oi is the center of the image. The roll angle is equal
to the angle between the line from the vertical vanishing point to the principal
point and the vertical line through the principal point. The translation defined
in the extrinsic parameters is a vector t pointing from the camera origin to the
world origin. We choose the point on the ground plane that is directly beneath
the camera center as the world origin, so that the position of the camera center
in world coordinates is described by Pcam(x, y, z) = (0, 0, s). This introduces
the well-known scale factor s being equal to the camera height. The translation
vector t is computed by

t = −R · Pcam, (3)

where R is the rotation matrix. If metric information is required, the scale factor
s must be determined to relate distances in our world coordinate system to metric
distances. The scale factor can be computed if at least one metric distance in
the scene is known. Inspired by [3], the average body height of the detected
pedestrians is used, as this information is readily available. Because the positions
of the feet are on the ground plane, these locations can be determined by

s

⎡

⎣
x
y
1

⎤

⎦ = [P1, P2, P4]−1

⎡

⎣
uf

vf
1

⎤

⎦ , (4)

where (uf , vf ) are the image coordinates of the feet and Pi denotes the ith column
of the projection matrix P = K[R|t], where K is the calibration matrix. The
world coordinates of the head are situated on the line from the camera center
through the image plane at the pixel location of the head, towards infinity. The
point on this line that is closest to the vertical line passing through the position of
the feet, is defined as the position of the head. The L2-distance between the two
points is equal to the body height of the pedestrian. The scale factor is chosen
such that the measured average body height of the pedestrians is equal to the
a-priori known country-wide average [16]. Note that the standard deviation of
the country-wide height distribution has no influence if sufficient samples are
available. The worst-case deviation on average height globally is 12 % (1.58–
1.80 m), but this never occurs because outliers (airports, children) are averaged.
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2.5 Post-processing

Noise present in the head and feet detections of pedestrians affects the locations
of the intersection points that determine the location of the vertical vanishing
point and the horizon line. When the tilt of the camera is close to horizontal,
vertical lines in the scene are almost parallel in the image plane, which makes
the intersection points sensitive to noise. As a result, the average position of the
intersection points is shifted upwards, which decreases exponentially when the
tilt of the camera increases (facing more downwards), see Fig. 4c. The intersection
points that determine the horizon line undergo a similar effect when the camera is
facing down, see Fig. 4b. As a consequence of these shifting effects, the resulting
focal length and camera tilt are estimated at a lower value than they should
be. Summarizing, the post-processing compensates the above shifting effect for
cameras facing downwards.

This compensation is performed by evaluating the pedestrian height distri-
bution, as motivated by [10]. The pedestrian height is assumed to be a normal
distribution, as shown by Millar [16]. The distribution has the smallest vari-
ance when the tilt is estimated correctly. The tilt is computed as follows. The
pedestrian height distribution is calculated for a range of tilt angles (from −5
to +15◦ in steps of 0.5◦, relative to the initially estimated tilt angle). We select
the angle with the smallest variance as the best angle for the tilt. Figure 7 shows
one-over standard deviation of the body height distribution for the range of
evaluated tilt angles (for three different cameras with three different true tilt
angles). As can be seen in the figure, this optimum value is slightly too high.
Therefore, the selected angle is averaged with the initial estimate when starting
the pre-processing, leading to the final estimated tilt.

In retrospect, our introduced pre-processing has also solved a special case that
introduces a shift in the vertical vanishing point. This occurs when the camera
is horizontally looking forward, so that the tilt angle is 90◦. Our pre-processing
has corrected this effect.

3 Model Simulation and Its Tolerances

The purpose of model simulation is to evaluate the robustness against model
errors which should be controlled for certain camera orientations. Secondly, the
accuracy of the detected camera parameters should be evaluated, and the influ-
ence of error propagation in the calculation when input parameters are noisy.

