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Abstract. Many face recognition applications require a precise 3D
reconstruction of the shape of the face, even when only a single 2D image
is available. We present a novel regression approach that learns to detect
facial landmark points and estimate their 3D shape rapidly and accu-
rately from a single face image. The main idea is to regress a function
f(.) that maps 2D images of faces to their corresponding 3D shape from
a large number of sample face images under varying pose, illumination,
identity and expression. To model the non-linearity of this function, we
use a deep neural network and demonstrate how it can be efficiently
trained using a large number of samples. During testing, our algorithm
runs at more than 30 frames/s on an i7 desktop. This algorithm was the
top 2 performer in the 3DFAW Challenge.

Keywords: 3D modeling and reconstruction of faces · Fine-grained
detection · 3D shape from a single 2D image · Precise and detailed
detections

1 Introduction

Humans can readily and accurately estimate the 3D shape of a face by simply
observing a single 2D image example of it. Recent results demonstrate that
humans use this shape information to infer identity, expression, facial actions
and other properties from such 3D reconstructions [1]. Several computer vision
approaches have been developed over the years that attempt to replicate this
outstanding ability, e.g., [2–6] provide 3D shape estimates of a set of 2D landmark
points on a single image, [7,8] use 2D landmark points over several images, and
[9–11] provide 3D shape reconstructions from 2D images. Unfortunately, the
results of these algorithms are not yet comparable to those of humans [12].

The present paper describes a novel algorithm that provides a fast and precise
estimation of the 3D shape of a face from a single 2D image. The major idea
of the paper is to define a mapping function f(.) that identifies the 3D shape
of a face from the shading patterns observed in a 2D image. This is illustrated
in Fig. 1. As seen in this image, the goal is to define a function s = f(a) that,
given an image a ∈ R

p (p the number of pixels), yields the 3D coordinates of
the l landmark points defining the shape of the face, s ∈ R

3l.
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Fig. 1. Conceptual illustration of the proposed approach. The u and v axes correspond
to the face image space (pixel values), while the z axis corresponds to the 3D shape. A
finite set of face image samples and their associated 2D shape landmarks are used to
estimate the parameters of a deep network. This network defines a mapping f(.) from
a face image sample to its associated 3D shape.

Given the large number of possible identities, illuminations, poses and expres-
sions, this functional mapping f(.) is difficult to estimate. To resolve this prob-
lem, we use a deep neural network. A deep neural network is a regression app-
roach to estimate non-linear mappings of the form s = f(a), where a is the
input and s is the output. This means that the network must have p input and
3l output nodes. The number of hidden layers and non-linear functions between
layers are what allow us to learn the complex 2D image to 3D shape mapping.
This is in sharp contrast to linear regression methods attempted before [2–6] as
well as non-linear attempts to model 2D shape from a single image [13–15] or
3D shape from multiple images [6,16].

Compared to previous approaches, our algorithm is also able to learn from
a small and large number of 3D sample shapes. A small number of samples
might not seem sufficient to learn our regressor, but we define data augmentation
methods that allow us to circumvent this problem. This is done by using a camera
model to generate multiple views of the same 3D shape and the matching 2D
landmark point on the original sample image. We demonstrate how this approach
is able to successfully and accurately recover the 3D shape of faces from a single
view.

We submitted the results of the herein defined algorithm to the 3D Face
Alignment in the Wild (3DFAW) challenge. Our algorithm yielded an accuracy
of 3.97%. This was the second best result (with the top algorithm only slightly
better at 3.47% accuracy). We provide additional comparative results with the
other 3DFAW participants and algorithms defined in the literature.

It is also important to mention that our derived multilayer neural network can
be trained very quickly and testing runs faster than real-time (> 30 frames/s).
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2 Related Work

Three-dimensional (3D) reconstruction from a single face image can be roughly
divided into two approaches: dense 3D estimation using synthesis and 3D land-
mark estimation.

