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Abstract. We propose a method for joint face detection and align-
ment in unconstrained images and videos. Historically, these problems
have been addressed disjointly in literature with the overall performance
of the whole pipeline having been scantily assessed. We show that a
pipeline built by combining state-of-the-art methods for both tasks pro-
duces unsatisfactory overall performance. To address this limitation, we
propose an approach that addresses both tasks, which we call Deformable
Hough Transform Model (DHTM). In particular, we make the following
contributions: (a) Rather than scanning the image with discriminatively
trained filters, we propose to employ cascaded regression in a sliding win-
dow fashion to fit a facial deformable model over the whole image/video.
(b) We propose to capitalize on the large basin of attraction of cascaded
regression to set up a Hough-Transform voting scheme for detecting faces
and filtering out irrelevant background. (c) We report state-of-the-art
performance on the most challenging and widely-used data sets for face
detection, alignment and tracking.

Keywords: Face detection · Alignment · Tracking · Cascaded regres-
sion · Hough Transform

1 Introduction

From Viola and Jones [1] to Deformable Part Models [2–4] and from Active
Appearance Models [5] to Cascaded Regression [6–9], face detection, alignment
and tracking have all witnessed tremendous progress over the last years. Besides
new methodologies, another notable development in the field has been the col-
lection and annotation of large facial data sets captured in-the-wild [3,10–13],
for which a number of newly developed methods have been shown to produce
remarkable results.

Despite the progress in the field, the majority of prior work has disjointly
considered the two problems: there is a large number of papers on face detection
and perhaps even a larger number of papers on face alignment and tracking,
but to the best of our knowledge there are only two papers [3,14] that study
the combined problem of detection and alignment and no method that addresses
and evaluates all three tasks jointly. However, for many subsequent, higher level

c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part II, LNCS 9914, pp. 569–580, 2016.
DOI: 10.1007/978-3-319-48881-3 39



570 J. McDonagh and G. Tzimiropoulos

tasks, like face recognition, facial expression and attribute analysis, what mat-
ters is the overall performance in terms of accuracy in landmark localization.
Notably, recent state-of-the-art methods for such tasks heavily rely on the accu-
rate detection of landmarks (see for example [15,16]).

As we show hereafter, the overall performance in landmark localization accu-
racy might be unsatisfactory even by putting two recently proposed state-of-
the-art methods (we used [4] for face detection and [9] for landmark localiza-
tion) together. The reason for this is that face detection follows object detec-
tion in terms of measuring performance and, in particular, it uses the PASCAL
VOC precision-recall protocol for object detection, thus requiring 50 % overlap
between the ground truth and detected bounding boxes. As our results have
shown, this accuracy is insufficient for initializing current landmark localization
algorithms, even state-of-the-art methods like the one of [9] which is robust to
poor initialization.

Fig. 1. (a), (b): Overview of DHTM. Our system scans an image in a sliding window
fashion and for each candidate location fits a facial deformable model using PO-CR.
Image locations that converge to the same location cast votes for that location in a
Hough Transform fashion. Thresholding the voting surface and performing NMS results
in a few candidate locations for which SVM scores are calculated by extracting SIFT
and colour features. (a) System responses that received the highest number of votes.
(b) Scores after applying SVM. (c, d) Output of our system on two challenging images
from FDDB. The green ellipse shows a face that is not annotated. The red ellipse shows
a missed face. (Color figure online)
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1.1 Contributions

To address the aforementioned problem, we propose Deformable Hough Trans-
form Model (DHTM). DHTM is largely motivated by the efficiency and robust-
ness of cascaded regression methods for facial landmark localization. Essentially,
rather than using a face detector to initialize them, we instead propose to employ
them in order to jointly detect and track the location of faces and facial features
in images/videos, too. Overall, our model jointly addresses face detection, align-
ment and tracking via scanning the image with Project-Out Cascaded Regression
(PO-CR) [9] and aggregating the fitting results using a Hough-Transform (HT)
voting scheme. In particular, we make the following contributions:

– Rather than exhaustively evaluating multiple templates as in [3,4] in order to
cope with pose or other deformations, we propose to employ cascaded regres-
sion [6] in a sliding window fashion in order to evaluate the score of a single
deformable template over a grid of image locations. For a deformable tem-
plate, we choose one based on a parametric, densely connected shape model
and an appearance model built from SIFT features. We fit this model using
PO-CR [9], the complexity of which is only O(nN) per iteration, where N
is the number of features in the appearance model, and n is the number of
parameters in the shape model.