The advantage of using simulated data is that the ground truth of every step
in the algorithm is known. The first step of creating a simulation is defining a
scene and calculating the projection matrix for this scene. Next, the input data
for our algorithm is computed by creating a random set of head and feet positions
in the 3D-world, where the height of the pedestrian is defined by a normal
distribution N (μ, σ) with μ = 1.74m and σ = 0.065m, as in [16]. The pixel
positions of the head and feet positions in the image plane are computed using the
projection matrix. These image coordinates are used as input for our calibration
algorithm. For our experiments, we model the errors as noise sources, so that the
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robustness of the system can be evaluated with respect to (1) the localization
errors, (2) our assumptions about pedestrians walking perfectly vertical and (3)
the assumptions on intrinsic parameters of the camera. We first simulate the
system to evaluate the camera parameters since this is the main goal. However,
we extend our simulation to evaluate also the measured distances in the scene,
which are representative for the accuracy of mapping towards a global coordinate
system.

3.1 Error Sources of the Model

We define two noise sources in our simulation system. The first source mod-
els the localization error of the detector for the head and feet positions in the
image plane. The second source is a horizontal offset of the head position in
the 3D-world, which originates from the ideal assumption on pedestrians walk-
ing perfectly vertical through the scene. This is not true in practice, leading to
an error in the horizontal offset as well. All noise sources are assumed to have
normal distributions. The localization error of the detector is determined by
manually annotating head and feet positions of a real-life data sequence, which
serves as ground truth. The head and feet detectors are applied to this dataset
and the localization error is determined. We have found that the localization
errors can be described by a standard deviation of σx = 7% [width of head]
and σy = 11% in the x- and y-direction for the head detector and a standard
deviation of σx = 10% and σy = 16% for the feet detector.

Fig. 3. Accuracy of the camera tilt estimation, the red line shows perfect estimation.
(Color figure online)

Estimating the noise level of head positions in the 3D world is not trivial,
since ground-truth data is not available. In order to create a coarse estimate of
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the noise level, manual pedestrian annotations of a calibrated video sequence are
used to plot the distributions of the intersection points of the vertical vanishing
point and the horizon line. The input noise of the model simulation is adjusted
such that the simulated distributions match with the annotated distributions.
Input noise originates from two noise sources: errors perpendicular to the walking
direction and errors in the walking direction. We have empirically estimated the
noise perpendicular to the walking direction to have σ = 0.08 m and the noise
parallel to the walking direction to have σ = 0.10 m. These values are employed
in all further simulation experiments.

3.2 Experiments on Error Propagation in the Model

In our experiments, we aim to optimize the tilt estimation, because the tilt
angle has the largest influence on the camera calibration. In order to optimize
the estimation of the camera tilt, we need to optimize the location of the vertical
vanishing point and horizon line. Below, the dependencies of the tilt on various
input parameters are evaluated: pre-processing, the camera orientation and post-
processing.

Pre-Processing: To evaluate the effect of the pre-processing on the locations of
the intersection points, which determine the vertical vanishing point and the
horizon line, the tilt is computed for various camera orientations and 150 times
for each orientation. Each time the simulation creates new detection sets using
the noise sources. Results of the detected tilt with and without pre-processing
are shown in Fig. 3a. The red line depicts the ground-truth value for the camera
tilt. The blue points are the estimated camera tilts for the various simulations,
with an average error of 3.7◦. It can be observed that the pre-processing stage
clearly removes outliers such that the estimation of the position of the vertical
vanishing point is improved, especially for cameras with a tilt lower than 120◦.
The average error decreases to 1.3◦, giving a 65 % improvement.

Camera Orientation: The position of the vanishing points depends on the detec-
tion error in the image plane and on the camera orientation. The influence of the
orientation on the error of the vanishing-point locations is evaluated. The simu-
lation environment is used to create datasets for camera tilts ranging from 105
to 135◦. For each orientation, 100 datasets are produced and individual vertical
vanishing points and horizon lines are computed.