With respect to dense 3D face modeling, the main challenge is locating a
dense set of corresponding face features in a variety of face images [9]. A para-
metric morphable face model is generally used to generate arbitrary synthetic
images under different poses and illumination, using a 3D Point Distribution
Model (PDM) on the morphing function to constrain the face space [9]. Basel
Face Model (BFM) [10] improves the texture accuracy while reducing corre-
spondence artifacts by improving the scanning methodology and the registration
model. To learn a model from a set of 3D scans of faces, an automatic frame-
work was designed to estimate 3D face shape and texture of faces under varying
pose and illumination [16]. In [17], a 3D morphable model was constructed from
> 9, 000 3D facial scans, by using a novel and almost fully automated construc-
tion pipeline. And, in [18], a single template face is used as a reference prior to
reconstruct the 3D surface of test faces using a shape-from-shading algorithm.
Other approaches are designed to combine 2D and 3D Active Appearance Models
(AAM) by constraining a 2D AAM with the equivalent 3D shape modes, which
has advantages in both fitting speed and ease of model construction [19,20]. In
[11] a monocular face shape reconstruction is formulated as a 2-fold Coupled
Structure Learning process, which consists of the regression between two sub-
spaces spanned by 3D and 2D sparse landmarks, and a coupled dictionary of 3D
dense and sparse shapes. These models tend to be computational expensive and
their model complexity typically yields subpar alignments and reconstructions.

The alternative approach is 3D landmark estimation where we use an image
to infer a set of points describing the contour of a set of facial features, e.g.,
eyes, eyebrows, nose, mouth, etc. These methods are directly related with our
proposed algorithm. In [21], a fully automatic method to estimate 3D face shape
from a single image is proposed without resorting to manual annotations. This
is done by first computing gradient features to get a rough initial estimate of the
2D landmarks. These initial positions are iteratively refined by estimating the
3D shape and pose using an EM-like algorithm. Recently, Cascaded Regression
Approach (CRA) has been employed to detect 3D face landmarks from a single
image [22,23]. The general idea of CRA is to start from an initial estimate and
then learn a sequence of regressors to gradually reduce the distance between this
estimate and the actual ground-truth. Specifically, in [22] the authors assume
that 3D face shapes can be modeled using PDM. In [23], a direct 3D landmark
detection approach is proposed. Here, from an initial set of 3D landmark points,
tree-based regressors are used to improve the estimate of the 3D shape of the face.
The authors argue that a two steps approaches, i.e., 2D landmark detection and
3D estimation, is generally computationally expensive and needs to be avoided.
We prove otherwise. A contribution of our work is to demonstrate that the step of
upgrading from 2D to 3D landmark points is computationally efficient (running
at > 1, 000 images/s) and yields better accuracies than previous algorithms.
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Fig. 2. Proposed network architecture. The face is detected using a standard face
detector. The first layers of the network detect the 2D coordinates of l landmarks, x
and y coordinates of the landmark points. The latter layers of our network then add
the depth information to these 2D landmark points, z values.

3 Method Overview

Our proposed method is illustrated in Fig. 1. As described earlier, our goal is to
learn (regress) the non-linear mapping function s = f(a) from an image a to a
set of 3D landmark points s defining the 3D shape of the face.

We derive a deep neural network to regress this function f(.). Deep neural
networks allow us to model complex, non-linear functions from large numbers of
samples. Our samples include 2D images of faces ai, i = 1, . . . , n, and n = n1 +
n2, with the first n1 images with their corresponding 2D and 3D shapes, si, and
the second n2 images with just 2D shapes. Our proposed network architecture
is illustrated in Fig. 2. As can be seen in this figure, we have p entry nodes,
representing the p image pixels of the face, and 3l output nodes, defining the
3D shape of the face. To facilitate the learning of the function f(.), the entry
p nodes must only define the face and, hence, this needs to be aligned. To this
end, we use [24] to detect the face, so that the bounding box is resized to have
p pixels.