– We propose to capitalize on the large basin of attraction of PO-CR and formu-
late a Hough-Transform voting scheme that filters out irrelevant objects and
background areas, while at the same time “rewards” candidate image loca-
tions for which PO-CR converges to similar solutions. The main idea is that if
the algorithm converges to the same solution for multiple initializations, then
the converged solution “must” be a face.

– We report state-of-the-art results on challenging data sets for all 3 tasks: For
face detection, DHTM is among the top performing methods on FDDB [10]
and AFW [3] using the discrete score and sets a new state-of-the-art for the
continuous score on FDDB. For face alignment, DHTM achieves state-of-the-
art performance on the most challenging COFW [17] in terms of landmark
localization error. For face tracking, DHTM achieves state-of-the-art perfor-
mance on the 300-VW data set [18] in terms of landmark localization error.

2 Related Work

In this section, we review related work on face detection, alignment and perfor-
mance measures.

Face detection. Face detection is one of the most popular and well-studied
problems in computer vision with a multitude of approaches proposed over the
last years reporting varying degrees of success. A comprehensive review of the
topic is beyond the scope of this section, and we refer the reader to [4] for
a recent survey. Interestingly, in the same paper, it is reported that a multi-
channel, multi-view version of the Viola-Jones detector performs comparably
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with a properly tuned vanilla Deformable Part Models (DPM) face detector, and
that they both produce state-of-the-art performance on FDDB [10] and AFW [3]
data sets. Hence, it is argued that part-based approaches are not always advanta-
geous over standard approaches based on multi-view rigid templates, especially
when a large amount of training data is available. A part-based approach to face
detection is advocated in [3] and more recently in [14]. The Tree-Structure Model
of [3] proposes a supervised way to train a DPM face detector based on manual
annotations of parts, and a tree-based shape model that allows for a globally
optimized model. An interesting extension of [3] that deals better with occlu-
sion is described in [19]. The joint cascade detection and alignment algorithm of
[14] proposes to use shape-indexed features for classification. [14] and [4] along
with the more recent deep architectures of [20–22] are the state-of-the-art in face
detection. Our work is similar to [3,14] in a sense that it produces the location
of landmarks along with that of the face. However, both [3,14] are based on
classification. In contrast, the main scoring scheme in the proposed DHTM is a
novel voting scheme based on the large basin of attraction of cascaded regression
that is used to cast votes for the location of candidate faces. A voting scheme for
detecting faces is proposed in [23], however the voting is not based on deformable
model fitting (as in our work), but on rigid image retrieval and is fundamen-
tally different from the method presented herein. Finally, we note that although
our method achieves state-of-the-art performance using standard SIFT and
colour features, it could further benefit from region proposals and deep features
as in [20–22].

Facial landmark localization. DHTM uses cascaded regression to fit a
deformable template to each sub-window of a given image. Cascaded regres-
sion [6] is an iterative regression method in which the output of regression at
iteration k − 1 is used as input for iteration k, and each regressor uses image
features that depend on the current pose estimate. DHTM is somewhat related
to a number of regression-based face alignment methods [7–9,24–27] that have
recently emerged as the state-of-the-art. Consensus methods for face alignment
have been proposed in [17,28,29]. However, the aim of our work is not face align-
ment given a face detection initialization (as in all aforementioned algorithms)
but joint face and facial landmark detection.

Performance measures. In face detection, performance is measured using the
PASCALVOCprecision-recallprotocol, requiring50 %overlapbetweentheground
truth and detected bounding boxes. In the FDDB benchmark, this is called “dis-
crete”measure.FDDBalsodescribesa“continuous”measure inwhichthedetection
score isweightedbythecorrespondingoverlapping ratio.Thecontinuousmeasure is
thus more appropriate to reflect on the accuracy of the detected bounding box. The
proposedDHTMhasperformance comparable to state-of-the-artwhen thediscrete
measure is considered and establishes a new state-of-the-art for the case of the con-
tinuousmeasure. In facealignmentandtracking,performance ismeasuredusing the
averagenormalizedpoint-to-point (pt-pt) errorbetweenground truthanddetected
landmarks. Performance strongly depends on the quality of initialization. DHTM
produces state-of-the-art resultswhen the jointproblemof face and facial landmark
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detection is considered, and performance is measured using the pt-pt error: DHTM
largely outperforms the combination of [4] (for face detection) and [9] (for landmark
localization).