Figure 4 shows the intersection points of the horizon line and vertical van-
ishing point for a camera tilt of 105◦ and 130◦. The red rectangle represents the
image plane, the intersection points are depicted in green and the blue triangular
corners represent a set of three orthogonal vanishing points, where the bottom
corner is the vertical vanishing point and the two top corners are two vanishing
points on the horizon line in orthogonal directions. For a camera tilt of 105◦,
which is close to horizontal, the intersection points of the horizon line lie close
to the ground truth, while intersection points of the vertical vanishing point are
widely spread and shifted upwards. For a camera tilt of 130◦, the opposite effect
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Fig. 4. Shift of the intersection-point blobs for (a, c) 105 and (b, d) 130◦ tilt. (Color
figure online)

is visible. Figure 5 shows the vertical location error of the computed vertical van-
ishing point and horizon line. It can be seen that when the camera tilt increases,
the downwards shift of the horizon line increases exponentially. When the camera
tilt decreases, the upwards shift of the vertical vanishing point increases expo-
nentially. The variance of the vertical location error of the horizon line grows
when the tilt increases, which means that the calibration algorithm is more sen-
sitive to noise in the head and feet positions. A similar effect is visible in the
location error of the vertical vanishing point for decreasing camera tilt.

Post-Processing: Results from the previous experiments show that the detected
vanishing point and horizon line have a vertical localization error. The post-
processing stage aims at improving the tilt estimation of the calibration algo-
rithm. The effect of the post-processing is evaluated by computing the tilt for
simulated scenes with various camera orientations. The results of the calibration
algorithm with post-processing are shown in Fig. 3b. It can be observed that the
post-processing improves the tilt estimation for camera tilts higher than 120◦.
The average tilt error is reduced from 1.3◦ when using only pre-processing, to
0.7◦ with full processing (an improvement of 46 %).

3.3 Monte-Carlo Simulation

The model simulation can be used to derive the error distributions of the camera
parameters by performing Monte-Carlo simulation. These error distributions are
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Fig. 5. Vertical shift of the predicted vanishing points with respect to the ground truth.

Fig. 6. Accuracy of tilt estimation for
increasing number of detections (40
simulation iterations per detection).

Fig. 7. Postprocessing, 1/standard
deviation of the body height dis-
tribution for several camera tilts.

computed by calibrating 1,000 simulated scenes using typical surveillance camera
configurations. For the simulations, the focal length is varied within 1,000–4,000
pixels, the tilt in 110–130◦, the roll from −5 to +5◦ and the camera height
within 4–10 m. The error distributions are computed for the focal length, tilt,
roll and camera height. Figure 6 shows how the tilt error decreases with respect
to the number of input pedestrian locations (from the object detector). Both
the absolute error and its variance decrease quickly and converge after a few
hundred locations.

Figure 8 shows the error distributions of the previous parameters via Monte-
Carlo simulations. The standard deviations of the focal length error, camera tilt
and camera roll are 47.1 pixels, 0.41◦ and 0.21◦, respectively. The mean of the
camera height distribution is lower than the ground truth. This is due to the fact
that when the estimated tilt and focal length are smaller than the actual values,
the detected body height of the pedestrian is larger and the scale factor will be
smaller giving a lower camera height. The average error of measured distances in
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Fig. 8. Distribution of the estimated camera parameters from Monte-Carlo simulations.

the scene is 1.95 %, while almost all errors are below 3.2 %. These results show
that accurate detection of camera parameters is obtained for various camera
orientations.

4 Experimental Results of Complete System

Three public datasets are used to compare the proposed calibration algorithm
with the provided ground-truth parameters (tilt, roll, focal length and camera
height) of these sequences: Terrace1 and Indoor/Outdoor2. In addition, three
novel datasets are created, two of which are fully calibrated (City Center 1
and 2), so that they provide ground-truth information on both intrinsic and
extrinsic camera parameters. The intrinsic parameters are calibrated using a
checker board and the MATLAB camera calibration toolbox. The true extrinsic
parameters are computed by manually extracting parallel lines from the ground
plane and computing the vanishing points. In City Center 3, only measured dis-
tances are available which will be used for evaluation. Examples of the datasets
are shown in Fig. 9, where the red lines represent the manually measured dis-
tances.