Next, we need to define the optimization criteria of our neural network. The
proposed approach requires us to define two optimization criteria. First, we need
to derive a criterion for the accurate detection of the 2D landmark points on
the aligned image. Second, we must define a criterion for converting these 2D
landmark points to 3D. These two criteria are illustrated in Fig. 2. Note that
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the first criterion is used to optimize the parameters of the first several layers
of our deep network, while the second criterion optimizes the parameters of the
latter layers. Since our goal is to achieve accurate 3D reconstructions, we will
use gradient descent to optimize the parameters of the network until the second
criterion (i.e., the 3D shape reconstruction) is as accurate as possible. While it
is generally true that this means that the 2D landmark detections needs to be
accurate too, we do not directly account for this because the goal of the 3DFAW
competition is only to provide an accurate 3D reconstruction of the face.

In the sections to follow, we derive these two criteria for the detection of
the 2D fiducial points and their 3D reconstruction and define the details of the
architecture of the proposed deep neural network.

4 2D Landmark Points

We define a deep convolutional neural network with p input nodes, 2l output
nodes and 6 layers (Fig. 2). This includes four convolutional layers and two fully-
connected layers. Next, we derive an optimization criterion to learn to detect 2D
landmark points accurately.

4.1 Optimization Criterion

Let us define the image samples and their corresponding 2D output variable
(i.e., 2D landmark points) as the set {(a1,o1), . . . , (an,on)}, where oi is the
true (desirable) location of the 2D landmark points of the face. Note that oi is
a vector of 2l image coordinates, oi = (ui1, vi1, . . . , uil, vil)T , where (uij , vij)T is
the jth landmark point.

The goal of a computer vision system is to identify the vector of mapping
functions f(ai,w) = (f1(ai, w1), . . . , fr(ai, wl))

T that converts the input image
ai to an output vector oi of detections, and w = (w1, . . . , wl)

T is the vector of
parameters of these mapping functions. Hence, fj(ai, wj) = (ûij , v̂ij)

T are the
estimates of the 2D image coordinates uij and vij , and wj are the parameters of
the function fj .

For a fixed mapping function f(ai,w) (e.g., a ConvNet), the goal is to opti-
mize w; formally,

J (w̃) = min
w

Llocal(f(ai,w),oi), (1)

where Llocal(.) denotes the loss function. Specifically, we use the L2-loss defined
as,

Llocal(f(ai,w),oi) = l−1
l

∑

j=1

(fj(ai, wj) − oij)
2
, (2)

where oij is the jth element of oi, i.e., oij ∈ R
2.

Without loss of generality, and to simplify notation, we will use fi in lieu of
f(ai,w) and fij instead of fj(ai, wj). Note that the functions fij are the same
for all i, but may be different for distinct values of j.
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The above derivations correspond to a local fit. That is, (1) and (2) attempt
to optimize the fit of each one of the outputs independently and then take the
average fit over all outputs. This approach has several solutions, even for a fixed
fitting error. For example, the error can be equally distributed across all outputs
‖fij −oij‖2 ≈ ‖fik −oik‖2, ∀j, k, where ‖.‖2 is the 2-norm of a vector. Or, most
of the error is in one (or a few) of the estimates: ‖fij −oij‖2 >> ‖fik−oik‖2 and
‖fik − oik‖2 ≈ 0, ∀k �= j. In general, for a fixed fitting error, the latter example
is less preferable, because it leads to large errors in one of the output variables.
When this happens we say that the algorithm did not converge as expected.