3 Deformable Hough Transform Model

Our system scans an image in a sliding window fashion and for each candi-
date location x, it fits a generative facial deformable model using PO-CR [9].
Image locations that converge to the same location cast votes for that loca-
tion in a fashion similar to Hough Transform. Thresholding the surface of votes,
obtained by our voting scheme, and performing non-maximal suppression, we
end up with a few candidate locations per image. For these locations, multiple
initializations are combined by taking the median and finally, SVM scores are
calculated by extracting SIFT and colour features around the landmarks of each
of the fitted shapes. Figure 1 aims to provide an overview of our system. The
main components of the proposed Deformable Hough Transform Model (DHTM)
are analyzed as follows.

3.1 Shape Model and Appearance

Shape model. DHTM uses cascaded regression to fit a deformable template
to each sub-window of a given image. Our cascaded regression method of choice
for this purpose is the recently proposed PO-CR [9] which has been shown to
produce good fitting results for faces with large pose and expression variation.
PO-CR uses parametric shape and appearance models both learned with PCA.
Let us assume that we are given a set of training facial images Ii annotated
with u fiducial points. For each image, the set of all points defines a vector
∈ R2u×1. The annotated shapes are firstly normalized by removing similarity
transformations using Procrustes Analysis and the shape model is obtained by
applying PCA on the normalized shapes. The model is defined by the mean
shape s0 and n shape eigenvectors si represented as columns in S ∈ R2u×n.
Finally, to model similarity transforms, S is appended with 4 additional bases
[30]. Using this model a shape can be instantiated by:

s(p) = s0 + Sp, (1)

where p ∈ Rn×1 is the vector of the shape parameters.

Appearance. To represent appearance in facial images, an image is firstly
warped to a reference frame so that similarity transformations are removed.
Then, the local appearance around each landmark is encoded using SIFT [31]
and all descriptors are stacked in a vector ∈ RN×1 which defines the part-based
facial appearance. Finally, PCA is applied on all training facial images to obtain
the appearance model defined by the mean appearance A0 and m appearance
eigenvectors Ai represented as columns in A ∈ RN×m. Using this model a part-
based facial representation can be instantiated by:

A(c) = A0 + Ac, (2)

where c ∈ Rm×1 is the vector of the appearance parameters.
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3.2 Deformable Model Fitting with PO-CR

We assume that a sub-window of our original image contains a facial image. We
also denote by I(s(p)) ∈ RN×1 the vector obtained by generating u landmarks
from a shape instance s(p) and concatenating the SIFT descriptors for all land-
marks. To localize the landmarks in the given sub-window, we fit the shape and
appearance models (described in the previous section) by solving the following
optimization problem:

arg min
p,c

||I(s(p)) − A(c)||2. (3)

As Eq. (3) is non-convex, a locally optimal solution can be readily provided in
an iterative fashion using the Lucas-Kanade algorithm [30,32].

In particular, given an estimate of p and c at iteration k, linearisation
of Eq. (3) is performed and updates, Δp,Δc can be obtained in closed form.
Notably, one can by-pass the calculation of Δc (for more details see [33]) by
solving

arg min
Δp

||I(s(p)) + JIΔp − A0||2P, (4)

where ||x||2P = xTPx is the weighted �2-norm of a vector x. The solution to the
above problem is readily given by

Δp = −H−1
P JT

P (I(s(p)) − A0), (5)

where JP = PJI and HP = JT
PJP , P = E − AAT is a projection operator

that projects out appearance variation from the image Jacobian JI , and E is
the identity matrix.

Note that the above algorithm can be implemented in real-time for a single fit-
ting, yet it is too slow to be employed for all sub-windows of a given image as the
Jacobian, the Hessian and its inverse need to be re-computed per iteration. PO-
CR by passes this computational burden by pre-computing a sequence of aver-
aged projected-out Jacobians and Hessians (one per iteration) using regression.
In particular, for iteration k, PO-CR pre-computes “averaged” matrices ̂JP (k),
̂HP (k) = ̂JP (k)T ̂JP (k) and finally R(k) = ̂HP (k)−1

̂JP (k)T . During testing, an
update for iteration k can be obtained from Δp(k) = R(k)(I(s(p(k))) − A0)
with cost O(nN), only. Hence, fitting in PO-CR is very fast, with our parallel
implementation running in a few thousand frames per second (one initialisation
per frame).