4.1 Experiment 1: Fully Calibrated Cameras

The first experiment comprises a field test with the two fully calibrated cameras
from the City Center 1 and 2 datasets. The head and feet detector is applied
to 30 min of video with approximately 2,500 and 200 pedestrians, resulting in
7,120 and 2,569 detections in the first and second dataset, respectively. After

1 Terrace: CVLab EPFL database of the University of Lausanne [1].
2 Indoor/Outdoor: ICG lab of the Graz University of Technology [18].
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(a) City Center 1 (b) City Center 2 (c) City Center 3

(d) Terrace (e) Indoor (f) Outdoor

Fig. 9. Examples of the datasets used in the experiments, red lines are manually mea-
sured distances in the scene. (Color figure online)

pre-processing, approximately half of the detections remain and are used for
the calibration algorithm. Resulting camera parameters are compared with the
ground-truth values. The results are shown in Table 1. The tilt estimation is
accurate up to 0.43◦ for both datasets. The estimated roll is less accurate, caused
by a horizontal displacement of the principal point from the image center. The
focal length and camera height are estimated accurately.

Next, several manually measured distances in the City Center 1–3 datasets
are compared with estimated values from our algorithm. Pixel positions of the
measured points on the ground plane are manually annotated. These pixel posi-
tions are converted back to world coordinates using the predicted projection
matrix. For each combination of two points we compare the estimated distance
with our manual measurement. The average error over all distances is shown in
Table 3. The first two datasets have an error of approximately 2.5%, while the
third dataset has a larger error, which is due to a curved ground plane.

4.2 Experiment 2: Public Datasets

The proposed system is compared to two auto-calibration methods described by
Liu et al. [10] (2011) and Liu et al. [11] (2013). The method described in [10]
uses foreground blobs and estimates the vertical vanishing point and maximum-
likelihood focal length. Publication [11] concentrates on calibration of multi-
camera networks. This method uses the result of [10] to make a coarse estima-
tion of the camera parameters, of which only the focal length can be used for
comparison. The resulting estimated focal lengths and the ground truth are pre-
sented in Table 4. The proposed algorithm has the highest accuracy. Note that
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Table 1. Ground truth and estimated
values of camera parameters of the City
Center datasets

Sequence Tilt

(deg)

Roll

(deg)

f

(pix-

els)

Height

(m)

City C 1

1920× 1080

GT 107.66 −0.92 1693 6.02

Est 107.88 −1.38 1631 6.16

City C 2

1920× 1080

GT 107.56 −0.71 1368 4.60

Est 107.99 2.95 1397 4.37

Table 2. Ground truth and estimated
values of camera parameters of the
public datasets (No. of detections: 905,
1,958 and 1,665.)

Sequence Tilt

(deg)

Roll

(deg)

f (pix-

els)

Height

(m)