One solution to this problem is to add an additional constraint to minimize

2
r(r + 1)

∑

1≤j<k≤r

|(fij − oij) − (fik − oik)|c , (3)

with c ≥ 1. However, this typically results in very slow training, limiting the
amount of training data that can be efficiently used. By reducing the number of
training samples, we generalize worse and typically obtain less accurate detec-
tions [25]. Another typical problem of this equation is that it sometime leads
to non-convergence (or convergence with very large fitting error), because the
constraint is not flexible enough for current optimization algorithms. We solve
these problems by adding a global fitting criterion that instead of slowing or
halting desirable convergences, it speeds them up.

To do this, it is key to note that the constraint in (2) is local because it
measures the fit of each element of oi (i.e., oij) independently. By local, we
mean that we only care about that one local result. The same criterion can
nonetheless be used to measure the fit of pairs of points; formally,

Lpairs(fi,oi) =
2

l(l + 1)

∑

1≤j<k≤l

(g (fij , fik) − g (oij ,oik))
2
, (4)

where g(d, e) = ‖d − e‖b is the b-norm of d − e (e.g., the 2-norm, g(d,be) =
√

(d − e)T (d − e) ).
Key to these derivations is to realize that (4) is no longer local, since it

takes into account the global structure of each pair of elements. This resolves
the problems of (2) enumerated above, yielding accurate detections of landmark
points and fast training.

4.2 Implementation Details

We set l = 66 and use n1 + n2 = 18600 samples. As mentioned above, we
use four convolutional layers, two max pooling layers and two fully connected
layers. Following [26], we apply normalization, dropout, and rectified linear units
(ReLU) at the end of each convolutional layer. One advantage of our proposed
algorithm is that learning can be efficiently performed with very large datasets.
Since we wish to have a landmark detector invariant to any affine transformation
and partial occlusions, we also use a data augmentation approach. Specifically,
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we generated an additional 80, 000 images by applying two-dimensional affine
transformations to the existing training set, i.e., scale, reflection, translation and
rotation; scale was between 2 and .5, rotation was −10◦ to 10◦, and translation
and reflection were randomly generated. To make the network more robust to
partial occlusions, we added random occluding boxes of d × d pixels as in [27],
with d between .2 and .4 times the inter-eye distance; 25 % of our training images
have partial occlusions.

5 3D Shape

Next, we describe how to recover the 3D information (i.e., the depth value) of
the 2D landmark points detected above. We start by writing the n 2D landmark
points on the ith image in matrix from as

Ui =
(

ui1 ui2 · · · uin

vi1 vi2 · · · vin

)

∈ R
2×n. (5)

Our goal is to recover the 3D coordinates of these 2D landmark points,

Si =

⎛

⎝

xi1 xi2 · · · xin

yi1 yi2 · · · yin
zi1 zi2 · · · zin

⎞

⎠ ∈ R
3×n, (6)

where (xij , yij , zij)T are the 3D coordinates of the jth face landmark.
Assuming a weak-perspective camera model, with calibrated camera matrix

M =
(

λ 0 0
0 λ 0

)

, the weak-perspective projection of the face 3D landmark points

is given by
Ui = MSi. (7)

This result is of course defined up to scale, since ui = λxi and vi = λyi,
where xT

i = (xi1, xi2, ..., xin), yT
i = (yi1, yi2, ..., yin), zTi = (zi1, zi2, ..., zin), uT

i =
(ui1, ui2, ..., uin) and vT

i = (vi1, vi2, ..., vin). This will require that we standardize
our variables when deriving our algorithm.

5.1 Deep 3D Shape Reconstruction from 2D Landmarks

Proposed Neural Network. Given a training set with l 3D landmark points
{Si}li=1, we aim to learn the function f : R2l → R

n, that is,

ẑi = f(x̂i, ŷi), (8)

where x̂i, ŷi and ẑi are obtained by standardizing xi, yi and zi as follows,

x̂ij =
xij − xi

(σ(xi) + σ(yi))/2
,

ŷij =
yij − yi

(σ(xi) + σ(yi))/2
,

ẑij =
zij − zi

(σ(xi) + σ(yi))/2
,

(9)
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where xi, yi and zi are mean values, and σ(xi), σ(yi) and σ(zi) are the standard
deviation of the elements in xi, yi and zi, respectively.