3.3 Hough-Transform Voting

The proposed DHTM detects faces via a Hough-Transform voting scheme by capi-
talizing on the properties of the iterative optimization procedure employed by PO-
CR. In particular, our system scans an image in a sliding window fashion and for
each location x (we used a grid of equally spaced points, see Sect. 3.5), it fits our
facial deformable model using the PO-CR described in the previous section. Vot-
ing in the proposed system is performed in a straightforward fashion. We simply
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extract the translational component from p which represents the location of the
fitted shape in the image. Then, for that location we cast a vote.

As with standard gradient descent fitting (PO-CR is a regression-based solu-
tion to Gauss-Newton optimization), we posit that when initialized in locations
where no faces are present, PO-CR will converge to random locations/solutions.
Examples of such cases are illustrated in Fig. 1 (a) as cyan “faces”’. The numbers
in boxes indicate the number of times that the algorithm has converged to the
nearby locations. As we may observe there are no more than 80 times that the
algorithm converged to a similar solution. On the contrary, when initialized close
to a face, because of the large basin of attraction of regression-based approaches,
PO-CR is very likely to accurately recover both the face and its parts. Two
examples of this idea are illustrated in Fig. 1(a) as red faces, with the numbers
indicating that more than 150 times for both faces PO-CR has converged to the
same solution. Thresholding the surface of votes, obtained by our voting scheme,
and performing non-maximal suppression, our system removes most of the back-
ground clutter ending up with a few candidate locations per image. Finally, as
our system is based on aggregating votes from different initializations, it comes
naturally to consider how these initializations can be combined to produce a
single fitting. We address this by simply taking the median of all fitted shapes
that cast votes for the same peak in Hough space.

3.4 Final Re-scoring

Once the final fitted shape has been obtained, we perform re-scoring of the
candidate face by evaluating an SVM trained on SIFT and colour features [4].
The overall detection process in DHTM is illustrated in Fig. 1(b).

3.5 Complexity and Implementation

Complexity. Assume that the PO-CR model has K levels of cascade. For each
level, a regression matrix R(k) is learned having n regressors with N features
each (columns of R(k)). Recall that n is the number of parameters in our shape
model. Hence, the complexity of fitting per sub-window is O(K(nN)). Because
of the large basin of attraction of PO-CR, we perform fitting only on a grid of
equally spaced points using a stride of 10 pixels. If there are L locations per
image to perform fitting, the total complexity is O(LK(nN)) for a single level
of the image pyramid. By making an analogy between the regressors in R(k)
and the number of mixtures in [3] (the number of regressors (n = 15 − 20) is
indeed similar to the number of mixtures in [3]), and assuming that [3] is also
evaluated on L locations, we conclude that our model is slower than [3] only by
a factor of K. However, L is smaller in DHTM because PO-CR optimizes for
translation too, having very large basin of attraction. Additionally, by optimizing
at the first level of the cascade only for scale, rotation and translation, and then
casting votes in Hough space (as explained in the previous section), our method
largely filters out most of the irrelevant background in the image leaving very few
locations to evaluate in the subsequent levels of the cascade. Hence, in practice,
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the total complexity is O(LK(nN)) with K = 1 and n = 4. For a VGA image,
our parallel, but not entirely optimized implementation, runs at 1–2 Hz 1. Note
that we can readily attain much higher speeds, by applying any object/face
proposal techniques to reduce the number of evaluations per image.

Training. Training in DHTM is very simple and includes learning R(k) as
described in Sect. 3.2, and learning the SVM model for face re-scoring as
described in Sect. 3.4. To learn R(k), we used the available landmark anno-
tations of the 300-W challenge [13]. Our PO-CR model built from this data set
is able to fit images with large yaw variation (±60◦) but not entirely profile
images (yaw ≈90◦). Hence, we annotated more than 1000 profile images from
the ALFW dataset and the internet, which we will make publicly available. For
training the SVM model, we fitted our PO-CR approach to our training sets and
used the fitted shapes as positive examples. This resulted in more realistic pos-
itive examples than using the ground truth shapes. Finally, negative examples
were obtained by scanning background images and then recording all locations
for which the number of votes obtained by HT voting was greater than 40.

4 Results

We report results on three tasks namely face detection, face detection followed
by face alignment and face tracking.