Indoor

1280× 960

GT 104.31 0.07 1048 4.57

Est 103.98 −0.20 787 3.78

Outdoor

1280× 960

GT 109.11 0.96 1198 8.78

Est 108.89 −0.18 1019 8.83

Terrace

360× 288

GT 108.41 1.19 807 2.45

Est 105.50 1.82 850 1.93

Table 3. Estimated distances in City
Center datasets

Sequence City Center 1 City C 2 City C 3

Error (%) 2.48 2.62 3.7

Table 4. Estimated focal lengths for
the Outdoor dataset

Algorithm GT Liu [10] Liu [11] Prop. alg

f (pixels) 1,198 1,545 1,427 1019

Error (%) - 29 19 15

the detected focal length is smaller than the actual value. This is due to the fact
that the horizon line is detected slightly below the actual value and the vertical
vanishing point is detected above the actual value (discussed later). However,
this does not affect the detected camera orientation. Finally, the three public
datasets are calibrated using the proposed algorithm, of which the results are
presented in Table 2. For all sequences, the parameters are estimated accurately.
The roll is detected up to 1.14◦ accuracy, the focal length up to 179 pixels and
the camera height up to 0.53 m. The tilt estimation of the Terrace sequence is
less accurate. Because of the low camera height (2.45 m), the detector was not
working optimally, resulting in noisy head and feet detections. Moreover, the
small focal length combined with the small camera tilt makes the calculation of
the tilt sensitive to noise. When the detected focal length is smaller than the
actual value, the detected camera height will also be lower than the actual value.
However, if other camera parameters are correct, the accuracy of detected dis-
tances in the scene will not be influenced. We have found empirically that the
errors compensate exactly (zero error) but this is difficult to prove analytically.

Note that the performance of our calibration cannot be fully benchmarked,
since insufficient data is available from the algorithms from literature. Moreover,
implementations are not available so that a full simulation can also not be per-
formed. Most of the methods that use pedestrians to derive a vanishing point
use controlled scenes with restrictions (e.g. numbers, movement etc.), so that
the method do often not apply to unconstrained datasets. As indicated above,
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in some cases the focal length can be used. All possible objective comparisons
have been presented.

Comparing our algorithm with [11] when ignoring our pre- and post-
processing stages will lead to a similar performance, because both algorithms
use the idea of vanishing point and horizon line estimation from pedestrian loca-
tions. In our extensive simulation experiments we have shown that our novel pre-
and post-processing improve performance. Specifically, pre-processing improves
camera tilt estimation from 3.7 to 1.3◦ error and post-processing further reduces
the error to 0.7◦. This strongly suggests that our algorithm outperforms [11].

5 Discussion

The proposed camera model is based on assumptions that do not always hold,
e.g. zero skew, square pixels and a flat ground plane. This inevitably results
in errors in detected camera parameters and measured distances in the scene.
Despite these imperfections, the algorithm is capable of detecting distances in
the scene with a limited error of only 3.7%. The camera roll is affected by a
horizontal offset of the principal point, whereas the effect on the other camera
parameters of the model imperfections is negligible.

In some of the experiments, we observe that the estimated focal length has
a significant error (Indoor sequence in Table 2). The estimated focal length and
camera height are related and a smaller estimated focal length results in a smaller
estimated camera height. Errors in the derived focal length are thus compensated
by the detected camera height and have no influence on detected distances in the
scene. Consequently, errors in the focal length do not hamper highly accurate
determination of position information of moving objects in the scene.

6 Conclusion

We have presented a novel fully automatic camera calibration algorithm for
monocular stationary cameras. We focus on surveillance scenes where typically
pedestrians move through the camera view, and use only this information as
input for the calibration algorithm. The system can also be used for scenes
with other moving objects. After collecting location information from several
pedestrians, a full camera calibration matrix is generated based on vanishing-
point geometry. This matrix can be used to calculate the real-world position of
any moving object in the scene.

First, we propose a pre-processing step which improves estimation of the
vertical vanishing point, reducing the error in camera tilt estimation from 3.7
to 1.3◦. Second, a novel post-processing stage exploits the height distribution of
pedestrians to improve horizon line estimation, further reducing the tilt error
to 0.7◦. As a third contribution, the scale factor is determined using an average
body height, enabling extraction of metric information without manual mea-
surement in the scene. Next, we have performed extensive simulations of the
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total calibration algorithm for a large range of camera configurations. Monte-
Carlo simulations have been used to accurately model the error sources and have
shown that derived camera parameters are accurate. Even metric information
can be extracted with a low average and maximum error of 1.95 % and 3.2 %,
respectively. Benchmarking of the algorithm has shown that the estimated focal
length of our system is more accurate than the reported systems in literature.
Finally, the algorithm is evaluated using several real-world surveillance datasets
in which no restrictions are made on pedestrian movement and position. In real
datasets, the error figures are largely the same (metric errors of max. 3.7 %) as
in the simulations which confirms the feasibility of the solution.