We standardize xi, yi and zi to eliminate the effect of scaling and translation
of the 3D face, as noted above. Herein, we model the function f(.) using a
multilayer neural network.

Figure 2 depicts the overall architecture of our neural network. It contains
M layers. The mth layer is defined by,

a(m+1) = tanh
(

Ω(m)a(m) + b(m)
)

, (10)

where a(m) ∈ R
d is an input vector, a(m+1) ∈ R

r is the output vector, d and
r specify the number of input and output nodes, respectively, and Ω ∈ R

r×d

and b ∈ R
r are network parameters, with the former a weighting matrix and the

latter a basis vector. Our neural network uses a Hyperbolic Tangent function,
tanh(.).

Our objective is to minimize the sum of the Euclidean distances between the
predicted depth location a

(m)
i and the ground-truth ẑi of our l 3D landmark

points, formally,

min
l

∑

i=1

‖ẑi − a
(m)
i ‖2, (11)

with ‖.‖2 the Euclidean distance of two vectors. We utilize the RMSProp algo-
rithm [28] to optimize our model parameters.

Testing. When testing on the tth face, we have ut and vt, and want to estimate
xt, yt and zt. From Eq. (7) we have ut = λxt and vt = λyt. Thus, we first
standardize the data,

ûtj =
utj − ut

(σ(ut) + σ(vt))/2
,

v̂tj =
vtj − vt

(σ(ut) + σ(vt))/2
.

(12)

This yields x̂t = ût and ŷt = v̂t. Therefore, we can directly feed (ût, v̂t) into
the trained neural network to obtain its depth ẑt. Then, the 3D shape of the
face can be recovered as (ûT

t , v̂T
t , ẑT

t )T , a result that is defined up to scale.

Implementation Details. Our feed-forward neural network contains six layers.
The number of nodes in each layer is 2n, 2n, 2n, 2n, 2n, and n. We divide our
training data into a training and a validation set. In each of these two sets, we
perform data augmentation. Specifically, we use the weak-perspective camera
model defined above to generate new 2D views of the 3D landmark points given
in the training set. This process helps the algorithm learn how each 3D shape is
seen from a large variety of 2D views (translation, rotation, scale). We use Keras
library [29] on top of Theano [30] to develop our multilayer neural network. Early
stopping is enabled to prevent overfitting and accelerate the training process.
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We stop the training process if the validation error does not decrease after 10
iterations. We set the learning rate at .01.

6 Experimental Results

We report the result of our experiment on the data of the 3D Face Alignment
in the Wild Challenge (3DFAW). Three of the four datasets in the challenge
are subsets of MultiPIE [31], BU-4DFE [32] and BP4D-Spontaneous [33] data-
bases respectively. Another dataset TimeSlice3D that contains annotated 2D
images are extracted from online videos. The depth has been recovered using
a model-based Structure from Motion technique [34]. In total, there are 18, 694
training images. Each image has 66 labeled 3D fiducial points and a face bound-
ing box centered around the mean 2D projection of the landmarks. The 2D to 3D
correspondence assumes a weak-perspective projection. The depth values have
been normalized to have zero mean. Another 4, 912 images are used for testing.
Participants in the challenging only had access to the testing images and their
bounding box, but not the 3D landmarks.

Fig. 3. Qualitative results on the testing set of the challenge. Our approach can detect
3D landmarks of face with large head pose precisely.

Detection error is evaluated using Ground Truth Error (GTE) and Cross
View Ground Truth Consistency Error (CVGTCE). GTE is the average point-
to-point Euclidean error between prediction and ground truth normalized by the
Euclidean distance between the outer corners of the eyes. Formally,
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Egte(S, ˜S) =
1
n

n
∑

k=1

‖sk − s̃k‖
d

, (13)

where ‖.‖ is the L2-norm, S and ˜S are the 3D prediction and ground truth, sk
and s̃k are the kth 3D point of S and ˜S respectively, and d is the Euclidean
distance between the outer corners of the eyes.