4.1 Face Detection Experiments

To evaluate the performance of our method on face detection, two of the most
popular in-the-wild datasets were used, namely AFW [3] and FDDB [10]. AFW
is built from Flickr images. It consists of 205 images with a total of 474 annotated
faces [4]. The images within this dataset tend to contain cluttered background
and faces with large variations in both viewpoint and appearance. FDDB con-
sists of 2845 images, with a total of 5171 ellipse face annotations. This dataset
includes very challenging low resolution, out of focus and occluded faces. To
report face detection performance, we generated the familiar precision-recall
curve using the standard PASCAL protocol. In particular, faces are only con-
sidered detected if the intersection-over-union (IoU) ratio between the ground
truth and the detected bounding box exceeds 50 %. For FDDB, we also report
the value of IoU, known as “continuous score”. In addition to the performance
of DHTM, we report the performance of the top performing methods for each
dataset.

Figure 2 summarizes our results on AFW. We compare with the methods
recently reported in [4]. When the IoU overlap is set to 50 %, our detector is

1 All tests were done using a NVIDIA GeForce GTX 980 GPU and an Intel I7–4790 k
CPU, on a PC running Windows 8.1 64-bit with 16 GB of RAM. The proposed
system was compiled for GPU devices of compute capability 3.5 and above, using
the CUDA 7.0 development toolkit.



Joint Face Detection and Alignment 577

Fig. 2. Precision recall for AFW. (a) IoU ratio is set to the standard 50 %. (b) IoU
ratio is set to 75 %.

comparable to both current commercial and published state-of-the-art methods.
To further show the accuracy of our proposed detector, we increased the IoU
overlap to 75 %, and as can be seen in Fig. 2(b), our detector clearly outperforms
all commercial and published methods by a margin of over 10 % in detection
accuracy.

Figure 3 summarizes our results on FDDB. We compare the performance of
our proposed detector against the currently published state-of-the-art methods
of [3,4,14,20–22,34,35]. For discrete scores, as shown in Fig. 3(a), our system
is one of the top performing methods being outperformed only by [20–22]. All
three methods are based on deep learning features. We have found that although
PO-CR can fit some very difficult faces, the weakest component of our system is
the SVM based on SIFT/colour features which for such faces yields low scores.
Hence by incorporating deep learning features into our system, one can expect
much better performance (this is left for future work). Notably, our system is
the top performing method when using the continuous score, outperforming all
[20–22] by a large margin.

4.2 Face Alignment and Tracking Experiments

For this experiment, we show localization performance of the complete DHTM
system including face detection followed by facial feature localization. To mea-
sure landmark localization performance, we used the point-to-point Euclidean
distance (pt-pt error) normalized by face size and report the cumulative curve
corresponding to the fraction of images for which the error was less than a specific
value [3]. We report performance on two very challenging datasets.

The first data set is COFW [17]. We chose this data set as it contains images
with large amounts of occlusion. This not only affects face detection performance
but also precise face localization which in turn affects facial feature localization
accuracy. For comparison, we also report the performance of the combined sys-
tem HeadHunter [4] followed by PO-CR. Figure 4(a) shows our results. Clearly,
DHTM outperforms HeadHunter plus PO-CR by a large margin.
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Fig. 3. Performance curves for FDDB. (a) Discrete score. (b) Continuous score.

Fig. 4. Point-to-point error, relative to face size, for (a) COFW data set and (b) 300-
VW (Category C) data set.

The second data set is the 300 videos in-the-wild (300-VW) data set recently
released in [18]. We chose category C to report performance on as it is the most
difficult category. This category contains 14 videos and more than 20,000 frames,
therefore this is a very large scale experiment. Face localization in video is consid-
ered easier than in still images as one can exploit temporal coherency to improve
performance, and indeed the top performing methods [22,36] do so. Instead, we
considered each frame as a separate image and run our system to simultaneously
detect the face and localize the landmarks. As Fig. 4(b) shows, even this case
our system is outperforming the winners of the 300-VW competition.

5 Conclusions

We proposed a novel approach to face detection and landmark localization
which we call Deformable Hough-Transform Model (DHTM). Our approach is
largely motivated by the efficiency and robustness of recent cascaded regression
approaches to facial landmark localization; essentially, rather than using a face
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detector to initialize them, we instead propose to employ them in order to detect
the location of faces in an image too. Rather than scanning the image with dis-
criminatively trained filters, we propose to employ the PO-CR algorithm in a
sliding window fashion to fit a facial deformable model and capitalize on the
large basin of attraction of PO-CR to set up a Hough-Transform voting scheme.
We report comparable performance to that of state-of-the-art face detection algo-
rithms and significant improvement over the standard face detection/landmark
localization pipeline when performance is measured in terms of landmark
localization.
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