References

1. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using K-
shortest paths pptimization. IEEE Trans. Pattern Anal. Mach. Intell. (2011)

2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1, pp. 886–893, June 2005

3. Dubska, M., Herout, A., Sochor, J.: Automatic camera calibration for traffic under-
standing. In: Proceedings of the British Machine Vision Conference. BMVA Press
(2014)

4. Faugeras, O.D., Toscani, G.: The calibration problem for stereo. In: Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 1986, Miami Beach, FL, 22–26 June 1986, pp. 15–20. IEEE (1986). IEEE
Publ. 86CH2290-5

5. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

6. Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In:
Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 471–478. Springer, Hei-
delberg (1994). doi:10.1007/3-540-57956-7 52

7. Huang, S., Ying, X., Rong, J., Shang, Z., Zha, H.: Camera calibration from periodic
motion of a pedestrian. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016

8. Krahnstoever, N., Mendonca, P.: Bayesian autocalibration for surveillance. In:
Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2,
pp. 1858–1865, October 2005

9. Kusakunniran, W., Li, H., Zhang, J.: A direct method to self-calibrate a surveil-
lance camera by observing a walking pedestrian. In: Digital Image Computing:
Techniques and Applications, DICTA 2009, pp. 250–255, December 2009

10. Liu, J., Collins, R.T., Liu, Y.: Surveillance camera autocalibration based on pedes-
trian height distributions. In: British Machine Vision Conference (BMVC) (2011)

11. Liu, J., Collins, R., Liu, Y.: Robust autocalibration for a surveillance camera net-
work. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp.
433–440, January 2013

12. Lv, F., Zhao, T., Nevatia, R.: Self-calibration of a camera from video of a walking
human. In: Proceedings of 16th International Conference on Pattern Recognition,
2002, vol. 1, pp. 562–567 (2002)

13. Lv, F., Zhao, T., Nevatia, R.: Camera calibration from video of a walking human.
IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1513–1518 (2006)

http://dx.doi.org/10.1007/3-540-57956-7_52


Automatic Calibration of Stationary Surveillance Cameras in the Wild 759

14. Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int.
J. Comput. Vision 8(2), 123–151 (1992). http://dx.doi.org/10.1007/BF00127171

15. Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-
head homology estimation from human detections. In: 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1562–1569, June 2010

16. Millar, W.: Distribution of body weight and height: comparison of estimates based
on self-reported and observed measures. J. Epidemiol. Community Health 40(4),
319–323 (1986)

17. Orghidan, R., Salvi, J., Gordan, M., Orza, B.: Camera calibration using two or
three vanishing points. In: 2012 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 123–130, September 2012

18. Possegger, H., Rther, M., Sternig, S., Mauthner, T., Klopschitz, M., Roth, P.M.,
Bischof, H.: Unsupervised calibration of camera networks and virtual PTZ cameras.
In: Proceedings of Computer Vision Winter Workshop (CVWW) (2012). Supple-
mental Video, Dataset, Code

19. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern
Anal. Mach. Intell. 22(11), 1330–1334 (2000)

http://dx.doi.org/10.1007/BF00127171

	Automatic Calibration of Stationary Surveillance Cameras in the Wild
	1 Introduction
	1.1 Related Work

	2 Approach
	2.1 Head and Feet Detection
	2.2 Pre-processing
	2.3 Vertical Vanishing Point and Horizon Line
	2.4 Calibration Algorithm
	2.5 Post-processing

	3 Model Simulation and Its Tolerances
	3.1 Error Sources of the Model
	3.2 Experiments on Error Propagation in the Model
	3.3 Monte-Carlo Simulation

	4 Experimental Results of Complete System
	4.1 Experiment 1: Fully Calibrated Cameras
	4.2 Experiment 2: Public Datasets

	5 Discussion
	6 Conclusion
	References