CVGTCE is a measurement that evaluates cross-view consistency of the pre-
dicted landmarks by comparing the prediction and ground truth from a different
view of the same target. Formally,

Ecvgtce(S, ˜S, P ) =
1
n

n
∑

k=1

‖(cRsk + t) − s̃k‖
d

, (14)

where P = {c,R, t} encodes the rigid transformation, i.e., scale (c), rotation
(R), and translation (t) between S and ˜S. These can be obtained by optimizing
the following:

{c,R, t} = argmin
c,R,t

n
∑

k=1

‖s̃k − (cRsk + t)‖

Our GTE and CVGTCE for testing images are 5.88% and 3.97%, respec-
tively. Figure 3 shows the qualitative results on the testing set of the challenge.
Additionally, we performed another test on the training set of the challenge. We
randomly select 13, 694 images from training set to train the multi-layer neural
network for 3D shape estimation from 2D landmarks. We test on the other 5, 000
images in the training set with ground truth 2D face landmarks. The GTE is
2.00%. Comparison of our method with other top ranked methods on 3DFAW
challenge dataset is shown in Table 1.

6.1 Across Database Testing

To compare with the state-of-the-art method, we performed another experiment
on the images of the BP4D-S database [33]. Note that we tested the proposed
approach using the pre-trained model on the 3DFAW dataset of the previous
section. That is, no images or 3D data from BP4D-S are used as part of our

Table 1. Comparisons of the GTE and CVGTCE on 3DFAW challenge dataset.

Participant CVGTCE GTE

psxab5 3.4767 4.5623

Ours 3.9700 5.8835

rpiisl 4.9488 6.2071

trigeorgis 5.4595 7.6403

olgabellon 5.9093 10.8001



600 R. Zhao et al.

training procedures, i.e., the experiment is across datasets. For fair comparison,
we followed the procedure in [22]. We randomly selected 100 images with yaw
angle between 0◦ and 10◦, 500 images with yaw angle between 10◦ and 20◦

and other 500 images with yaw angle between 20◦ and 30◦ for a total of 1100
images. Since the landmarks in BP4D-S database are different from the challenge
database, we selected the 45 overlapping landmarks to test our algorithm. The
reported error in [22] was calculated using the average of point-wise estimation
error (APE) as follows:

Eape(S, ˜S) =
1
n

n
∑

k=1

‖sk − s̃k‖ (15)

As shown in Table 2, our pre-trained model achieves the smallest APE com-
pared with [22] and the baseline (i.e., using the 3D mean face of the samples in
[33]). Figure 4 shows the qualitative results of the proposed approach on samples
from BP4D-S.

Table 2. Comparisons of the APE on BP4D-S database.

Ours PIFA [22] Baseline

4.14 4.75 5.02

Fig. 4. Qualitative results on the BP4D-S database. Our pre-train model can detect
3D landmarks of face with large head pose and facial expressions precisely.
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7 Conclusions

We have presented an algorithm for the reconstruction of the 3D shape of a face
from a single 2D image. The proposed algorithm yields very low reconstruction
errors and was the top 2 in the 3DFAW competition. Our approach is based on
the idea of learning a mapping function from an image of a face to its 3D shape.
Herein, we proposed to use a feed-forward neural network to learn this mapping.
We defined two criteria, one to learn to detect important shape landmark points
on the image and another to recover their depth information. We also presented
a data augmentation approach that utilizes camera models to aid the learning of
this complex, non-linear mapping function. The derived deep architecture and
optimization criteria can be efficiently learned using a large number of samples
and testing runs at > 30 frames/s on an i7 desktop.
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